THE EXISTENCE OF NON-TOPOLOGICAL
MULTIVORTEX SOLUTIONS IN THE RELATIVISTIC
SELF-DUAL CHERN-SIMONS THEORY
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ABSTRACT. We construct a general type of multivortex solutions of the self-
duality equations (the Bogomol’nyi equations) of (2+1) dimensional relativis-
tic Chern-Simons model with the non-topological boundary condition near
infinity. For such construction we use a modified version of the Newton iter-
ation method developed by Kantorovich.

INTRODUCTION

The Lagrangian density of the (2+1)-dimensional relativistic Chern-Simons
gauge field theory is given by

L= SR, Ay + (D) DFG) — o0 - 1627 ()

K

where A, (1 = 0,1,2) is the gauge field on R®, F,, = ;2;4, — ;25 4, is
the corresponding curvature tensor, ¢ = @1 + id2(i = /—1) is a complex
field on R3, called the Higgs field, D, = % — A, is the gauge covariant
derivative associated with A, €,,,,, is the totally skewsymmetric tensor with
go12 = 1, and finally k > 0 is the Chern-Simons coupling constant. Our
metric on R? is (g,,) = diag(1, —1, —1). This model was suggested by Hong-
Kim-Pac[8] and Jackiw-Weinberg[10] to study vortex solutions of the Abelian
Higgs model which carry both electric and magnetic charges(See [5] for a

general survey of the model). This feature of the model is important in the
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physics of high critical temperature superconductivity. The Gauss equation
(variational equation for Ag ) of (1) is given by

kFia = —2[¢? Ao . (2)

Using this relation, and by integration by part the static energy correspond-
ing to (1) can be written as ([8],[10])

F?
FE = - '1 |¢1|22 +Z |D_7¢‘2 2 ‘¢‘2(1 _ ‘¢‘2)2 dz (S_a)
— . 2 kF1o l— 9 2
= /}R2 {‘(D1 +iDs)d|” + 2% + H¢(|¢‘ }dmi/RQ Fio dm(-é_b)

where +(—) sign are chosen if the integral fﬂp Fy5 dz has nonnegative(nonpositive)
sign. Below we choose the upper sign. We have thus

FE 2 |/ F12d$|
R2

and the minimum of the energy is saturated if and only if (¢, A), A = (A1, A2)
satisfies the self-duality equations, or the Bogomol'nyi equations:

(D1 +iD2)$ =0, (4)

Fia+ 192 (10l” ~ 1) = . )

The system (4) -(5) is equipped with the following natural boundary condi-
tions
lp(z)| = 1 as || = o0 (6)

or
lp(x)| = 0 as |z] = oo (7)

in order to make the energy (3-a) finite. The solutions (¢, A) of (4)-(5)

satisfying (6) are called topological solutions, while the solutions of (4)-(5)

satisfying the boundary condition (7) are called nontopological solutions.

Following Jaffe-Taubes [11], we can reduce system (4)-(5) with (6) or (7)
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to the more simplified form of partial differential equations as follows . We
introduce new variable (u, ) by

N
¢ = e3(utid) 9:2Zarg(z—zj), z=x1+ir2 €C' =R, (8)

=1

where z;, allowing multiplicities, 7 = 1,2, ...., N are the zeros, called the
centres of the vorticities, of ¢(z). Then, we can rewrite (4) -(5) with (6) or
(7) as (Hereafter, we set x = 2 for simplicity.)

N
Au=e"(e" —1)+4r Y _6(z — z), (9)
i=1
u(z) — 0 as |x| = o (topological boundary condition)
or
u(z) - —o0 as || = o0 (non-topological boundary condition).
(10)

For topological boundary condition Wang[16] proved existence of gen-
eral multivortex solutions, using the variational method similar to Jaffe-
Taubes[11]. Later, Spruck-Yang [13] proved existence of topological solu-
tions, using a more constructive iteration method, and generated even shapes
of vortices by numerical simulations. (See [15] also for the study of (4)-(5)
in a periodic bounded domain, and [3] for the study of topological solitons
of the Chern-Simons model coupled with the Maxwell fields in a self-dual
fashion.) The non-topological solutions, however, has not been well under-
stood yet compared to the topological ones. In [14] Spruck-Yang proved
existence of radially symmetric non-topological solutions which correspond
to solutions of (4)-(5) with a single center(See [4] also for related studies
of the radial solutions). In this paper we prove existence of general type
of non-topological multivortex solutions. Our method of existence proof is
quite constructive using an iteration scheme. Moreover, we establish precise
decay estimates near infinity of our solutions. More specifically we prove the
following theorem:
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Main Theorem. Let {zj};-vzl C C! be arbitrarily given. Then, there exists
a solution (p, A) to (4)-(5)(with k =2), (7) such that the function ¢(z) has
the zeros {zj};yzl with possible multiplicities, and the pair (¢, A) make the
energy functional (3-a) finite. Moreover, our constructed solutions satisfy:
(i) The decay estimates; there exists 3 > 0 such that

1

6 + 1P 4 D0 + D29 = 0 (g ) aslel o0 (11)

(i) Flux integral; there exists a positive constant vy, which depends on the
solution, and can be fized to be arbitrarily small, such that

¢ = / Fiodx = 47 (N + 1) + 7. (12)
R2

Remark 1.
Since |@|? = €%, where u is a solution of (9), we can deduce that if

ur) _ _p (13)

|:c|li)noo l’l’L|£L‘| B ’

then necessarily we have B > 2N + 4. It would be interesting to compare
this result with the previously known one for the (See Theorem 2.1 of [14],
and Theorem 3.2 of [4].) for the radially symmetric solutions of the following
equation for voticities concentrated on the origin of R?.

