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Abstract. A free boundary problem which arises in the development of a photocopy is studied.
The electric potential —u satisfies the equation Au = 1 in the toner region and Au = 0 elsewhere. We
show that the C'** of the free boundary would imply the C>*® of the solution up to both side of the
free boundary. Using this fact we prove the existence of a solution with connected toner region with
Ou/0n = 0 on the free boundary when the electrical charge length 2¢ is “small”.
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1. Introduction. One of the steps in the photocopying process is the development
of the electrical image into a visible image. A positively charged toner is brushed on to
the electrical image and the visible dark image is therefore produced. This process is
modeled as a non-standard free boundary problem. (See [1,2] for more details.)

We set

Or = {(z,y); || < a,0 <y < b},

Q" = {(z,y); |z| < a,—h <y <0},

I={(2,0); |z] <e},

J = {(2,0); |z| < a},

Q= {(z,9); || <a,-h<y<b}=Q*UJUQ".

We shall denote by A the toner region, then A C Q. Let —u be the potential, then
the problem becomes the following.

Find the pair (u, A) such that

(1.1) Au=1 in A,

(1.2) Au=0 inQ\A4,

(1.3) u e C'(Q\T),

(1.4) uy,(z,04) —uy(z,0-)=—-0  in/

and u satisfies the free boundary condition

Ou
— = r
(1.5) on 0  on
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— 9
:&"here I'=0ANQt and 3, 1s the outward normal to A, and also the boundary condi-
ions:

(1.6) u(z,—h) =0 —a<zr<a,
(1.7) u(z,b) =M —a<z<a,
(1.8) ur(ta,y) =0 —h<y<b

Of course, a,b, h, M, o are positive constants, and it is reasonable to assume that (see

[2])
(1.9) M<oh, — b>h

Figure 1.

When a — ¢ is small, the problem reduces to a variational inequality; it is proved
in [2] that in this case the problem has a unique solution.

When ¢ is small, it is proved in [2] that the problem is no longer a variational
inequality and there are infinitely many solutions with two symmetric component, it is
not clear however whether such solutions are physical. It it also shown that there exists
a “e™-approximate” solution for which the toner set consists of a single component.
The difficulty for finding a real solution with one connected toner region is that the
corresponding u will have Vu = 0 at the point I' N {z = 0}, which makes a saddle point
for the corresponding dynamical system. In [2], W2? estimate is employed for the PDE
solution; however for this dynamical system coupled with the solution of the PDE;, it
is clear that more regularity is required for the solution of the PDE in order to use a
fixed point theorem.

We shall prove in this paper that if € is small, then the problem has a solution with

one connected toner region. In §2, we prove an elliptic estimate which is of independent
interest itself. Using the elliptic estimate we prove in §3 the existence result.
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We want to express our thanks to IMA at the University of Minnesota for its
hospitality where this work was completed.

2. Elliptic estimate. We shall first prove that the C** of the free boundary
would imply the C?** of the solution up to both sides of the free boundary. Suppose

that T is given by y = g(z) for —2 < 2 < 2 with g(0) = 0. We shall use B(s) to denote
a ball of radius s centered at (0,0). Suppose that

(2.1) Au = 0Xg for (z,y) N B(2) (0<6<1)

where Xg is the characteristic function of E and F = {y > g(z)}.
THEOREM 2.1. Suppose that

(2.2) sup |u(z, )| < L,
B(2)
and
(2.3) lgllor+ai-22) < K,
where 0 < a < 1. Then
(2.4) ull g2+a@Enp)) < €
(2.5) “u”CHa((B(l)\E)) <C
where the constant C depends only on L, K and a. O

Remark: The proof below will actually show that the conclusion is also true for n
dimensional situation.

We shall divide the proof into several lemmas.

LEMMA 2.2. If
(2.6) Au=f  in B(s)
(2.7) u=0 on 0B(s)
where 0 < s < 1. Then
28) L g L0
Proof.
(2.9) u(e,y) = [ Gla =&y —m(€ndedr

where G is the Green function on B(s). Therefore,
< Gz — &y — dwd) f(&,m)|d€dn
[ wewidsds < [, ([, 1066y =midz ) 11
1
= [ (=€ —aIIE m)ldedn
B(s) 4
1
- d¢dn. O
< 7 o, € MIdedn
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LEMMA 2.3. Suppose that for some s € [3/4,1], we have

(2.10) Av =0 in B(s)
2.11 <
( ) /;B(s) |v|de < L.

