Symmetry Property and Construction of Wavelets
With a General Dilation Matrix
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Abstract

In this note, we are interested in the symmetry property of a refinable function with
a general dilation matrix. We investigate the symmetry group of a mask so that its as-
sociated refinable function with a general dilation matrix has certain kind of symmetry.
Given two dilation matrices which produce the same lattice, we demonstrate that if a
mask has certain kind of symmetry, then its associated refinable functions with respect to
the two dilation matrices are the same; therefore, the two corresponding derived wavelet
systems are essential the same. Finally, we illustrate that for any dilation matrix, or-
thogonal masks, as well as interpolatory masks having nonnegative symbols, can be easily
constructed with any preassigned order of sum rules by employing a linear transform.
Without solving any equation, the method in this note on constructing masks with cer-
tain desirable properties is simple, painless and general. Examples of quincunx wavelets
are presented to illustrate the general theory.
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1 Introduction

Multidimensional wavelets are useful in dealing with high dimensional problems. It has been
observed in the literature, for example, [2, 5, 9], that tensor product dyadic wavelets are not
enough to deal with a variety of problems from a broad range of applications. Consequently,
multidimensional wavelets with a general dilation matrix have been extensively studied in the
literature [1, 2, 3, 6, 7, 9, 10, 11, 12] and references therein. For example, due to their special
features, quincunx wavelets have been discussed in [1, 2, 3, 7, 9, 10, 12| and in many other pa-
pers. For detailed arguments about advantages of multidimensional wavelets such as quincunx
wavelets, the reader is referred to [2, 5, 9, 10].

An s x s integer matrix M is called a dilation matrix if limj_,.o M % = 0. We say that a
is a mask on Z* if a is a finitely supported sequence on Z° such that » ;.. a(3) = 1. Wavelets
are derived from refinable functions via a standard multiresolution technique. A refinable
function ¢ is a solution to the following refinement equation

¢ =|det M| Y a(B)$(M - —P), (1.1)
BELS

where a is a mask and M is a dilation matrix. For a mask a on Z° and an s X s dilation matrix
M, it is known that there exists a unique compactly supported distributional solution, denoted
by ¢M throughout the note, to the refinement equation (1.1) such that ¢ (0) = 1.

An orthogonal wavelet is derived from an orthogonal refinable function ¢ € Ly(R?®) such
that

[ @R @A e =0(8)  VBe (12

where 6(0) =1 and 6(3) = 0 for all g € Z*\{0}.

In the tensor product dyadic wavelets, the dilation matrix 2/, is used. When a general
dilation matrix M is used in a wavelet system, it is necessary to use |det M| — 1 wavelet
functions with compact support to generate a wavelet system. Therefore, the case |det M| = 2
is of particular interest in the literature since only a single wavelet function is needed to generate
a wavelet system. In fact, when | det M| = 2 and (1.2) holds, the associated wavelet function
1) can be easily obtained as follows:

v =det M| Y _(=1)*Pla(a - B¢} (M - -p),
BEL®
where o € ZS\MZ* and |(a1, -, as)| = |aq| + - - + |ag].

In dimension two, the following two quincunx dilation matrices

Q:G _11> and T:G _11> (1.3)



are of particular interest. Their associated lattice QZ? = TZ? = {(f1,5,) € Z*> : B +
Bo is an even integer } is called the quincunx lattice in the literature. Quincunx wavelets
using these dilation matrices have attracted a lot of interest and have been discussed in detail
in [1, 2, 3, 7,9, 10, 12] and many other references in the literature. For example, orthogonal

quincunx wavelets are constructed in [1, 2, 9, 10] and biorthogonal quincunx wavelets are
discussed in [2, 7].

However, the results in the literature [1, 2] reflect a sharp contrast between the dilation
matrices () and 7. On one hand, arbitrarily smooth compactly supported quincunx orthogonal
refinable functions with the dilation matrix 7" were reported in Cohen and Daubechies [2] for
separable ones, and Belogay and Wang [1] for nonseparable ones. On the other hand, to our
best knowledge, it is still an unsolved problem whether there exists a C* orthogonal compactly
supported refinable function with respect to the dilation matrix @ (see [1, 2]). Due to these
facts, it is believed explicitly or implicitly that it is much harder to deal with the dilation
matrix ¢ than to deal with 7. Sometimes in the literature, () is referred as the “real” quincunx
dilation matrix and T as a “separable” one since 7? = 2I, and Q* = —41,.