Au=e*(e" — 1) +4nNé(z), (14)

equipped with the nontopological boundary condition (10). They proved
existence of radially symmetric non-topological solution u of (14) satisfying
(13) with B > 2N +4. Thus our existence result is a “proper” generalization
of the previous ones for the radially symmetric ones in [4] and [14].

Remark 2. Equation (12) implies that the integral fR2 Fisdz, which corre-
sponds to the minimum of the total static energy given by (3.a)-(3.b), is
not “quantized” contrary to the case of topological solutions. This phenom-
ena, which was discussed in the physics literature(See e.g. [5] and references
therein) for radially symmetric solutions, is to the authors’ knowledge rig-
orously verified first time in this paper for a nonradial solution. We also
note that the estimate ® > 4(N + 1)m was proved by Spruck-Yang[14] for
4



any radially symmetric solution. The fact that v can be chosen arbitrarily
small implies that their estimate is sharp for radially symmetric solution.
For arbitrary nonradial solutions such estimate is currently not available.

Our idea of proof is the following: We formulate our problem of construc-
tion of nontopological solutions as one of finding roots of a functional equation
defined in suitable function spaces. To find the roots we use the theorem on
the convergence of a modified Newton’s iteration scheme developed by Kan-
torovich [12]. Basic observation is that after suitable scale transformation
our equation can be a perturbed one from a radially symmetric equation,
and the iteration starting from a radial solution of the Liouville equation
superposed with appropriate “small” nonradial function works well. The
organization of the paper is the following. In Section 1 we introduce basic
function spaces, and derive some properties of them useful in the following
sections. In Section 2 we formulate our problem in terms of root finding
of some mapping between function spaces introduced in Section 1. In Sec-
tion 3 we prove various estimates on the mapping introduced in Section 2
in order to apply our iteration scheme. In Section 4 based on the estimates
established in the previous section, we prove our main theorem, using the
Newton-Kantorovich iteration scheme. We postpone all the proofs of the
auxiliary lemmas to Appendix in order to help the readers to keep on the
main stream of argument.

1. INTRODUCTION OF FUNCTION SPACES

In this section we define the class of functional spaces which are necessary
in sequel and establish some properties of functions from these spaces. Let
a € (0,1) be given. We introduce the Hilbert spaces X, and Y, as follows

X, = { (c) € L2, (R) / (1 + o) uds < oo},
RQ

equipped with the inner product (u,v) fR? + |z|*T*)uvdz, and
2,2 U ?
Yo = { e W, (R?)] ||AU||§(O, + Hm - < 00}
equipped with the inner product
uv

(), = (A o)y, + [ e
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These spaces are equipped with the natural Banach space norms;

ullx, =V (w,u)x,, llully, =v/(uu)y,
respectively. Thanks to the inequality

1 % 24« 2 :

there is a continuous imbedding

Xy — LY(R*)  Vae(0,1). (1.1)
Also, by the local regularity of the Laplace operator (See [7]) we have
Y, CCY.(R?*)  Vae(0,1). (1.2)

We start from the following elementary proposition

Proposition 1.1. Let o € (0,1) and v € Y, be a harmonic function. Then
v = const.

Proof. In the polar coordinates the Fourier expansion in 6 yields
oo
v(z) = Z vy () et?
k=0

with the rapidly decreasing coefficients, vg(r) in k for each fixed r > 0. Since
v(z) is the harmonic function, each wvg(r) satisfies the ordinary differential

equation:

d2’Uk 1 d’l)k k2

The general solution of these ordinary differential equations is well known:
rk
where M, i, M>j, are the constants. Noting ffﬂ e’*9df equals 0 for k # 0

and 27 for k = 0, we deduce
v € Xo Vk €eZyU{0}.

Hence M; ; = 0 for all £ € Z. Then taking into account that v is smooth
function in neighborhood of zero we obtain My, =0 for all k € ZL U {0}. W

vk(r) = My pr® + for k€ Zy, wo(r) =M+ Maplnr,

Denote In™ |z| = maz{0,In |z|} below. The next lemma provides the
pointwise estimate for an arbitrary function from Y,. In particular it imply
that on infinity functions from this space have at most logarithmic growth.



Lemma 1.1. Let a € (0,1), then there exists C; > 0 such that for allv € Yy,

lv(z)| < Cy|lv]ly, (InT |z| + 1) Vr € R?, (1.3)

Proof. For given v € Y,, we set Av = g. By definition of the space Y, the
function g € X,. We consider the function

1
Y

o(x) /R2 In|z — 7]g(7) dr.

It is well-known that A% = g in R?. Using the Cauchy-Bynakovskii in-
equality we obtain

1 1
()| < 5| [ e = rlaryar| < 5= [ |mle — il g(r)iar
< ([ gt [ BTt )
— T )| °dT —dr }
- 27(' R2 g R2 1 —I— |T‘2+a
1 1Il2 ‘7‘| 1
< — dr)z.
~ 27 vl (/Rz 1+ |z — 7|2t ™)
Let us estimate the last integral in (1.4)
In? |7|
I? = d
/R2 1+‘.’L’—T‘2+a T
In? |7| In? |7|
= dT+/ dr
/|T|51 L+ |z — 7[>+ r>1 L+ o — 7|2
= A; + A,.
Obviously,
In?|| 2
A = / dr < / In®|r|dr < C. (1.5)
pri<1 1+ o — 72 rl<1

Note that for || > 2|x| we have

7=l > || - o] = o7+ S| — || > S|
T—x|>|T x—27' 27’ x_27'.