Then there ezists a constant Cy, depending only on L such that

(212) o(@y) = Pl@ | SCur® forr=fatyr <

where Py[v](z,y) is the second order polynomial of the Taylor series of v at (0,0).
Proof. Using (2.11) and Poisson formula we conclude immediately that

(2.13) I1D%0]| e B1/2)) < Cl,

from which the Lemma follows immediately. 0

We now fix L and a. Then we take Cp, as in Lemma 2.3, fixed. Next we take )
such that

1 1
2.14 A<= Ao < —
( ) 0< -2 Cr L
For such a fixed A, we take g such that
(2.15) g0 < A2,

Using the appropriate scaling @(z,y) = u(éz,8y) (6 =(co/K)"®) if necessary we
may assume without loss of generality that

(2.16) [9']ca(-2,2) < €o.

LEMMA 2.4. Under the assumptions of Theorem 2.1 (assuming also (2.16)) there
ezxists a constant C such that for any Q € ' N B(1), there exists Py

(2.17) <Crtt* for0<r <A

u = (PQ + g ({(z,9) - Q,no)+)2)

Li(Bq(r))

where Pq is a harmonic polynomial of second degree, ng is the normal of T' at Q) in the
direction of y-axis.
Proof. Let us assume without loss of generality that

Q = (0,0), ¢(0)=0, 4'(0)=0.
It follows that

@1 9(2)] € T fal e < cole .
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Set

(2.19) wi(2,y) = u(e,9) - S,

and define v; by

(2.20) Av; =0  in B(1)

(2.21) v = wy on 0B(1).

Then

(2.22) Alwy—v) =0 in B(1)\ {Jy| > eolz[}
(2.23) |A(w; —v)| <1 in B(1).

Therefore by Lemma 2.2 and (2.15),

1 1
(2.24) ||w1 - ’Ul”L!(B(l)) < Zmeas(B(l) N {lyl < EOI:Z'I}) < 560 < %XH’O’.
Clearly
(2.25) [ol=[ <L,

8B(1) 8B(1)

thus by Lemma 2.3

mmw—HMWwHSQﬁSQN*V”s%¥M

(2.26) s
for r = V/zZ + yZ < ),
which implies

(227) ||v1 — Pg[vl]||L1(B(,\)) S %)\2-"('7!‘)\2 S Xﬂ'a.
T

N =

The inequalities (2.24) and (2.27) imply

(228) ‘ ”wl - P2[”1]HL‘(B(A)) S /\4+a.
Next, define
wy — Pylvy])( Az, A
(2:29) wa(z,y) = 2 iﬁ( &
Then by (2.28)
1
(2.30) |walli By = Tz llwr — Pelwi]llisory < 1;
4t

it follows that there exists sy € [3/4,1] such that

(2.31) / lwy| <4< L.
9B(s0)
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Now, define v, by

(2.32) Avy; =0  in B(so)

(2.33) Vg = Wy on 0B(sy).

Then

(2.34) A(wy —v1) =0 in B(so) \ {|y| > oAz}
(2.35) Ay = v,)] < % in B(so).

Therefore by Lemma 2.2 and (2.15),
1

1 1 1
(2.36) Wy — vall 1 (Blan < -/ — < ey < SAHe
” 2”L (B(s0)) = 4 (B(s0)n{ly|<e0r*|z}) Ao 2 =9
Clearly by Lemma 2.3, using (2.31),
[va(2,y) = Palual(z,y)| < Cur® < CpaI=ox+e < L y24e

(2.37) 2
forr = /22 + 42 < ),

and therefore

1
(2.38) lvz = P[oa]ll sy < 2—/\““ AT < AT
The inequalities (2.36) and (2.38) imply
(2.39) ||w2 - Pg[i)g]”p(g(,\)) S )\4+a.

Now we inductively define

(2.40) wa(z,y) = (Wn—1 — P2/\[12’I;1])()\1‘ )

Notice that whenever we scale the domain by A, we get one more 1/\* factor on the
right-hand side of the equation; but that is compensated by the fact that we get one
more factor of A* for the domain at the same time. Hence we obtain

(2.41) lwn — Palvn]llLr sy < A4,

where P,[v,] is a harmonic polynomial of the second degree. It follows from (2.40) and

(2.41) that
(2.42) lwy = Pallpr gany) < C(A™)*,

where C' = 1/)?, and

(2.43) g (4] ( %) (Ak=1)24e
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It is obvious that all coefficients of the harmonic polynomials P,[v,] are bounded with
the bounds depending only on L. If we set