In many applications, symmetry is a much desirable property of a wavelet system. However,
it seems to us that the symmetry of quincunx wavelets is seldom discussed in the literature,
needless to say symmetry of wavelets with a general dilation matrix. Let E be an integer
matrix such that |det E| = 1. If a is a mask satisfying a(EfS) = a(B) for all § € Z?, then it
is straightforward to see from the refinement equation (1.1) that ¢ "MP = ¢M(E.). When
M = 2I,, then ¢M = ¢M(E-) which means the symmetry of a mask carries over to its refinable
function directly. But this is not necessarily true in general. In Section 2, we shall study the
symmetry group of a mask such that its associated refinable function with a general dilation
matrix possesses certain kind of symmetry.

Note that there does not exist a 2 x 2 matrix E such that EQE~! = T since T? = 21, # )?
for the two quincunx dilation matrices in (1.3). For a same mask a on Z?, it seems that the
refinable functions ¢@ and ¢! are unrelated as demonstrated by the following discussion. Let
b, be the interpolatory mask in [4] which is supported on [1 — 2r,2r — 1]. Then we can obtain
a mask g 10 on Z? by qor 10(j, k) = b.(§)0(k),j, k € Z. Even though g 10(r € N) are
symmetric about the two coordinate axes, Cohen and Daubechies in [2] demonstrated that

2sr 10 Can be made arbitrarily smooth by increasing r while ¢ ¢ C'(R?) for all r € N. A
similar phenomenon happens for other quincunx masks in [7] which are also symmetric about
the two coordinate axes.

On the other hand, we observed that for a family of masks with better symmetry in [7],
the smoothness exponents of the quincunx refinable functions with both ) and T" computed in
Tables 1 and 2 of [7] are the same. This motivates us to think about whether there is a relation
between ¢@ and ¢! when a has certain kind of symmetry.

Given two dilation matrices M and N, for a mask a, we shall investigate in Section 2 the
symmetry group of the mask a under which we guarantee M = @Y. As a consequence, we



can demonstrate that all the quincunx biorthogonal wavelets constructed in [2], as well as some
other examples in [7], are essentially the same with respect to either @) or 7.

Finally, in Section 3, we shall further investigate the relations between different dilation
matrices. Using a linear transform which preserves cosets, we are able to demonstrate that
for any dilation matrix, orthogonal masks, as well as interpolatory masks having nonnegative
symbols, can be easily obtained with any preassigned order of sum rules. Comparing with other
methods on constructing wavelets in the literature, the method proposed in this note is simple,
painless and general without solving any equation.

2 Symmetry of a Mask and a Refinable Function

Let U(Z®) denote all the s x s integer matrices E such that |det E| = 1. That is, E € U(Z?) if
and only if F is an isomorphism on Z*. Given a mask a on Z° and E € U(Z*), we say that a
is invariant under E if

ao(EB) =a(f) VAEZ

Moreover, we define
G, :={F € U(Z?%) : a is invariant under E}. (2.1)

Then it is obvious that G, is a group under the matrix multiplication; thus we say that G, is
the symmetry group associated with the mask a. By the following result, we see that G, is
a special subgroup of U(Z?).

Proposition 2.1 Let a be a finitely supported mask on Z? such that the span of {3 € Z?
a(B) # 0} is R? (that is, the support of a is not contained in a straight line through the origin).
Then G, is a subset of

{iIQ}u{[’Z _Jm] :jk::l:l—m2}u{[7]? ﬂj_m} :jk:m(:lzl—m)—l}, (2.2)
where j,k,m € Z.

Proof: Let E € G, and suppa := {3 € Z? : a(B) # 0}. Since a is invariant under E, we
deduce that {E’S : ¢ € N,3 € suppa} C suppa. Since suppa is a finite set, there exists an
integer ¢ such that E‘8 = 3 for all 8 € suppa. Now E* = I, follows directly from the fact that
the span of the set suppa is R?. So the eigenvalues of E must have absolute value 1. Since E
is an integer matrix, it yields that trace(E) = 0, £1 or £2.

Case 1: trace(E) = £2. Then the two eigenvalues of E must be equal and take value either
1 or —1. Using the Jordan matrix form of E, it follows from E¢ = I, that E = +1,.
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m.
k —m
J,k,m € Z and jk = +1 — m?. Tt is easy to check that F € U(Z?) and E? = +15.