Thus,



/ In? |7| 4 / In* || d
T= T
rjp1 1l + |z — 72t (12130 {|r|22lz)y 1+ |2 — 7[?+

1 2
+/ o |7 srad7 < O(1+ (In* 2[z))?),
(riznn{ri<2iz)y 1+ |2 = 7] (1.6)

where the constants C' depends on « only. Then inequalities (1.4)-
(1.6) imply
5(z)| < C|lv|ly, In" |z| +1) Vz € R2, (1.7)

Hence ¢ € Y, and by Proposition 1.1 there exists £ € R such that o(z) =
v(x) + k. Thus the pointwise estimate (1.7) yields

lv + Elly, < Cllv]ly,.

Hence
k| < Cllklly, < C(llv+ Eklly, + [lv]ly,) < Cllv]ly,-

Then by (1.7) and this estimate we obtain (1.3). O

2. FUNCTIONAL FORMULATION OF THE PROBLEM

The aim of this section is two-fold. First we wish to transform equation
(9) to more convenient form, and second we would like to outline the strategy
of the proof of the main theorem.

As the first step in transforming equation (9) we get rid of delta-functions
in its right hand side, using solutions for the Liouville equation.

Throughout this paper we denote z = x1 + iz, a = ay + iay € C! = R2.
Let us define

N
f@)=W+1)]]E-),
k=1
and
F(z)= [ [f(&)dE.

z
0
Let us introduce a functions pe 4(2), p(r) by

8N +2|f(2)?

(1 + €2N+2|F(z) + sNa+3 |2)2;
8

_ 8(N +1)*2N
p(r) = (L4 r2Ni2)7 (2.1)

Pe.a (Z) =




We note that for any € > 0 and a € C!, Inp. 4(2) = O(z) is a solution of the
Liouville equation

N
A +¢® = 4%2(5(z — zj)
j=1

in R%.
Defining v(2) = u(z) — In pe (%), we obtain from (9)

Av + pe q€” — pg,ae% — pe,a = 0. (2.2)

Then, making change of variables z — £ and denoting ¥(z) = v (é), we
have

~ 2N|f (5) |2 0] 6484N+2|f (5) |4e217
AU+ £ 5 — £ 1
(TR () 4 ) (TR )
2N 2
B £ (%) S =0. (2.3)
(1+ €2N+2\F (£) + =)
We denote - \
] z
9e(z,0) = e\ (8) | 5 - (2.4)
(1+[eNT1F (2) + 5?)
Then, we can write (2.3) as
A+ g.e” —e?g2e? — g, = 0. (2.5)

To transform (2.5) further we construct a solution to the ordinary differential
equation

Lyw=— —|———T—|—pw:f in R;. (2.6)

We first observe that that the function ¢g(r) defined by

1— 7"2N+2

14 r2N+2 (2.7)

po(r) =

solves (2.6) with f = 0.(For rational derivation of this fact please see the
proof of Lemma 2.4.) From this we establish the following two lemmas, the
proofs of which are in Appendix.
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Lemma 2.1. Given f = f(r) with rf(r) € LY(Ry), f(r) € C*(Ry), the
ordinary differential equation (2.6) has an explicit solution

w(r) = ¢o(r) {/0 ¢f((81)__jf(1)ds + ¢f(1)r} (2.8)

)2 1—r

with

¢r(r) = G J_r Z?;ﬁ)Z a-r) /O po(t)Lf(t)dt,

where ¢f(1) and w(1) are defined as limits of ¢¢(r) and w(r) asr — 1.

7

Lemma 2.2. Let wo(r) be a solution of the equation
Liwyg— p? =0 inRy,
obtained by substituting f = p? in the solution formula (2.7)-(2.8). Then,

the pointwise estimates hold true

sup e”°(") < oo, lwo(r)| < C(InTr+1) Vr >0, (2.9)
r>0

and the asymptotic formula
wo(r) = —Clnr +o(lnr) asr — oo, (2.10)
where C and C are positive constants independent of r.

Let us introduce the mapping P.(-,-) : Y, x R? — X, given by

P.(u,a) = Au+ ge(z, a)e“+€2“’° —e2g2(z, a)e2(“+€2w°) — ge(2,a) + €2 Awy,
(2.11)
where wo(xz) = wo(|z|) is the function defined by Lemma 2.2. Then, the
problem of solving equation (9) is reduced to that of finding a root, (u¥,a¥) €
Y, x R? of the functional equation

P.(u,a) = 0. (2.12)

The transformation of equation (9) is finished.
Finally we note that once a solution of (2.12), (uZ,a?) is found, then our

solution u of the equation (9) is recovered by the formula
w(x) = In pe ox (2) + ul(ex) + wo(ex). (2.13)

Of course, after that one should check if this solution really satisfies the
nontopological boundary conditions.
The proof of our main theorem is based on the following theorem due to
Kantorovich [12,p. 532]:
10



Theorem 2.1. Let By and By be Banach spaces, and ) C By be an arbitrary
domain, P : Q0 — Bs be a given mapping which has a continuous second
derivative in Qg, where Qo = {v € Q|||v — vo||B, < 7}. Suppose, in addition,
that

(i) To = [P'(v)]™! exists and continuous linear operator;

(iz) [[To(P(vo)) |l < n ;
(iii) |[ToP" (v)|| < K Vv € Qq;
Then, provided

has a solution v* such that
|[v* = vollB, < 0.

