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Abstract

A numerical algorithm for the linear equation of state is developed for the
volume-of-fluid interface-tracking code SURFER++, using the continuous
surface stress formulation for the description of interfacial tension. This is
applied to deformation under simple shear for a liquid drop in a much more
viscous matrix liquid. We choose a Reynolds number and capillary number
at which the drop settles to an ellipsoidal steady state, when there is no sur-

factant. The viscosity ratio is selected in a range where experiments have



shown tip streaming when surfactants are added. Our calculations show that
surfactant is advected by the flow and moves to the tips of the drop. There
is a threshhold surfactant level, above which the drop develops pointed tips,
which are due to surfactant accumulating at the ends of the drop. Fragments
emitted from these tips are on the scale of the mesh size, pointing to a short-
coming of the linear equation of state, namely that it does not provide a lower
bound on interfacial tension. One outcome is the possibility of an unphysical

negative surface tension on the emitted drops.
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I. INTRODUCTION

When a drop of viscous liquid is placed in a matrix liquid of equal viscosity and sheared,
the subsequent motion leads to ellipsoidal shapes for steady-state solutions, and dumbbell
shapes for unsteady evolution to breakup. On the other hand, when the viscosity of the drop
is much less than the matrix liquid, then it is known [1-3] that steady-state solutions produce
strongly distorted interfaces with high curvature at the ends. In this paper, we investigate
the first effect of surfactants on drop evolution and breakup for the drop to matrix viscosity
ratio of 0.05. This is chosen as a representative value where the drop deforms to a typical
almond-shape with high curvature at the ends and tip-streaming is observed in experiments
when surfactant is present, see [4]. In this paper, we cover three issues. The first is the
investigation of a novel algorithm for the volume-of-fluid scheme for the incorporation of
surfactants. Secondly, we show that when the amount of surfactant is increased, there is a
critical value above which the drop develops tips and droplets emerge. Thirdly, when the
amount of surfactant reaches a high level, a normal breakup mode occurs in place of droplet
production from tips.

In Section II, the basic steps in our numerical method are summarized. The key step
is the calculation of the interfacial tension force, which is described in detail in Section III.
The performances of the continuous surface stress formulation and the continuous surface
force formulation are compared. The role of mollifications to the color function, which have
been used in the past, is discussed in relation to the sensitivity of the numerical simulations
of drop shapes with high curvature. We develop our algorithm for the linear dependence of
interfacial tension on surfactant concentration in section IV. The key difficulty in formulating
any algorithm for surfactants within the framework of the volume-of-fluid scheme is that
the fluid properties are expressed most naturally and easily in terms of volumes rather
than surfaces. As our first step in the investigation of the effect of surfactants, the linear
equation of state is the simplest to implement. In Section V, the effect of reduction in

interfacial tension is investigated. An example is given for the formation of tipped ends



which emit small drops. However, the linear equation of state allows the interfacial tension
to decrease to negative values. Future work will address the manner in which nonlinear
equations of state impose the concept of maximal packing [5,6] and prevent the unphysical
decrease in interfacial tension that we observe here.

In all of our computations, we use a computational box of dimensions 3 x 0.5 x 1.
Periodic boundary conditions are imposed in the x and y directions, and the top and bottom
plates move with uniform speed £0.5. The drop is initially centered in the box with radius
a = 0.125. The drop and matrix fluid have equal density and viscosity ratio 0.05. The

dimensionless parameters are the Reynolds number

2 2
Re= P17
n

where ¥ is the shear rate (normalized to 1 in the computations), and 7 is the viscosity of

the matrix fluid, and the capillary number

Cazm.
o

If there is surfactant present, and surface tension is variable, we define C'a to be the capillary

number based on the value ¢ of the surface tension coefficient without surfactant.

II. SURFER++

Our code SURFER++ is composed of three parts: a volume-of-fluid VOF method
to track the interface [7,8] based on piecewise linear interface reconstruction, a projection
method to solve the Navier-Stokes equations on the MAC grid, and a continuum method
for modeling the interfacial tension. The novel aspects in this paper concern the VOF
component and the modeling of interfacial tension; both of these are discussed in detail in
subsequent sections. The details of the original code SURFER are given in [9], the interface
reconstruction scheme is discussed in [10], and new capabilities of SURFER++ to handle

low Reynolds number flows are described in [11-13].