Case 2: trace(E) = 0. Since det E = +1, we can assume that E =

Case 3: trace(E) = =+1. In this case, the eigenvalues of F must not be real numbers

m J . .
2 :I:l—m] with j,k,m € Z and

jk = m(£1 —m) — 1. Tt is easy to check that E € U(Z?) and E3 = FI,. ]

and therefore, we must have det ' = 1. Assume E = [

For any element E of the set in (2.2), we can easily construct a finitely supported mask
on Z? such that it is invariant under E. Though the discussion will be more complicated, the
arguments in the proof of Proposition 2.1 can apply to higher dimensions.

For any complex-valued matrix A, by A* we denote the complex conjugate of the transpose
of the matrix A. Given a mask a, its symbol is defined to be

a8 =) a(Be Pt teR. (2.3)
Bezs

In terms of symbol, a is invariant under E if and only if a(E*€) = a(€) for all £ € R®. Using
the symbol of a mask, we can rewrite the refinement equation in (1.1) as follows

M(€) =a(M*) LM (M) L),  EE€R. (2.4)

Theorem 2.2 Let a be a mask on Z° and M be an s x s dilation matriz. Define
GY ={EcUZ) : MMEM7 €G, VjeN} =UZ)NNZ M7G,M, (2.5)

where G, is the symmetry group of a in (2.1). Then GM is a group under the matriz multipli-
cation and ¢M(E-) = ¢M for all E € GM. That is, oM is invariant under all the elements in
GV,

Proof: When E, F € GM, then EF~' € GM by MJEF~" M~ = (Mi EM~)(M/F M=)~
G, for all j € N. So GM is a group.

For any E € GM | we have MIEM 7 € G, for all j € N. Hence,

SM(E*€) = Ha (M*) T E*€) Ha (MIEM ) Ha ig) = gM(¢).
j=1
Hence, ¢M(E-) = ¢M for all E € GM. n
Let a be a mask on Z? such that G, = {£} or G, = {+1,, + [(1] ] }. Then GT' = GY =

G9" = {+£I,}, where the quincunx dilation matrices Q and T are defined in (1.3). Therefore,
when the dilation matrix is not a multiple of the identity matrix, better symmetry of a mask
may not be able to guarantee better symmetry of its refinable function.
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Theorem 2.3 Let M and N be two s x s dilation matrices such that N7M~I are integer
matrices for all j € N. Define a set Sy,n of integer matrices as follows:

Syn={N'M7 : jeNL (2.6)

Let a be a mask on Z°. If a is invariant under all the elements in Sy, that is, Sy C G,
then oM = ¢V,

Proof: Since NNM 7 € G, for all j € N, we have

a(6) = TTa(ary 99 = [Jawnr 5y (v %) = Ha (V) 76) = 3@,
j=1 Jj=1
Therefore, ¢M = ¢ .

Example 2.4 Let Q and T be the quincunx dilation matrices in (1.3). By computation, we
have

10 1 0 0 —1 01
Sar=sra=Ser=srw= (= [} st Saf JuP ]} @a

and
1 0 0 —1
SQ.e- =S¢ Q= {i [0 1] ,E [1 0 ]}

which are groups under the matrix multiplication. If a mask a is invariant under all the elements
in Sg 7, then Sgr C G? and by Theorems 2.2 and 2.3, ¢ = ¢9 = ¢9" which is symmetric
under all the elements in the group Sg . All the masks for the quincunx biorthogonal wavelets
constructed in [2] are invariant under S and therefore, their associated refinable functions
with respect to T, and (Q* are the same. Theorem 2.3 also explains why the smoothness
exponents of the refinable functions qﬁg and ¢£ computed in Tables 1 and 2 of [7] are the same
for a family of masks g.(r € N) in [7] since all g,(r € N) are invariant under Sg r.

That a mask is invariant under Sg r is equivalent to saying that it is symmetric about the
two coordinate axes ; = 0,z = 0 and the lines 1 = 75 and x; = —x5. In fact, the group S¢ r
is quite natural and maximal due to the following fact.

Proposition 2.5 Let a be a mask on Z? such that the support of a is not contained in a straight

line through the origin. If a is invariant under either [(1) _01} or [_01 (1]] , then G, must be a

subgroup of Sg.r in (2.7).



Proof: Let £ = [(1] _01} If F € G, comes from Case 2 in the proof of Proposition 2.1,
then F = {TZ _Jm} with j,k,m € Z and jk = £1 — m?. Since E,F € G,, we must have
EF = [f;c 731] € G,. By Proposition 2.1, we have trace(EF) = 2m = +2 or 0; that is,

m = 0,+£1. When m = 0, then jk = £1 — m? = +1 implies F' € Sgr. When m = £1, then
trace(E'F) = £2 and therefore, by Proposition 2.1, EF = £I, which implies F' = £F € Sg .