Later, we apply the Newton-Kantorovich iteration method to solve (2.12),
starting from the origin of some subspace of the space Y, x R2. For this we
need to estimate the distance in X, from origin to

P.(0,0) = g(2,0)e ™ — e2g2(2,0)e% ™ — g.(z,0) +e>Awpy,  (2.14)
and prove the invertibility of the first derivative of P. at the origin,

Pé(o, 0)[’0, b] = Av+ 96(27 0)652w0v _ 26293(2 0)6252100,0

2
09:(2,0) et wo 09:(2,0) 262w
+ Z 78% b; Z da; 9:(2,0)e b;
7j=1
0g:(z,0)
- b;, (2.15)
=1 aaj



and finally we need to estimate the norm of the second derivative,

09:(z,a)

" o~ 71 u—l—e w
P! (u, 0)[v,b; 3, B] = ge (2, a)e" < "0 +Z 9,

3 Bt iy 3 ),
U0k

oa;
J 7,k=1

_ 452 896 (Zu a) ge(Z7 a)e2u+252w0 bj’ﬁ

j=1

2 ~
u+e wo ’Ubj

_ 252 Z (a ge z, a (Z a) " 8g6(z’ a) 895(2,(1)

aaﬁak Oa;

7,k=1

Zgg (Z, a)e2u+2e wO’U’ﬁ

2
2 ~
—4625 7’ ge(z,a)eut2e Youb;

at the origin.

2 ~
u+e“wo bj bk:

~ 2
) bjbk62u+2€

(2.16)

The most difficult part is to prove the invertivility of the operator [P.(0, 0)].
To solve this problem let us introduce an operator A : Y, x R? — X, defined

by
A(u,a1,a2) = Lu+ Ma,
where the operator L : Y, — X, is defined by
8(N +1)2r2Ny
(1 + r2N+2)2

and the operator M : R? — X, is defined by

Lu = Au+

= ‘$|7

(2.17)

(2.18)

Ma = —4(pwo — 2p*) a1 — 4(pwo — 2p*)p_as Va = (a1,as) € R? (2.19)

with the functions ¢ (r,0), ¢_(r,0) € Y, given by formulas
rN+lgin(N +1)6

rNt1lcos(N +1)0
QD.}.(T',Q) = ( )

1+ r2N+2 , p-(r0) = 1+ r2N+2

(2.20)

Later, we shall prove that the operator P.(0,0) is a perturbation of the
operator A in the norm L(Y, x R?, X,). Now let us prove the following

property of the operator A.
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Theorem 2.2. The operator A defined by (2.17)-(2.20) belongs to L(Y, X
R?, X,) and
ImA=X,.

To prove this proposition first we establish facts on image and kernel of
the operator L.
We start from the following:

Proposition 2.1. Let o € (0, %), then the image of L, Im L 1is closed in

Xa-

The proof of Proposition 2.1 follows immediately from the Lemma below.

Lemma 2.3. Suppose that X, Y are Hilbert spaces, a bounded linear opera-
tor B: X — Y isonto, and K : X — Y 1is a linear compact operator. Then,
Im (B+ K) is closed in Y.

Proof. See the proof of Lemma 5.1 of [6], page 413. B

Proof of Proposition 2.1. We apply Lemma 2.3 for operators B = A, K = p.
Now, it is easy to check K : Y, — X, is a compact operator, by decom-
posing R? into a bounded and an exterior domains, and using the Rellich-
Kondrachev compactness lemma for the bounded domain. We omit details
of this part. Here, we only check A : Y, — X, is onto. Given f € X, let
us consider a solution u of the equation

Au=f  inR?
represented by
1
u(e) = 5= [ ke~ ylf(w)dy.
R

T or
We will show u € Y,,. First ||Au||x, < oo is immediate. Next, we claim
2
u”(x)
———=—dx < o0. 2.21
/R2 1+ |$|2+a ( )

Indeed, we have

1/ |In |z — y|| 2tan L
()| < — | —————— 0+ y|"") 2| f(y)|dy
lu(z)] o7 Jas (1+|y|2+a)§( 7T 2| f(y)]

1
1 In? |z — y| 2
< il 1P
<o (/RZ L5 [gpra®™ £l x4

< C|lfllx, (n* |2 +1),
13



where we used previous estimate for I in the proof of Lemma 1.1(See (1.5)-
(1.6)). Thus (2.21) follows, and u € Y,,. B

Now we can compute the kernel of the operator L.
Lemma 2.4. Let o € (0, %), and L : Y, — X, be the differential operator
defined by (2.18). Then,

ker L = Span{QDOa P+, (P—}?

where g, p+ are introduced in (2.7) and (2.20) respectively.

Proof. As is well-known, for any N,k € Z, U{0} and a = a;y +ias € C! the
function

8|(N +1)2N +a(k+ N +1)2N+F2

VU(a,z) =In (1 + [N+ g N+R+1[2)2

satisfies the Liouville equation
AV +e¥ =0 (2.22)

except at the zeros of the polynomial p(z) = (N + 1)z +a(k+ N +1)NtFk
in C!. Taking derivative of (2.22) with respect to a; and as at the point
a = 0, we find that for each k£ € Z U {0} the functions

oV (a,z .
Ptk = B(Tl) = ¢r(r)coskl, ¢_ = ¢r(r)sinko,

a=0

with
(k+N+1)+(k— N —1)r2N+2

P(r) = (N +1)(1+ r2N+2) r

satisfy the equation
Loir=0 inR

and function ¢y satisfy to the ordinary differential equation

P¢r | 10dr  k¢n _
S Tt = g =0 Vr >0, (2.23)

On the other hand, as can be checked by direct computations, new func-
tions ¢x(r) = ¢x(1/r) are also solutions to the equation (2.23). Obviously
the pair ¢g, ¢ is the fundamental set of solutions to ordinary differential
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equation (2.23). If k & {0, N + 1}, then these solutions blow up like ¥ near
infinity, or like 7% near 0, and do not belong to the space Y.
Now let v(z) € ker L N W22 (R?). Using well-known regularity results of

loc
elliptic operators we obtain that v(z) € C2_(R?). In the polar coordinates
the Fourier expansion yields

v(z) = Z vg (1) et*?.

k=0

Obviously the function vy (r) satisfies (2.23) for all k € Z U{0}. Thus vk(r)
is the linear combination of the functions ¢ (r), x(r)

k(1) = e 1k (r) + cr2dk(r).