The density p and the viscosity u of each fluid is a constant in each fluid. A concentration

(or color) function C is used to track the interface:

1 fluid 1,
C(x) =
0 fluid 2.

This concentration function is transported by the velocity field u. The fluids are incom-

pressible: V.u = 0, and governed by the Navier-Stokes equation:

0
p(a—?—i-u-Vu):—Vp—i—V-uS-i-F, (2.1)

where S is the viscous stress tensor. The body force F includes the interfacial tension force.

The temporal discretization is based on Chorin’s projection method, which decouples
the pressure equation. A semi-implicit Stokes solver has been incorporated. The spatial
discretization is a Cartesian mesh of rectangular cells. It is a finite difference mesh known
as the MAC grid. The density and viscosity for each cell are given by p= Cp; + (1 — C)ps
and p = Cpuy + (1 — C) g, where subscripts refer to fluids 1 and 2.

A piecewise linear interface calculation (PLIC) method is used to reconstruct the inter-
face position. The approximate normal n to the interface in each cell is equal to the discrete
gradient of the volume fraction field: n = VC/|VC|. The final step of the VOF method is
to evolve the volume fraction field C'. At the nth timestep, the interface is reconstructed,
the velocity at the interface is interpolated linearly and then the new interface position for
the (n+1)th timestep is calculated via a Lagrangian method: x"™' = x™ + u(At).

The entire code has been parallelized; data on the scalability and timings are given in

14].

III. ALGORITHMS FOR INTERFACIAL TENSION AS A BODY FORCE

In the VOF method, interfacial tension is posed as a body force over the discretized
cells which contain the interface. Thus, in the Navier-Stokes equation (2.1), the body force

F includes the interfacial tension force Fy = okngds, where o is the interfacial tension, «
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is the mean curvature and ng is the normal to the interface. Two such formulations have
been implemented in SURFER. The first is the continuous surface force (CSF) formulation
[15], in which f; = okng, and F,; = {;|VC|, where o is the interfacial tension, x is the mean
curvature and ng is the normal to the interface. The second is the continuous surface stress

(CSS) formulation [9], in which
F, =V -T = odskng and T = [(1 —ng® ns)Gés] . (31)

Both methods are equivalent at the continuum level.

The concentration function is discontinuous across the interface, but in SURFER, this is
replaced by a smoothed color function C(x) which varies from 0 to 1 over a distance O(e),
where € is of the order of the mesh. In SURFER, € is chosen to be twice the mesh size. The

mollified color function C is obtained by convolving C with a kernel K(x, €):
C(x) :/ C(x)K(x —x,€)dx
Q

SURFER uses the kernel function Kg introduced in [16] and calculates the mollified color
function by carrying out two smoothing steps.

This smoothing was introduced to suppress spurious currents which arise from inaccurate
discrete approximations to the interface normal and curvature. These spurious currents do
not disappear with mesh refinement. Converged results can be achieved if smoothing is
carried out over a distance which is large relative to the mesh size [17]. This is not realistic
in practical simulations. In our simulations, the spurious currents are insignificant relative
to the true velocities, in contrast to static situations where the true velocities are zero. The
smoothing can, however, affect the solution in regions of high curvature, such as prolonged
jets or tips, where smoothing out interfacial tension hurts the simulation.

The effect of smoothing is illustrated in figure 2, where Re = 1,C'a = 0.625, A = 0.05.
The computational domain is 3 x 0.5 x 1, timesteps At = 1073, mesh 192 x 32 x 64. The
results are identical with timesteps 0.2 x 1072. The mother drop radius is a = 0.125. Drop

deformations are shown for ¢ = 5,10, 15s. The results were obtained with smoothing for both
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CSS and CSF and without smoothing for CSS. In the case of no smoothing, it is essential
to use the conservation form of the surface tension force in the CSS method. CSF without
smoothing produces unphysical surface forces and unacceptable results, and therefore, CSF
is not pursued in the development of the surfactant algorithm in section IV. Our results
show that, as time progresses, smoothing introduces artificial tips at the ends of the drop,
which eventually spawn droplets. The smoothing diminishes surface tension in regions of
high curvature, which mimics the effect of surfactants accumulating at the ends of the drop
and induces tipstreaming as a numerical artifact. When smoothing is removed, this artifact

disappears, as evident in the figure.