If F' € G, comes from Case 3 in the proof of Proposition 2.1, then det F' = 1. However, by
a simple computation, we deduce that trace(FF) = 41 which implies that FF' must also come
from Case 3. But det EF' = det E'det F' = —1 which is impossible. [ ]

3 Constructing Wavelets via a Linear Transform

Let a be a mask and M be a dilation matrix. When the refinable function ¢ satisfies (1.2),
then it is necessary that a is an orthogonal mask (with respect to the lattice MZ®), that is,

> a(a+B)a(B) =6(e)/|det M| V€ MZ. (3.1)
BEeLs

It is known that ¢} is an orthogonal refinable function if and only if @ is an orthogonal mask
with respect to the lattice M7Z® and the subdivision scheme associated with mask a and the
dilation matrix M converges in the L, norm. For simplicity, in this section we only deal with a
mask a rather than the more subtle issue of the stability of the refinable function ¢, though
such stability property of ¢ can be established when all the zeros of @ are known.

A much desirable property of a wavelet system is its order of vanishing moments since it
guarantees that the wavelet representation of a piecewise smooth function is sparse. The order
of vanishing moments of a wavelet system is closely related to the order of sum rules satisfied
by a mask. We say that a satisfies the sum rules of order ¢ (with respect to the lattice MZ?)
if

Y. ale+Bgla+p)= Y aB)B) Vqele, (3.2)

BEMIZLS BEMZS

where II, ; denotes the set of all polynomials of (total) degree less than Z.

A closely related concept to an orthogonal mask is an interpolatory mask. We say that a
mask b is an interpolatory mask (with respect to the lattice MZ?) if

b(3) = 6(8)/|det M| ¥ 3 € MZ?. (3.3)



Given a mask a, we can define another mask b by b(¢) = [@(€)[2. Then a is an orthogonal
mask with respect to the lattice MZ? if and only if b is an interpolatory mask with respect to

the lattice MZ?, or equivalently,

| det M|

Y bE+2me) =1 VEER,
j=1

where {e; : j=1,---,|det M|} is a complete set of representatives of the distinct cosets of
the quotient group (M*)'Z*/Z*. For discussion on interpolatory masks, the reader is referred
to [3, 4, 6, 7, 11].

A simple observation is that the definitions of an orthogonal mask in (3.1), an interpolatory
mask in (3.3) and the order of sum rules in (3.2) depend only on the lattice MZ? rather than
the dilation matrix M since | det M| equals the number of distinct cosets in the quotient group
Z*/MZ?. On the other hand, let a be a mask and E be an integer matrix with |det E| = 1.
Consider a new sequence b given by b(3) = a(ES),3 € Z°. Suppose that E maps the coset
MZ? into the coset MZ*. Then we observe that £ must map any coset o + MZ?® one-to-one
and onto another coset Fa+ MZ?®. Hence, it is easy to verify that if ¢ is an orthogonal mask, or
is an interpolatory mask, or satisfies the sum rules of order ¢ with respect to the lattice MZ?,
then so does the mask b.

So a more accurate definition of a symmetry group associated with a mask in (2.1) of
Section 2 should consider only elements E € U(Z?®) such that EMZ* C MZ*. Fortunately, all
the elements in the group Sg 7 in (2.7) maps the quincunx lattice QZ? into itself.

In the following, let us explore the idea of using a linear transform to obtain new masks
from known ones in a more complicated setting. Given two lattices MZ" and NZ°*, if we have a
linear transform P : R® — R” such that it maps a coset o+ NZ*(a € Z°) into a coset Pa+ MZ"
if Pao € Z", then such a linear mapping will transform a mask a on Z° into a mask b on Z" by

bla) =c Z a(B), a€el’,

{ﬂEZ‘S H Pﬂ:a}

where c is a constant so that )" _,.b(a) = 1. If P is carefully chosen, then the order of sum
rules of mask a with respect to NZ* can be preserved so that the new mask b on Z" can also
satisfy the same order of sum rules with respect to MZ" since the equations in the definition of
the sum rules in (3.2) still hold for the new mask b and lattice MZ" under certain conditions
on the linear transform P.