Since v is the smooth function cg 2 = 0. On the other hand v(z) € Y, thus
cg,1 =0 for all k € Zy \ {N + 1}. This proves the lemma. W

The image of the operator L is completely described by the following
proposition.

Proposition 2.2. Let a € (O, %), then for the image of the operator L
defined by (2.1) and (2.18) we have

mL={fecX, | /szgaida::0}.

Proof. Since the image Im L is closed in X, by Proposition 2.1, we can
decompose X, as follows:

Xo=Im Lo (Im L)*.
Let £ € Im L)*, then
(Lu,&)x, =0 Vu € Yy.
Thus, denoting (1 + |z|2T%)¢(x) = 9 (x), we have

(Lu, w)LZ(RZ) =0 Vu € Y,.
15



Since C§°(R?) C Yy, this implies immediately that
Ly =0 inR? (2.24)

by integration by parts and standard density argument.

Since £ € X, we have [, ﬁdm < 00, and thus by (2.24)

Y € kerLN Yy,
By Lemma 2.4 the the function % is a linear combination of g, ¢4,

= Copo+Cropy +C_p_,

where Cy,Cy are constants. Let us consider a function f(r) = A(r)po(r),
where A(r) is a smooth cut-off function which is nonnegative, and whose non
empty support is in (%, 1). Let w be the solution of Lyw = f given by (2.8).
Now suppose (Y is not equal to 0, then this leads us to the contradiction,

1 o0
/ CO)\(r)cpg(r)rdr = / Lyw(r)Copo(r)rdr = CO/ Lwpodz = 0.
3 0 R2

Let m(r) € C*°(RY),m(r) = 1 for r € [0,1] and m(r) = 0 for r > 2.
Denote me(xz) = m(ex). Obviously

pime = @1 in X5 ase— 40,
for all 6 < —2. Thus, using (1.3), we have
(Lu, QO:E)LZ(R2) = eE)I—Il—IO(Lu’ QO:}:mE)Lz(R2)

= El_i)r_r‘_lo . {2 (Am)(er)pru+ 2e((Vm)(er), Vos)u)}dz =0 Vu € Y,.

This completes the proof.

In (2.17)-(2.20) the operator A was introduced by A(u,a) = Lu + Ma.
Since variables u and a are independent, and I'm L is the linear space of
codimension we can prove Theorem 2.2 by showing that the space (ImL)*
does not contain any vector orthogonal to I'mM. This goal will be achieved
with the help of the following auxiliary Lemma, whose proof is given in
Appendix.
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Lemma 2.5. The following inequality holds true:
/ (pwo — 2p*)prdx < 0.
R2

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. Given f € X,, we want to show that there exists
u € Yy, a1,a2 € R such that A(u,aq,a2) = f. Let us define

Cy= [ [foxdr, Cy= 4/ (pwo — 2p%) i dz.
R2 R2

We note that Cy # 0 due to Lemma 2.5. Thus, the function, f introduced
below, is well defined.

: e, AC
f=F——="(pwo —20") 03 — —=—(pwo — 20%)p_.
. o

Then, from fomr sin(N + 1)0 cos(N + 1)0df = 0 we obtain

f(pidx = 0.
RZ

Hence, by Proposition 2.2 there exists u € Y, such that Au + pu = f, and
we have
C C_
4 <u,_~_+,_~_) _J.
C,

This completes the proof of the proposition.ll

3. PRELIMINARY ESTIMATES

Our aim in this section is the proof of invertibility of P.(0,0), and appro-
priate norm estimates for P.(0,0)~!, P.(0,0), and P”(0,0) respectively. For
those purposes we need the following lemmas.
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Lemma 3.1. Suppose g.(z,a) is the function defined in (2.4). Then, there
ezrists Ry > 1 and € € (0,1) such that |z| > Ry and |a| < €2, ¢ € (0,e0) imply

C|Z‘2N
|gs(Z, a/)| S (1 + |Z|2N+2)2’ (3.1)
22: dge (2, a) Clz|2V 52)
o1 ey [T (14 [zPNH2)2
2. 19%g.(2,q) C|z|2N (3.3)
o= | 0000 | = S PR '
where C' is independent of €, z.
The proof of this Lemma is given in Appendix.
Lemma 3.2. For all g € (0,1) there exists C = C(ep) such that
e w0 =1+ e%wg+ R(r)  Vee (0,e0), 7€R,, (3.4)

with
IR(r)| < Ce*(Intr+1)% VreR,.

Proof. By Taylor’s formula we have
ef wolr) — 1 4 2wo(r) + R(r) VreRy, e€(0,1),

where
4

1
R(r)| < 5 sup e 00 |2uy(r)[? < & fwy(r)|> max{1, evo )
T€(0,1) 2

< Ce*(lntr +1)2,

where we used (2.10). B

Now we are ready to prove the existence of the operator [P/(0,0)]7!. As
was mentioned earlier, we show that P.(0,0) is a perturbation of the operator
A. One problem is that although the operator A is onto, its kernel is not

18



empty(Actually Lemma 2.4 implies that dim{ker A} = 3.). To overcome this
difficulty let us decompose Y, = ker L & (ker L)+, and set

U, = (ker L)+ x R2.

We equip the space U, with the norm ||(u,a)||v, = \/||u||%,a + a? + a2. From

now on we are going to work in the space U, instead of Y, x R?. By Theorem
2.2 there exists

1
A X, > U, Yae (0, 5): (3.5)
Indeed to prove (3.5) suppose A(v,a) = 0. Then, this is equivalent to
Lv=—-Ma

and Proposition 2.2 implies that ng Mapy dx = 0. By Lemma 2.5 this, in
turn, is possible only if a = 0. So we have Lv = 0. Hence, v = 0 by definition
of the space U,,.