IV. ALGORITHM FOR LINEAR DEPENDENCE OF INTERFACIAL TENSION

ON SURFACTANT CONCENTRATION

We use the Continuous Surface Stress formulation (cf. equation (3.1)). The CSS formu-
lation for the original code SURFER, in which o is a constant, remains basically the same
for the case of non-constant 0. We need to modify the surface stress T to replace o with
o — ET', where the elasticity number E is a measure of the sensitivity of the surface tension
to the surfactant concentration I' [5].

In the volume-of-fluid scheme, properties of the fluid are identified with volumes rather
than surfaces. As part of the initial condition, we define two additional spheres, one interior
to the drop with radius h/2 smaller, and one exterior to the drop with radius h/2 larger,
where h is sufficiently small. Figure 3 illustrates the initial condition. The outer sphere
is defined by a VOF function c, at the continuous level, which is 0 outside the sphere
and 1 inside the sphere. Similarly, the inner sphere is defined by c¢_, which is 0 outside it
and 1 inside it. The surfactant lives between the outer and inner spheres, and surfactant
concentration I is a constant multiple of ¢, —c_, which is 1 in the spherical annulus between
the outer and inner spheres, and 0 outside. The three interfaces will be tracked during the

numerical simulation.



The discrete version of the term ¢d, in the continuous surface stress T is to be replaced
by o|VC|— K(cy —c_), where 0, is |[VC|, which integrates to 1 across the interfacial region.
Upon integration from the inner to the outer sphere along the radial direction, this expression

becomes ¢ — Kh. Therefore, Kh = EI'. Therefore, we arrive at

ET
T = (1—n5®ng)[a|VC’| - T(C_F—C,)]. (41)
We denote the reduction factor by
ET surface tension with surfactant
r=—=1- , , . (4.2)
o surface tension without surfactant

This reduction factor is the quantity which is actually used by the code; r and A are input
parameters, and we then have K = or/h.
The algorithm is tested for a variety of surfactant layer depths h. Figure 4 shows the

evolution of the Taylor deformation parameter
Df = (L-B)/(L+B),

calculated from the side-view length L and breadth B at Re = 10,Ca = 0.16,r = 0.2.
The deformations correspond to the displayed velocity fields. Thus, the surfactant layer
depth can be chosen to equal the smallest mesh cell length, in cases like this where drop
deformation does not involve prolonged simulation of high curvatures.

When the drop evolves to a tipped shape, however, the choice of the surfactant layer
thickness becomes important. If it is chosen too large, the simulation can “lose” the sur-
factant because it migrates off the drop by moving to neighboring cells that are not taken
into account when stresses due to surfactants are computed. This can be thought of as a
numerically induced desorption, in which the surfactant moves off the interfacial cells as
high curvature regions evolve. An example of the effect of the initial surfactant layer is
shown in Figure 5. In the first sequence of pictures (h = Az/3), some of the surfactant has
numerically migrated from the drop (without taking any fluid with it) before the final frame,

and hence the separation of small droplets of liquid (which is present with A = Az/10) is not
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observed. Our results in subsequent sections are obtained with sufficiently thin initial sur-
factant layers, and we shall show the location of the surfactants with each result to convince
the reader that there is no numerical migration.

In the regime where the drop evolves to a tipped shape, very high concentrations of
surfactant occur at the tips. The linear equation of state allows surface tension to become
negative, and this leads to a mathematically ill-posed problem. Numerically, this manifests
itself in high sensitivity of the results to the accuracy of the pressure iteration. In all our
runs reported in the next section, we set the thickness of the initial surfactant layer equal to
0.0001 (roughly two orders of magnitude less than the mesh size), and we set the tolerance
bound for the pressure iteration in SURFER equal to 1072 (107% was sufficient for our

earlier simulations).