Before we state the result, let us introduce some notation. Let Dy = [0y, -, 0s]* where 0;
denotes the partial derivative with respect to the j-th coordinate axis. The Kronecker product
of two matrices A = (a;)1<i<i,1<j<n and B, written as A ® B, is defined to be the following



matrix

G,HB alzB s alnB
A 2 B— CLQ:}B CLQ?B . U,Q?B
anB  apB --- a,B

It is easy to see ([8]) that a satisfies the sum rules of order ¢ with respect to the lattice MZ* if
and only if
[D,®---®D,®a|(2me) =0 Vee (M) 'Z\Z0<k </
k times
The following lemma will be needed later.
Lemma 3.1 Let P be an s X r real-valued matriz and F be an m X n matriz of C™(R®)

functions. Then D, ® [F(P-)] = [(P*Ds) ® F|(P-) = (P*® I,)(Ds ® F)(P-) and consequently,
for any positive integer k,

D, ®---® D, ®[F(P-)] [ P'DY)®---® (P*DQ@F] (P

-

-~

k times k times
= (P*@---@P*@Im) (DS®---®DS®F)(P-).
—_——
k times k times

Proof: By a simple computation, we have

(D @ [F(P)]lijk = [ Fjs(P)] = Y 01 Fje Py = Z F, = [(P*Ds) ® Flin i,

which completes the proof. [ ]

Now we have the following result on constructing new masks from known ones via a linear
transform.

Theorem 3.2 Let M be an r X r integer matriz and N be an s X s integer matriz such that
both M and N have nonzero determinants. Let P be an r X s real-valued matriz such that

PNZ* C MZ" and (a+MZ')NPZ'#0 VYaelZ. (3.4)
Let {Ej}§:1 be a complete set of representatives of the distinct cosets of the quotient group
P*Z"|Z*. For any mask a on Z° such that a satisfies the sum rules of order 1 with respect to
the lattice NZ°, define a sequence Pa on Z" as follows:

Pa(€) = a(P*€ +2me;), E€R, (3.5)

M-

1

J



or equivalently,

Pa(a) =1t Z a(B), acl, (3.6)
{BE€Zs : PB=a}

where by convention Pa(a) := 0 when {8 € Z° : PB = «a} is the empty set. Then Pa is a
well-defined finitely supported mask on Z" such that

(1) If a satisfies the sum rules of order £ with respect to the lattice NZ*®, then Pa also satisfies
the sum rules of order £ with respect to the lattice MZ";

(2) If a(w) > 0 for all w € R®, then IBZL({-“) >0 forall £ €eR";
(3) If the following extra condition
(B€Z° : PBe MZ'} C NZ* (3.7)

holds, then for any interpolatory mask a with respect to the lattice N7Z°, Pa is an inter-
polatory mask with respect to the lattice M7 .

Proof: Let S = M~'PN. Then by assumption in (3.4) S is an integer matrix and P* =
(N*)~1S8*M*. Hence, P*Z"/Z* is a subgroup of (N*)"'Z*/Z?* and t is a finite integer.

Since P*Z"/Z¢ is a subgroup of (N*)~'Z*/Z* and a satisfies the sum rules of order 1, we
have Pa(0) = a(0) = 1. To demonstrate that Pa is finitely supported, it suffices to show that
Pa is a 2wZ"-periodic trigonometric polynomial. For any o € Z,

t

¢
Pa(& + 27a) = Za P*¢+2n(Pa+e;)) = Z&’(P*f + 2mej) = Pa(§)
7j=1

i=1

since {P*a+¢; : j=1,---,t} is also a complete set of representatives of the distinct cosets
of P*Z"/7Z?. Therefore, Pa is a well-defined mask on Z".

Note that for any § € Z°, the set {e~®"#<i}!_, is a group under multiplication. Moreover,
if (B, ¢;) is an integer for all j =1,--- ¢, since {5j}§':1 is a complete set of representatives of
the distinct cosets of P*Z"/Z°, then (3, P*a) = (Pf, a) is an integer for all o« € Z". Therefore,
P( must be an integer whenever § € Z° and (f,¢,) is an integer for all j = 1,--- ,¢. By a
simple argument, we observe that

t

e =0 V€L such that PR ¢ 7.