Now we prove existence of the operator [P/(0,0)] 1.

Proposition 3.1. Let o € (0,1). There exists g € (0,1) such that the
inverse operator I'e = [P2(0,0)]7! € L(X4,Us) exists for all € € (0,g0).
Moreover, there exists a constant C' such that the following inequality holds

true.
ITelle(x.,v.) < C Ve €(0,¢0), (3.6)

where C' s independent of €.

Proof. Let us decompose
FL(0,0) = A+ (P(0,0) - A).

Since by (3.5) A is invertible operator from U, onto X, it suffices to prove
that there exists €g > 0 such that

1

A= Hexa,va) +1)
19
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Let (v,b) € Y, xR? with ||v||y, +|b] < 1. Then, from (2.15) and (2.17)-(2.20)
we have
||P€I(O7 0) [U7 b] - A(U7 bla b2)||Xa

< lge(-, 0)es “0u — pu — 26%2(-, 0)e** || x.,

85 2 86
+Hg@®fwh—gcﬁm

daq Oay
2262w, 0Ye 2
—2¢% —('7 0)95(', O)bl + 4(pw0 —2p )§0+b1
a1 X,
agE 521110 898(" 0)
+ H 8&2( ,0)6 b2 80,2 b
2 22wy age 2
—2¢”e ——(+,0)g(+,0)b2 + 4(pwo — 2p%)p_bo
8(12 X,
—I+J+K. (3.8)

Let us estimate each term of I, J, K separately below. Using Lemma 3.2, we

estimate I as follows.

I2s;@J%uﬂ)—MHFW@N%L+WWﬂMx
+2||e%ge (-, 0)wov |k, + 2/le®ge (-, 0)Ru|%,
+2]12e262(-, 0)e2 0| = I + I + Is + L, (3.9)

where R is the function from (3.4).
As in the proof of Lemma 3.1 one can write

(2,0) = 8(N +1)*(r*Y + eRn (e, 2))
9:(2,0) = (1+r2N+2 4 cRy (e, 2))?

where Ry (e, z) and Ry (e, z) satisfy the estimate
[Bn(e,2)| S CU+r27h), [Ry(e,2)| <O+, r =12
for all € € (0,1) and z € C with C independent of € and z. Thus,

eC(1 + roN+4
900) = p(al)| < S iy Ve 01 2€RL (310

20




Hence, thanks to Lemma 1.1, I; is estimated as follows.

I, < Ce? (1+ |=[*¥*H2 o In+ 1)2(1 24ay g
L= R2 (1+|$|8N+8)2”U”Ya(n 2| + 1)2(1 + |z|2+)dz

< Ce?||v|ly, - (3.11)

In order to estimate I one can use Lemma 3.1 and (2.10) so that

o] .
B et [ ot nt lal+ 17 ol (n* o] + 1201+ o4 de

< Cet|wl}3... (3.12)

Now, using Lemma 3.1 and 3.2, we estimate I3 as

|$|4N
h< Ot [ o Emsglolf, (n ol + 1201+ o) da

< Cet|vll3,, (3.13)

and, using (2.10),

|£|8N
1< Cet [ s ol (n ol + 1)2(1+ [2f**)do

< Ce*|vl|3, (3.14)

respectively. Combining (3.11)-(3.14), we are lead to

1< Cell]y,. (3.15)
21



In order to estimate J we observe first

09e
80,1

2
J? <2

(,0)(e*wo + e*R)b1 + 4pwop4by

Xa

a 2
+2([262[26 2w + 484R]8—ZE(-, 0)g<(-, 0)by
1

Xa
2

0ge
121|262 275 (-, 0)ge (-, 0) + 8p% ¢4 by
80,1 X,
9 2
< 4b7 <62ﬁ(-, 0)+ 4p<p+> wo
80,1 X,
9 2
+4e%02 |RZ22 (- 0)
8a1 X,
872 2 09 ?
+ 8¢%b7 || (wo + 26 R) (-,0)g.(-,0)
80,1 X,
dg 2
+ Sb% 62 p) . ('7 0)96('a 0) + 4/)2(10-1-
0,1 Xa
=Ji 4+ Ja (3.16)
By direct computation, as in the proof of Lemma 3.1, one can write
Oe0) 4 Re [ ()
da; 6296 ) 1+52N+2\F(§) |2
4 (2,0) |z|NtLcos(N 4+ 1)0 + ehn (e, 2)
e27e\® 1+ |2]2N+2 4 chy (e, 2)

where |y (e, 2)| < C(1+|2|N), and |hn(e, 2)| < C(1+ |z|2N*1) for all z € C
with C independent of ¢ and z.
Thus, using (3.10), we estimate
|2|N+L cos(N + 1)0 + ehn (e, -)
1+ |2|2N+2 4 ehp (e, )
(\Z\N‘H cos(N +1)0 + ehp (e, -)
1+ |22N+2 4 ehpy (e, -)

(1+ [2[>¥*2)
14 [o[#+a P00

Ji < 16b3 || (g<(-,0) — p)

Wo

Xo
2
+ 1603

- 80+> pWo
Xa
2

< CbYlge(-,0) — pll%, + Ce?b7

< Ce*h? + Ce?b? < Ce?pl. (3.17)
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Using the estimates (3.1) - (3.4), we obtain immediately
Jy < Ce*b?, (3.18)

and
Js < Ce*b?. (3.19)

To estimate Jy let us begin first

Jg 2 dg ?
< 8p2 2298 ¢, ..0) — 2275 ¢, .
J4_81(s o (00 =) | (2520 g ) o]
(3.20)
By (2.1), (3.2)
dg 2
Ji < Ch (||ge(-,0)—/)||_2xa+ e’ 5 (4 0) +dppy )
ai X,
< Ce®b3, (3.21)

where in the last inequality we used (3.11) with v = 1 and (3.17) with b, = 1.
Combining (3.16)-(3.19), (3.21) we obtain

J < Ceb;. (3.22)
Estimate of K is similar to J, and we have easily

K < Cebs. (3.23)
Combining (3.15), (3.22) and (3.23), we finally estimate

I1P£(0,0)[v, b] — A(v,b1,bs)||x,, < Ce(||vlly, +[b]) < Ce.