. > T
(244) P = lim P = 3 Pafe) (35, 35 ) R,

then (assuming that \* < 1/2)

(2.45)  |0th order coefficients of (P — P,)| < C f:(/\“")k <2C(AHe)n

k=n

(2.46) [Lst order coefficients of (P — P,)| < C f:()\”a)k <2C(AMoyn
k=n

(2.47) |2nd order coeflicients of (P — P,)| < C Y (A)F <2000,
k=n

So

[P = Pulli(Bany)
(248) S C [(A2+a)n(/\n)2 + (AH'a)nA"(An)? + (/\a)n()‘n)2(/\n)2]
S C()\n)4+a.

For each 0 <7 < A, choose n so that A"*! < r < A". Then by (2.48) and (2.41), we
obtain,

(249) le - P“L‘(B(r) < Crite for0<r< A,

where P is a harmonic polynomial of second degree. 0
Next, for any point @ € B(1), take 7(Q) € T such that

(2.50) d(Q,7(Q)) = inf{|Q - S|; S €T}.

Although T is not in C? and therefore 7(Q) is not uniquely determined by @, the map
7 : B(1) - T is still well defined by axiom of choice.

LEMMA 2.5. Under the assumptions of Theorem 2.1 (assuming also (2.16)) there
exists a constant C' such that for any Q € B(1), there exists Py

< Cr4+a

LY(Bq(r))
for0<r <A

u-— (PQ + g (((way) - F(Q),n"(Q))+)2)

(2.51)

where Pg is a harmonic polynomial of second degree, ny(q) is the normal of T' at 7(Q)
in the direction of y-axis.

Proof. Let us assume without loss of generality that

©(Q) = (0,0), g(0)=0, g'(0)=0.
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Set
0 42
(252) w(m,y) = ’u(.’t, y) - §(y ) )
and
(2.53) G = {Aw # 0}.
Then it is clear that
(2.54) |G N Bo(r)| < gor?t® for0<r<l,

where Bg(r) is a ball of radius r centered at (). Now the remaining of the proof is

exactly the same as the proof of Lemma 2.4 except we shall use (2.54) when Lemma
2.2 is applied. 0

Lemmas 2.4 and 2.5 immediately imply that
(2.55) u(@Q) = Po(Q)
(2.56) Du(Q) = DPo(Q)
and if @ € T, then

2

(2.57) D*u(Q) = D*Po(Q) + gD2 (((r, y) — 7(Q), n,,(Q))*')

)
(zy)=@Q

which already implies that ||u||w2eBa)) < C.
LEMMA 2.6 For any Q,,Q2 € B(1), we have

PQl(x’y) - PQz(zay) + g (((1'ay) - ﬂ(Ql)wnﬂ'(Ql))*-)z

2.59) 2 (@) - 7(Q)meion)*)’

2
_Q1+Q2
2

< Crite

<

for |(z,y) <3

where r = 3|Q; — Q]

Proof. Let d; = d(Q;, 7(Q;)) for ¢ = 1,2. Without loss of generality we assume that
d; > d,.

Case 1: dy > 2r,

In this case the balls Bg,(r) and Bg,(r) do not intersect with each other and
B%(Q1+Q2)(r) does not intersect with T'. It follows that

where

4(2,9) = = ({(,9) = 7@ ) nr@)?)” = 5 (((@.3) = 7(Q2), @)t -

Nl
[\CY IS
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It follows that (we shall use B(r) to denote balls centered at 1@+ @)

4+
r/4
3 . .
for some s, € (Zr, r]. Now the Poisson formula implies that

C
(2.61)  ||Pg, — Po, + qllzeB/2) < r—/4||P01 — P, + qll1(98(s)) < Cr?te.

(2.60) | Po, — P, + qllL1(8B(s,)) < < Crite

Case 2: dy < 2r,

In this case

di = @1 — m(Q1)] < |Q1 — 7(Q2)| < |Q1 — Q2| + dy < 5r

and so
(2.62) Im(Q1) — m(Q2)| < dy + Q1 — Q2| +d2 < 5r + 3r 4+ 2 = 10r.
Thus
I(”(Ql) = m(Q2),nr(gy))| < Crite
m(Q2)
—g',1

(2.63) Inr(Q)) — Nr(@y)| = [M—)] < Cre,

‘ L+ (g’)2 m(Q1)

which implies that

lg(e,y)| < Cr[{(z,y) — n(
(2.64) < Crl((m,y)— (Q1): Nr(@u) — Nr(@a)
+Cr |(x(@1) = 7(Q2), nran))|