V. EFFECT OF REDUCTION FACTOR

We begin with the case of zero surfactants at Re = 1,Ca = 0.2, A = 0.05. As the amount
of surfactant is increased, figure 6 shows that tipstreaming begins at some critical value. As
the amount of surfactant increases, the drop becomes even more elongated. Experiments of
[4] show very elongated drops with little droplets streaming off the ends when the amount
of surfactant exceeds a certain minimum. This is illustrated in our simulations for reduction
factor 0.3 (see Figures 7, 8). Tipstreaming ceases at much higher levels of the surfactant,
where the drop may become sufficiently elongated to undergo a “normal” breakup. This
is shown for our simulations at reduction factor 0.5 (Figures 9, 10). It has been suggested
[18] that at high levels of surfactant concentration, the drop is uniformly covered and this
inhibits tip streaming. The emitted drops are expected to have radii much smaller than
that of the mother drop: in [4], the mother drops are on the order of millimeters, and the
emitted drops on the order of 10 microns. This places the droplets beyond the resolution
which we are able to attain at this time.

The results for r = 0.3 are shown in Figure 7 for meshes of 128 x 32 x 64 and 192 x 48 x



96. The drop develops elongated tips which eventually emit fragments. With every mesh
refinement, the details of what happens at the tip are at the level of the cell size, indicating
that the linear equation of state does not contain enough physics to determine the details of
the emitted drops. We conclude this from the following three observations. First, the time
when the fragments are emitted depends on the mesh. Secondly, the size of the droplets is on
the scale of the mesh. For instance, the small droplets visible in the last subfigure of Figure
7 have volume of approximately 0.89 times a mesh cell. Thirdly, fragments carry a sizable
amount of surfactant and have negative surface tension. The fragments in the last subfigure
each carry approximately 6 % of the total amount of surfactant and have an “effective
surface tension” (calculated by presuming them to be spherical) of minus 5 times the surface
tension without surfactant. On the other hand, the results confirm some of the features
observed in tipstreaming. The drops form elongated ends, and surfactant accumulates at
these ends. This is further illustrated by Figure 8, which shows the distribution of the
amount of surfactant in a vertical cross-section through the middle of the drop.

Figures 9 and 10 show the results for the higher reduction factor » = 0.5, at which the
effective capillary number is high enough to induce normal breakup mode. On the more
refined mesh, we observe that tips first form at the ends of the elongated drop, but the
ends lose their points once the normal breakup sequence is entered. The flow structure is
no longer such that it would pull the tips out further. As this happens, the ends develop

bulbous shapes, and indications of tipstreaming disappear.

VI. SCALINGS FOR EMITTED DROPS

Our computations based on the linear equation of state, and at the resolution we presently
have, fall short of predicting the properties of droplets emanating from the tips. We believe
that this is due to the fact that surface tension is permitted to become negative in the
simulations, thus removing the mechanism by which droplets are pinched off. In reality,

there is a small but positive value of surface tension even at a high surfactant concentration.
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The incorporation of additional physics for this in numerical simulations is left as an open
problem. We now derive the scalings which such an investigation should retrieve.
Assume that a number N of monodisperse fragments of radius D are produced by tip-

streaming. The capillary number of a fragment is

YD
Cap = 1=, (6.1)
OD

where op is surface tension on a fragment. Imposing that the capillary number of a fragment

is critical, we get a first condition

Ca.=Ca——, (6.2)

aop

after rescaling, where Ca = p¥ya/o. Here, Ca, is the critical capillary number for onset of
drop breakup.

A second condition comes from conservation of surfactant. Assume that tipstreaming

ends when the mother drop has been fully depleted of surfactant. Then

@)’

This yields four unknowns N, D/a, I'p/T', and op/o. We have two conditions (6.2)-
(6.3) relating these unknowns. In addition, we expect that there is an upper bound on
surfactant concentration when the surfactant “completely covers” the surface area; this
yields a value for I'p /T". The value of surface tension at this limiting surfactant concentration
determines op /0. The verification of these scalings would provide conclusive understanding

of tipstreaming.