Taking e0 = 572 3.7) is proved.

1
Meoea om0 (

As it was mentioned earlier, to apply the Newton-Kantorovich theorem
we will choose vy = 0 € U,. The following proposition provides the estimate
for the parameter 7 of (i) in Theorem 2.1.
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Proposition 3.2. Let a € (0,1), then there exists e1 > 0 such that

|P-(0,0)]x, < Cée? Ve € (0,¢,). (3.24)

Proof. By virtue of Lemma 3.2, and using the definition of the function wy,
one can rewrite (2.14) as follows.

P(0,0) = g<(2,0)(1 + €wo + e* Ry (|z])) — €292 (2, 0)(1 + 26>wp + * Ra(|z))
— 9:(2,0) + €2 (—pwo + p?)
= %(ge(2,0) — p)wo + €2(p* — g2(2,0)) — 2e* g2 (2, 0)wo
+&*9e(2,0) Ra(|z]) — €%92(2, 0) R (|)), (3.25)

where |R;(|z])| + |R1(|z])| < C(In" |z| + 1)2. We thus have

I1P0.0)F, <2 [ 10.(210) = pP [wol?(1+ ) da
et [ 102200 = (0l + 192 (2. OF) 1 + la*)do
+ 86 [ 1.0 o (1 + ol da
+Ce /R 1962, 0)2(1 + [z[2+) (n* 2] + 1)*de

+ Ce”/ 19e(2, 0)[*(1 + |z[>F*)(In" |2| + 1)*dz.
R? (3.26)

Using the previous estimates (3.10) and (3.1), we obtain easily
|1P:(0,0)1%, < Ce®+ Ce®+ Ce® + Ce® + Ce'? < Ce° (3.27)

for all sufficiently small €. This completes the proof of the proposition. H

To apply Theorem 2.1 in the next section we are going to choose vg = 0
and 7 = 2. Thus the following proposition provides the necessary estimate
for the parameter K of (ii%) in Theorem 2.1.
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Proposition 3.3. Let o € (0,3). Then, there exist ey € (0,1) such that for

12
all e € (0,&9) and (u,a) € Uy with ||(u,a)||lu, < e? we have the estimate
C
1P (w0, )| (U0 x Ui X0) < pox (3.28)

where constant C is independent of ¢.

Proof. Let us assume ||(u,a)||y, < &? below. From (2.16) we have
1P" (u, @) v, b; B, B]| x.,

896 eu-|-€2 wo bj’ﬁ

J Xo

=1 aaj X,
2 829 2 ~
+ < (6u+6 wo 1)bjbk
j,gz:l 8aj8ak X,
+ 46 87jg€€2u+2€2w0 bJﬁ

—|—2€22
7,k=1

+ de?||gZe? 2 v x,,

( 8 ge + 896 896) bj5k62u+2e2wo
8a]8ak Oa; Oay,

Xa

—}—46’ :II+I2++IS

Xa (3.29)

Below each term of I - - - Ig will be estimated separately. To estimate of Iy
we use (2.10) and (1.3) as follows.

1= [ lge(e )P e oo (1 4 fof*)da
R

2 ~
e2u-|—2€ wo,Ubj ‘

%gs

oo T'4N o )
S C/(; WEQCIHUHYQ (1 T+1)||’U||%,—a||’l)||%,a (1H+7‘ + 1)4(1 + 7'2+a)7"d7"

© (1 + T2+a+25201 +4N+1)(1n+ r 4+ 1)4
< C 2 ~112 ( d
< Cloli, o, | T s 4

< Clvlg, 19113, (3.30)
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where 9 was chosen so that
4e2C, < 3, (3.31)

where C is the constant from the inequality (1.3). Using (3.2), (2.9) one
estimate I,

I2<2Z/

C (% ™ oGl Ont ) 205112 (It 4 1)2(1 4 2
u Un - r ~ (84
<SG O BRG], (" 1214 17

Bgeza

20 b 26 (1 + |2 *+*)da
8%

2
< Cpppapy, [~ QO )OI+ )2,
<3 ve | (14 r2N+2)
C -
< S bPIo1Y, (3.32)

where we used the assumption on ¢ in (3.31). Estimate of I3 is similar to
I>, and we obtain

C -
I3 < 6—2|b| [v]ly.- (3.33)

Thanks to (3.3) and (2.4), (2.10), (1.3) I4 can be estimated as follows.

0%g 0°ge(z,a) 2 ~
I<2 € u+€w0—12b'2b 21 2+ad
2< kZ/ ool P21 2 e 21+ 24
3 g ‘.’L‘|4N|’u,+ 62’11)0‘262'“'”66 w0||2C’0(R1+)|b‘2‘b‘2(1 + |$‘2+a) N
~ &8 Jpe (14 |z|2N+2)4
- g oo 7‘4N€4(1H+7‘+1)262€201(1n+ r+1)‘b|2‘5|2(1 +7.2+a) i
= €8 ), (14 r2N+2)4
C ~ % (1 24+a+2e*C1+4N+1Y (1n+ 1)2
< Cpe [~ 07 (e,
€ 0 (14 r2N+2)4
C ~
< 6_4|b|2‘b‘27 (334)

where the mean value theorem was used in the second inequality, and (3.31)
was used in the last inequality. Next, we estimate I5 and Ig, using (3.1)-
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(3.3),(2.10) as follows.