=1

10



It follows from the above identity that

t

t ¢ .
Pa(€) =Y a(Pre+2me;) = 3 Y a(B)e ) = 3N g(g)e PHEY T e 20
j=1

=1 j=1 Bezs j=1 Bezs
=S et 3w e =1y e 3 a(p).
a€EPZS {B€Zs : PB=a} j=1 a€Z” {BEZs : PB=a}

Therefore, (3.5) and (3.6) are equivalent.
If a satisfies the sum rules of order ¢ with respect to the lattice NZ*, then

[D,®---® D, ®a)(2r3) =0 VA€ (N 'Z\Z0< k< £

k times

From Lemma 3.1, for all 0 < k < £ and 8 € (M*)~'Z"\Z", we have

[DT ®---®D, ®If52L:| (27B) = Z [Dr ® - ® D, ®[a(P* - +2me;)] | (27F)

=1

k times J k times
:Z <P*®---®P*®Il> (Ds®---®Ds®a>(27r(P*/3+sj)) =0
—_——— —_——
j=1 k times k times

provided that P*3 +¢; € (N)1ZA\Z* for all j =1, --- .

Since ¢; € P*Z" and P* = (N*)"'S*M*, obviously P* +¢; € (N*) 'Z*. To prove that
P*B+e; € (N*) 'Z5\Z* for all j =1,--- ,t and B € (M*) 'Z"\Z", it suffices to prove that if
P*(3 is an integer for some (3 € (M*)'Z", then 3 must be an integer. Suppose that P*3 is an
integer. Then (3, Pa) = (P*, @) must be an integer for all & € Z°. By assumption in (3.4),
there exist o; € Z7,j = 1,---,|det M| such that {o; : j =1,---,[det M|} is a complete
set of representatives of the distinct cosets of Z"/MZ" and «; € PZ®. Therefore, (3, ;) are
integers for all j = 1,--- ,|det M|. By 8 € (M*)~'Z", we have (3, o; + M) must be an integer
forall j =1,---,|det M| and o € Z". Since {o; : j=1,---,|det M|} is a complete set of
representatives of the distinct cosets of the quotient group Z"/MZ", it yields that (3, ) must
be an integer for all « € Z". So [ must be an integer.

When {f € Z* : PG € MZ"} C NZ?®, from (3.6) it is obvious that Pa is an interpolatory
mask. [ ]

The requirement in (3.4) is equivalent to saying that the linear transform P maps the coset
NZ* into the coset MZ", and PZ?® should intersect every coset of Z"/MZ". In other words,
P = MSN™' such that S is an 7 x s integer matrix and M~'Z"/Z" C S(N~'Z*/Z%). On
the other hand, we can obtain a converse to Theorem 3.2 in a certain sense so that we can

11



demonstrate that for any mask b on Z", then it is necessary that b = Pa for some mask a, some
linear transform P and some dilation matrix N = dI, for some positive integer d.

Without assuming the extra condition on P in (3.7), if @ is an interpolatory mask and
satisfies the sum rules of order ¢ with respect to NZ°*, then we can modify Pa as follows:
b(B) = Pa(B) for all g € Z'\MZ", and b(3) = 6(83)/|det M| for all 5 € MZ". Then b is an
interpolatory mask and satisfies the sum rules of order ¢ with respect to the lattice MZ". The
key point here is that ;. v, a(8)g(8) = ¢(0) for all g € II,_; which means that the sums on
the left side of the definition of sum rules in (3.2) are independent of the mask a.

Example 3.3 The checkerboard lattice on Z?° is given by
CBs :={(p1,---,0s) €Z° : By +---+ b5 is an even integer}.

In particular, when s = 2, CB, = QZ? = TZ? is the well known quincunx lattice. Let
M = EM,E~! where the s x s integer matrices E and M, are given by

[1 -1 --- 0 07 [0 2 0 --- 0]
o1 . 0 O 00 1 --- 0
E = Do N Mg :=|: ) Lo
o 0 --- 1 -1 00 --- 0 1
0 0 0 1] 1 0 --- 0 0

Then it is easy to check that M is a dilation matrix, MZ* = CB; and M*® = 2I,. Let P = M/2
and N = 21;. Then it is easy to check that all the conditions in (3.4) and (3.7) are satisfied.

Let b, be the interpolatory mask given in [4] such that b, is supported on [1 — 27, 2r — 1].
We have the tensor product interpolatory masks t, given by %;(51, ) = b, (&) -- b, (&s)-
Then ¢, is an interpolatory mask satisfying the sum rules of order 2r with respect to the
lattice 2Z°. Moreover, ?,(5) > 0 for all £ € R°. Applying Theorem 3.2 to the tensor product
interpolatory masks ¢, we obtain interpolatory masks Pt.(r € N) on the checkerboard lattice
which can satisfy any preassigned order of sum rules with respect to the lattice C' B, and the
symbols of these masks are nonnegative. In dimension s = 2, Pt.(r € N) are also obtained by
Dahlke, Grochnig and Maass in [3] using a different approach. For this particular construction
in dimension two, our method here is simpler and more general than the method used in [3].