< CT2+a

@1)snr@n)t = ((2,9) = T(Q2),nn@n)*|

for (z,y) € B(r). Now repeat the proof of case 1 for Py, — Py, (which is harmonic),
and the error term ¢ is controlled by (2.64) which does not cause any problems. a

Proof of Theorem 2.1. Take @Q;,Q2 € B(1) \ E (in which Au = 0). Notice that in
this case the second term of (2.57) is zero for both Q = @, and Q = Q,; therefore by
Lemma 2.6 and (2.55)-(2.57) we obtain

|(4(@1) + Du@) - (X = Q1) + 5(X — QT DPu(@)(X - @)

(265) (@) + Dul(@) - (X - Qu) + (X — Q)T Du(Qu)(X - @3))|
< ClQ1 — Qo**
for all X with |X — 1(Q: + Q'z)l < 3r. This immediately implies that

lullgzsa(ETmEy < €
The estimates on E N B(1) is obtained by considering — (u —4(2? + yz)) .0
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3. Existence of a solution with connected toner region. We shall always
assume (1.9). We fix 0 < a < 1. Our theorem is

THEOREM 3.1 The free boundary problem (1.1)—(1.8) has a solution (u, A) with a
connected toner region A such that

(3.1) I =0ANQ* e C'**

provided ¢ is small enough. [
Suppose that u, satisfy (1.1)-(1.4) and (1.6)—(1.8). Set

- 1
(3'2) uE(w’ y) = E [uf(ew’ sy) - u€(07 0)] *
Then
Al = e for (z,y) € éAE = AE
0 for (z,y) € Ac U {(x,0);|z| < 1}

where A, is the region in which Au, = 1.

It has been proved in [2, section 8] that for any compact F C R?
(33) iie = Bllwar(ry < Crp (meas(A.) + €7)'/?

for any p > 2, where

1 M o
(3.4) 5e,y) = —5 [ logyfle — € + v + 55 - 7.

~

The equation % = 0 gives the level curves of the harmonic conjugate z(z,y) of v,

on
where
o (1—x)2+y2 l1-—=z
z(z,y) = y {y Ogm —2(1 — z)arctan ”
(3.5)
9(1 ) arct l4z| M .
+2(1 + z) arctan TR

There is only one curve: y = @o(z) that passes through y axis. ¢o(z) is analytic and it
is shown in [2] that

©o(0) =%,  ¢(0)=0
(3.6) wo(z) <0 for0<z <7
Yo(z) <0 for0<z<T

where

T M b+ho
= —_— Th= —m— > 1.
(3-7) Yo COt<ab+h)’ =T 27
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It is clear that

55
(3.8) 7-=0  ony =)

We shall use Schauder’s fixed point theorem to prove the existence. Now fix 0 <
a <1 and set

X = {V(x); vyeC™*[0,Z0+1], 7' (0)=0, ¥(FTo+1)<0,

1
(3.9) 1) 2 i = (=12, 30 <E) S v for0<a<p,
W) 2e0>0 forp<r<l,  Ihlowopmen < K},

where [, u and ¢o are fixed small positive constants, K is to be determined later on.

Denote by Av,y the connected component of the area enclosed by v and z axis which
contains {(0,y), 0 < y < ¥(0)}. For each v € X, we always extend it by letting
v(—z) = y(z). Next, define w by

(3.10) Aw =X in Ry
(3.11) w=0 on 0RaN

where R,y = {|z| < 2N, |y| < 2N} (N/2 > 3yo/2) and Xz, is the characteristic
function of A,

By W?P estimates and Sobolev’s embedding theorem,
(3.12) [wllei+a(ron) < C-

Here and below we shall use C to denote constants independent of K and Ck to denote
the constants depending on K.

Let V = ([0,1] x [eo, N]) U (([1,To + 1] x [0, N))\ {(z — 1)* + y* < p?}), then by
Theorem 2.1

(3.13) |w|lw2.co(rynvy < Ck.

For this v € X, let u., be the solution of (1.1)-(1.4) and (1.6)-(1.8) with A = €A,,
and let

- 1

u‘y,e(x’ y) = E [U-,(&'E, Ey) - uc(0,0)],
then
(3.14) A(f,, —5—ew)=0  in Ry.