VII. CONCLUSIONS

We have developed a novel algorithm for the simplest equation of state for surfactants,
within the volume-of-fluid interface tracking method. We have investigated in detail the for-
mulation for the interfacial tension force as a body force, and in particular, the mollification

of the concentration function is examined in the context of drops with tipped ends. It is
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found that mollification reduces interfacial tension noticeably in regions of high curvature,
which introduces tip-streaming as a numerical artifact. We have chosen therefore to use the
continuous surface stress formulation with no mollification.

The evolution at Reynolds number 1 and a drop-to-matrix viscosity ratio 0.05 is exam-
ined. It is found that the surfactant is advected by the flow to the ends of the drop. At
some critical value of the reduction factor, the ends of the drop develop tips. The tips emit
fragments on the scale of the mesh size. We believe that the actual size of drops emitted
in tip streaming is determined by the amount of surface tension which remains when the
surfactant reaches its maximum concentration. In the model used in our simulations, how-
ever, the effective surface tension has no lower bound and actually becomes negative. This
removes the mechanism by which drops would pinch off. Future investigation into addi-
tional physics to describe tipstreaming involves the implementation of a nonlinear equation
of state as described in [5]. Such a nonlinear equation of state cannot be implemented as a
volume force as in this paper and will require a more sophisticated algorithm which includes
a reconstruction of surface area. The ultimate aim is the simulation of droplet production
up to its cessation, so that our scaling conditions on the total number of droplets, droplet

size and capillary numbers could be verified.
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FIG. 2. t = 5 10,15s. (a) CSS with smoothing, (b) CSF with smoothing, (c) CSS without

smoothing. Re =1,Ca = 0.625, A = 0.05.
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Inner sphere

(c-)

FIG. 3. Schematic of formulation for the inclusion of the linear equation of state for the sur-
factant concentration. The outer sphere is associated with the color function c;, the inner sphere

with ¢_, the drop interface with c.
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FIG. 4. Convergence study for surfactant layer thickness defined in éection IV.
Re = 10,Ca = 0.16,7 = 0.2. 1 x 0.5 x 1 box, 64 x 32 x 64. Plot of deformation parameter
Df vs t(s), for h = mesh cell size 1/64 (-.), 1/2 mesh (.), 1/10 mesh (-), showing agreement for
surfactant layer thickness of the order of the mesh cell size. Velocity fields are displayed at t=2.5,
7.5, 16.5, 22s, for the x-z cross-section through the center. The computational box is sized to

induce the drop to interact with neighbors and develop the kinked neck.
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FIG. 5. Retention of surfactant on interfacial cells with the use of sufficiently thin initial sur-
factant layer. Re =1,Ca = 0.2, = 0.3,t = 4,8,12s. h = (a) Az/3, (b) Az/10. Computational

domain 3 x 0.5 x 1, mesh 192 x 32 x 64.
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R

FIG. 6. Re =1,Ca = 0.2, A = 0.05. From top, » = 0 (a steady solution is reached by t=2s),

r=0.1 (t=10s), 0.3 (t=16s).
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(b)
FIG. 7. Evolution of drop shape for Re = 1,Ca = 0.2,7 = 0.3,t = 4,8,12,16s. (a) Mesh

128 x 32 x 64. (b) Mesh 192 x 48 x 96.
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FIG. 8. Evolution of surfactant concentration for Re = 1,Ca = 0.2, = 0.3,¢t = 4,8,12, 16s.

(a) Mesh 128 x 32 x 64. (b) Mesh 192 x 48 x 96.
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(b)
FIG. 9. Evolution of drop shape for Re = 1,Ca = 0.2,7 = 0.5,t = 4,8,12,16s. (a) Mesh

128 x 32 x 64. (b) Mesh 192 x 48 x 96.
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FIG. 10. Evolution of surfactant concentration for Re = 1,Ca = 0.2, = 0.5,t = 4, 8,12, 16s.

(a) Mesh 128 x 32 x 64. (b) Mesh 192 x 48 x 96.
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