A family of interpolatory masks g,(r € N) with respect to the lattice 2Z2 was reported in
Han and Jia [6]. Applying Theorem 3.2, we obtain interpolatory masks Pg,(r € N) with respect
to the quincunx lattice. Such masks Pg, were also obtained in [7] using a different approach.
Both Pt, and Pg, are quincunx interpolatory masks, satisfy the sum rules of order 2r and
have nonnegative symbols. Since Pt, and Pg, are invariant under all the elements of the group
Sour in (2.7), we have ¢, = ¢F, and ¢2gr = ¢b,,- Moreover, the size of the support of the
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Table 1: The Holder smoothness exponents of the refinable functions qﬁgtr and ¢§QT.

r 1 2 3 4 3 6 7 8
Voo(qﬁgtr) 0.61152 | 1.51556 | 2.30354 | 3.0030 | 3.64031 | 4.23278 | 4.79257 | 5.32836
yoo(gbgqr) 0.61152 | 1.45934 | 2.21896 | 2.90350 | 3.53133 | 4.11667 | 4.67061 | 5.20149

r 9 10 11 12 13 14 15 16
VOO(QS]Q%T) 5.84611 | 6.34960 | 6.84111 | 7.32180 | 7.79197 | 8.25127 | 8.69891 | 9.13362
z/oo(gbgq?) 5.71514 | 6.21534 | 6.70431 | 7.18321 | 7.65242 | 8.11171 | 8.56039 | 8.99752

mask Pg, is roughly half of that of Pt.. The Holder smoothness exponents of these refinable
functions are given in Table 1.

where vy (4) := sup{v : ¢ € C"(R?)} and the Holder smoothness exponents Voo(gbggr), r=
1,---,8 were given in [7].

The following result is a direct consequence of Theorem 3.2.

Corollary 3.4 Let L be a proper sublattice of Z°. Then there is a dilation matriz M such that
L = MZ?® and M*® = |det M|I,. Let P = M/|det M| and N = |det M|I,. Then P satisfies
(3.4) and (3.7). Moreover, with respect to the lattice L, we can easily construct an orthogonal
mask satisfying any preassigned order of sum rules.

Proof: Since L is a sublattice of Z°, L = K77 for some integer matrix K. Hence, there exist
two integer matrices E and F such that |det F| = |det F| = 1 and

EKF:dlag(dl, ,ds), dl,"' ,dSEN,dl ZdQZ st Z 1.

Define _ -
0 di 0 0
0 0 d, 0
M:=FE%': : ... .. : |E.
0 0 0 ds_y
d, 0 -« 0 0

Then it is easy to verify that M*® = d; - --dsI; = |det M|, and MZ® = L. Now it is easy to
check the conditions in (3.4) and (3.7) since Z* = PM*~Z* C PZ".

Let r be the largest integer such that d, > 1. For any preassigned positive integer /, let a
be a tensor product orthogonal mask on Z" such that a satisfies the sum rules of order ¢ with
respect to the lattice diag(dy,- - -, d,)Z". Define a mask b on Z? as follows:

b(ﬂla" : 7ﬂ7‘a/67‘+15' oo a/65) = a(/Bla' o :ﬂ?‘)é(ﬂr-i—l) : 6(&5)) ﬂla" : 7ﬂs € 7.
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Obviously, b is an orthogonal mask and satisfies the sum rules of order ¢ with respect to the
lattice diag(dy,- - - ,ds)Z°. Define a sequence ¢(3) := b(E~'3),3 € Z* (This is a special case
of Theorem 3.2 by taking MZ* = L, NZ* = diag(ds,---,ds)Z* and P = E). Then c is an
orthogonal mask and satisfies the sum rules of order ¢ with respect to the lattice L. ]

A shortcoming of the above construction is that the resulting orthogonal mask may be
separable. In the case that nonseparable orthogonal masks are preferred, we can modify the or-
thogonal masks in Corollary 3.4 into nonseparable ones using linear combinations of orthogonal
masks as discussed in [10] for the dilation matrix Q.

Let a be a mask on Z*. Let M be a dilation matrix and m := |det M|. Let {¢; : j =

1,---,m} be a complete set of representatives of the distinct cosets of Z*/M*Z*. By convention,

we assume that €; = 0. For a sequence a on Z°*, we can define a vector as follows:
a(€) == (@(e + 2mey), - - ,@(E + 2men))€ C™,  EER. (3.8)

The inner product (-,-) in C™ is defined to be

m
(x,y) = ijy_j’ r= (xla"' ;ws);y: (yla"' ays) e C".