Therefore by (3.12) and (3.3) (with %, = @, in (3.3)), we can apply the Schauder’s
interior estimates to obtain

(3.15) tye — 0 — ew||co(ry) < Ce + Ce¥?
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where the constant is independent of K.

By symmetry
0 . -
(3.16) P (Uye—0—ew)=0 onz=0,
and so by (3.15),
(3.17) % (iye — 0 — ew) < (Ce + Ce*P)z for (z,y) € Rn.
Using (3.13) and g—‘;’(O,y) = 0 (by symmetry), we get
ow Ow ow

(3.18) Pt Eg(x,y) - %(O,y) <Ckz  for (z,y) € V.

Clearly

- _ o (I-z)P+y?
3.19 r = — log ——————— < — 0 f ’y V.
(3.19) U = o Og(1+x)2+y2_ oz < or (z,y) €

It follows that

0 . 1 )
(3.20) o5 ne < (Ce+Ce?r + Cre — 1)z < —saz iV
provided 0 < ¢ < ex and ek is small enough (depending on K).
Write
(3.21) Uye =0 +ew+ePH

where ||@||cs(ry) < C by (3.15), also, we(z,¥(x)) and wy(z,v(x)) are C** functions
with their C'** norms bounded by Ck, by Theorem 2.1.

Let w* = el=Pw + /7, then
(3.22) Uy, =7 +e/Puw.
If 0 < € < ex and ¢y is small enough, then
(3.23) IGillersa <1, (IGeller+a <1,

where (3(z) = w(z,7(2)) and Gy(x) = w3z, 7(x).
A calculation shows

(3.24) Byy = —Taz = — (( -z | _20+2) ) .

4r \(1 —2)2+y? (14 x2)?+ y2
So
~ o1
(3.25) vyy(O,y) = ; ?
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It follows that (using also (3.22) and (3.13)),

Bzuw lo 1 )
. >-Z =
(3.26) 352 —=(0,y) > 27 7 >0 inV
provided e is small enough.
Therefore the equation
ou 1 3
2 —£(0,y) = —yp<y<-=
(3.27) By (0,9) 5Y0 S Y < 5%

has a unique solution y = y., provided ey is small enough. It is obvious that y. depends
continuously on the C'** norm of 4.

Now we take 7 > 0 and define 7 = T'y to be the solution of the ordinary differential
equation:

(3.28) n(0) = Y i
Uy(z,n(x)) — By (x,y5) + 61/,;(2(-75) — (2(0)
(3.29) 7' (z) = T+ T TH+T

@.(‘T_;M +ellr (@) * pr()

where p,(z) is a C*° mollifier (see [4, chapter 7]) and the convolution is defined af-
ter extending the definition of (i(z)/z to be (1(To + 1)/(To + 1) for = > Tp + | and
Il_i.r(l)rl (¢i(z)/z) for = < 0.

, Nizy)
" Talzy)
lyticity of ¥, noticing also that ,,(0,y) = 0, we get

0f;
Oy

We write the right-hand-side of (3.29) a

where y = n(z). Then by ana-

1_
= -5,
T

(3.30) <C.

Lee(V)

L=(V)

LEMMA 3.2

(331) e <
Ce[0,To+l]

iy

Proof. Suppose that 0 < z; < 5. If 23—z > a1, then 7y = 25— 21 +2; < 2(23—14).
So by (3.23),

Gi(z1) _ Gi(z)

T )

Cl(l'z)

IN

51(331)

41(0)' - G(0 ),

< +:r2" < (1+2°')|11—le"-

If z; — ¢, < x4, then we use

Gi(z2) = Gi(zy) + g;(Tl)(fz — 1)+, Ir| < lzg — a4t
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to obtain
Cl(l'l) _ 41(932) < (331 _x2)C1(zl)+x1C1,(xl)(1"2—'xl) + |1’2—1’1 It
T T - T1T9 T
|171—1'2| Ty — T 1ta
< BBl ) sy 4 2o ml?
T1T9 D)
|y — x| |z, — |l+a
< 1+a 1 . _
< _$1$2 |z ' + —-—zz (since (1(0) = 0)
< 2z — o]
now the lemma follows. O

Since 9;(0,y) = 0, Lemma 3.2 and the analyticity of & imply that

(332) SuPIfz(:I:,y)|+ sup 'f2(1'1,y)_f2(172,y)| SC
|4

z1#22; (21,9),(72,¥)EV |$1 - lea

By (3.19), we have

(3:33) fala,y) < 501 <0

provided g is small enough.