Proposition 3.5 Let M be a dilation matriz and m := | det M|. Suppose that ai,--- ,ar are
finitely supported sequences on Z°* such that (?_i’,-,fi'» =0(i —j) for alli,j =1,--- k where fi}
is defined in (3.8). Let ¢j,j = 1,---,k be finitely supported sequences on Z* such that all ¢,
are 2w (M*) "' Z*-periodic and Z?:l 1¢;(6)1? =1 for all £ € R®. Define a sequence b on Z* as
follows

k
=Y GO, Eer. (3.9)
j=1
Then (Z,Z) = Z;nzl \g(f + 2mg;)|> = 1 for all £ € R®. Moreover, when k = m, any finitely
supported sequence b with (Z,Z) = 1 must take the form in (3.9).

Proof: It is easy to see that (b b) = 1. Conversely, when k = m, then b = Z;”Zl(l;, Z_i’jﬁij. Since

(b a;) are 2r(M*)~'Zs-periodic trigonometric polynomials and > |(b, a;)2 = (b,b) =1, we
are done. |

Let a be an orthogonal mask satisfying the sum rules of order ¢ with respect to the lattice
MZ?. In Proposition 3.5 we can choose a particular one-dimensional finitely supported sequence
dy such that 1 — |d;(€)[2> 0 and 1 — |d1(€)]2 = O(|€]%), & near 0. For example, 1 — |d; (€)[2 =
csin®(€£/2),0 < ¢ < 1. Then we can find one-dimensional finitely supported sequences dj,j =
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2,---,k such that Z?Zl \JJP = 1. Let § € Z° and ¢;(§) = gj(ﬁ*M*g),j = 1,---,k. Then
the mask b, given in (3.9), is also an orthogonal mask satisfying the sum rules of order ¢ with
respect to the lattice MZ°. Moreover, b can be made nonseparable by carefully choosing the
sequences d;,j = 1,--- , k.

Given a mask a on Z?, by a* we denote another mask given by a*(j, k) := a(k, j), j, k € Z.
Let us illustrate the above procedure by a simple example as follows.

Example 3.6 Let

- 1 : — . 1— .
1+3 L3 +8\/§€_,g L3 8\/36_ZQ§ N 8\/§e_z3§

Dif) =

be the one-dimensional Daubechies orthogonal mask ([5]) which satisfies the sum rules of order
2 with respect to the lattice 27Z. Let

a1(&,&) = 1~74(§1)a as(&1,&) = €_i3§1ﬁ4(§1 + ).

Let M := @ be the quincunx dilation matrix. Then it is easy to check that (gj,ffk) =4(j — k)
for j,k =1,2. By Proposition 3.4, a; is an orthogonal mask satisfying the sum rules of order 2
with respect to the quincunx lattice. Let

() =1+ (1 —t)(e =)+ (e 17, dE)=t1-e), E(€R

where

t1:=(1+V1=16%%)/2, to=(t1+1/t?+4t?)/2, and |[t| <1/4.

It is easy to check that |di|2 + |da/2 = 1 and 1 — |d;|2 = O(/¢[*). Then by Proposition 3.5 the
mask a given by

(&1, &) == (&1 + E)a (61, &) + do(&1 + &)E2(&1,E)

must be an orthogonal mask satisfying the sum rules of order 2 with respect to the quincunx
lattice. When ¢ = 0, a is the shifted version of a;. By computation, v5(¢9) = y2(¢aQ,{) ~
0.324298, where

(@) i=suply + [ BOP(+ e < o)

is the Sobolev smoothness exponent of ¢. When ¢ = /3/8, the mask a is supported on
[0, 5] x [0,2] and is given by

0 0 H¥3 W3 g g
0 ¥3-1 3-v3 34V3 -1-v3 |
0 0 16 T16 0 0




with the bottom-left corner as the origin. This mask was given by Kovacevi¢ and Vetterli in
[9]. Tt was demonstrated by Villemoes in [12] that ¢9 is a continuous orthogonal refinable
function. By computation, we have v,(¢%) ~ 0.588316 and yg(qﬁg) ~ 0.611459. On the other
hand, we found that when ¢ = 23/128, we have better L, smoothness v,(¢9) ~ 0.666682 and
va (2 ~ 0.674469.
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