Using the analyticity of ¥, U,,(0,y) = 0 and a similar argument as in Lemma 3.2

for Ca(x) — (2(0)

, (using also (3(0) = 0) we conclude

r+T
(334) sup |f1(ml$y)_fl(x2’y)| S C,
z#y; (r1,9),(z2,9)€EV |1 — 2|
and
t) —
(3.35) sup [fi(t,n(1))] < € sup 1=
0<t<r 0<t<z t

where the constant C is independent of 7. And also

% Uyy(2, Y) < C
Oy r+T | T T+T
Therefore for each 7 > 0, the ODE (3.28) (3.29) is uniquely solvable. It is obvious that

for each 7 > 0, n € C'*°. Next, we shall derive C'** estimates independent of 7. From
now on we shall assume that

(3.36) l

(3.37) For the solution n(z), we have (z,7(z)) € V.

What we need to prove is actually the estimates near z = 0.
LEMMA 3.3.

(3.38) lim —— = 1,

r—0 (=
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Proof.
. —IV . = . =D,
lim —# = |lim —=& = lim —% = 1. O
z—0 v, z—0 s =0 Vg,
T

The convergence is uniform by the analyticity of 7. Thus there exists some small >0
such that

_;vyy>0 for 0 <z <y, %yogysgyo,

which implies

T+ T <0

for0 <z <y, %yoﬁyﬁgyo-

o f(ean(@)
Y@ = L)
Cz(“’)—fz(o)

3.40 fi(z,n(z)) = fi(z,n(0)) + €'/7 e
(240 - falz,n(2))
= @(@)M2) +02)
where ¢i(z) = 2}2”—%- < 0 by (3.39), and it is also clear that ¢,(z) > — xir,

By the definition of (; we have (;(0) = 0, therefore

Ga(7) — 6(0)

: z)| < Ce'l?
(3.41) |g2(2)| < Ce i

< C*z”

where the constant is independent of I\', 7. It follows by comparison (we use ¢;(z) < 0
here) that

(3.42) M@ < [ la©)lde < Catre.
This inequality together with (3.35) imply that

(3.43) In'(a)] = [N (2)] < C*2°

It follows immediately that

(3.44) 17 lleto3041 < C*.

Therefore we obtained the W1 estimates for 7.
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Next, take a > 0 and consider (z) = p(z + a) — n(z) for > 0. Clearly

Ye) < AEtanE+a) fae)
falz +a,n(z+a))  fo(z,n(z))
Gas)  — DEtantta) = fila+an@)+ i+ an(@) - @)
. f2($+aa77($+a))
fl(l'an(x))[.b(:v’ 7’('77)) — f2($ +a, 7)(3? + a))]
f?(xv 'I(l'))fz(x +a, 77(55 + a))

+
= Il+12

where by (3.32) (3.33) (3.35) and (3.44),

(3.46) |I2] £ C*a®,
and if we let

(3.47) L=J+J

then by (3.34) (3.33),

_ f1($+a»77($))‘“f1(1‘s7l(3«‘)) *a®
(3.48) = T e ranm vy | SO
and
(349) g, = hlEtan@+a) = filet+an(a) g(z + a)(n(z + a) — 5(z))

fg(.’E +a, "7(1' + a)) '
where by (3.33) (3.36)
Clk

< .
(3.50) lg(z + @) £ —————

By (3.43),

(35)  +a)-n@)I < [T WO < Clat+a)a < O + a)as
therefore (3.49)(3.51) imply

(3.52) |Ji| < Cac.

Combining (3.46)—(3.52), we obtain

(3.53) (2 + a) — o/ ()] = V()] < C"ac.

This prove that if € € (0,ex), then

(3.54) Inllc1+aoz0+ny < CF,
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where the constant C** is independent of K and .

We now choose K = C**. Since the curve n = Ty goes to y = () uniformly as
e — 0, it is easy to choose the remaining constants in the definition of X (as in [2]) so
that T maps X into itself.

Obviously T is a continuous map from X to X (using C'** norm topology). For
each 7 > 0, the image of T is contained in C'*# for any 8 € (a,1). Therefore T is
compact. Hence T has a fixed point, by Schauder’s fixed point theorem (see [4]). It is
obvious that all the estimates of this section apply to the fixed point n = T, where
the estimates are independent of 7, therefore we can take a subsequence and pass the
limit as € — 0 to obtain a solution (u, A) with one connected toner region. This proves
Theorem 3.1.
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