8geza

I2 < 32 1ge(z, @) 24" w0 b2 |52 (1 + |22t do

> TSN 4AC Int ~
SC/O (ST vlulye (e r 0121512 (Int e + 1)2(1 + r27)rdr

§ - 0o {1+r2+a+8N+4Cleg+1}(ln+,r_|_1)2
_C|b| “U“Ya (1_|_,,.2N—|—2)8 dr

< Pl , (3-35)

)

and

0%g.(2,a)
16<8€4Z/ (‘ da;0ay

i,k=1

2 2
09:(z,a)
2 9
e =

Bak

‘ 09e(z,a)

. ‘bj|2|5k‘2e4u+46 wo(l + |.’L“2+a)dil?

COPEP [ oY o o
< 1]|ully, An™ r41) 1 24a d
et /0 (1+r2N+2)86 (L+r“T%)rdr

< S [T LE p2HatA0IE +8N +1
= 4 o (1 + r2N+2)8

C ~
dr < 8—4\b|2\b|2. (3.36)

Estimate of I; is similar to I;, and we have
I; < Ce?|v]ly, [19]ly.- (3.37)

Estimate of Ig is similar to I5, and we have
Is < C[Bl [[v]ly,- (3.38)

Estimates (3.30), (3.32)-(3.38) provides us with (3.28).1

4. PROOF OF THE MAIN THEOREM.

We are now equipped with all the necessary facts to apply Theorem 2.1
to prove our main theorem.

Proof of the Main Theorem. We apply Theorem 2.1 to our functional equa-
tion (2.12). Set By = U%,BQ = X%, and vg = 0. Also, we set a = % in
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Propositions 3.1-3.3. We denote v = (u,a), and define P.(v) = P.(u,a).
Then by Proposition 3.1 there exists the operator ' = [PL(0)]"! with its
norm estimate given by (3.6). Combining Proposition 3.1 with Proposition
3.2, we obtain

ITPe(O)lvy < [ITellecey uplPe(O)llx, < Ce® = n(e) (4.1)

for all € € (0,&0). On the other hand, combining Proposition 3.1 with Propo-
sition 3.3, we have

TP ()l < ITellecxy o) IPE(@)] < Ce™ = K(e)
for all v € Qo = {v € Uz | |lvlly, <e?} and € € (0,¢0). Hence
8

h(e) = K(e)n(e) < Ce Ve € (0,¢p).

Taking the parameter ¢ sufficiently small, we have h(e) < % Moreover, since
7 =¢2, and rg = O(e3) as ¢ — 0, we have 7 > rg for all sufficiently small €.
Thus all conditions of Theorem 2.1 are satisfied, and there exists a solution,
v¥ = (uk,a}) € Qp to the equation P.(v) = 0 such that

gr e

1—/1—-2h

- n < Ce3, (4.2)

[0Z]lu, <
8

where C' is independent of e.

We now verify the decay estimate (11) for u recovered from formula (2.13),
thus showing that our solution u is really nontopological. From the explicit
formula given in (2.1) we know that

I pe gr (o) = —(2N +4) In|z| + o(In|z|) as |z[ = oo . (4.3)
From (1.3) and (4.2) we obtain
[u (2)] < Cllully, (In* |z| + 1)
< O|o? o, (" 2] + 1)
< Ce¥(Int |z| +1).
This, implies then

lut(ex)| < Ce3(Int |ex| + 1) < Ce¥(In |z| + 1). (4.4)
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Also, from the asymptotic formula (2.10)
2wy (ex) = —Ce?In|z| + o(ln |z|) as |z| = oo, (4.5)

where C is a positive number. Taking into account (4.3)-(4.5), we deduce
from (2.13) that there is 1 € (0,&p), and a constant 5 = (3(¢) > 0 such that
our solution u(x) of (9) satisfies

u(z) =—C2N+4+P)In|z|+o(ln|z|) as |z| = oo (4.6)

for all € € (0,e1). Then,

. 1
e — O (W) as |z| — oo. (4.7)
We recall that z = z1 + i29,0, = (32 —i3%),0. = 3(3% + iz%) as
previously, and define
1 N
#(z) = exp E(u + i0) with 6 = Z 2arg(z — zj) (4.8)
j=1

and
A1 = —Re{2i0,1n ¢(2)}, Az = —Im{2i0, In ¢(2)}.

Then, (¢, A) becomes a solution of the Bogomol’'nyi equations (4)-(5) sat-
isfying (7). We now show that our solution (¢, A) is of finite energy, and
satisfies the decay estimates (11). Since by (4.7) and (4.8)

1
we obtain
|6°(1 = [6]*) € L*(R?). (4.10)
Then by (5) and (4.9)
1 F 2 2 112
Fua(o) = O (s ) as ol = oo, and 22, 621 0f%) € ')

Now it suffices to show that

1
D1 + | D22 = O (W) as |z| = oo,
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and also that it is integrable. From (4) we have immediately that 0, In ¢(z) =
—i@, where a = %(Al + iAs), which , in turn, gives

- A=, —— —

1 99 1Ou 100, _10u
28$2’ 28.’132 2—28331.

Thus, D1 = (55, + 55, — 141)¢ = 3(5 —igp)d and Dagp = (5574 +
%83_9692 —iAy)¢ = %(67“2 + z’aT“l)qS. Therefore,

1 1 "
[D1g|* +[Dagl* < S| Vul?g]* = o[ Vul%e".

From (9) and Proposition 1.1 we obtain

™

N
1

j=1

for some constant C. Since u(z) < 0 for z € R? (by the maximum principle
applied to (9)), taking derivative of u from (4.12), and using the inequality
(>i—1a5)* <n )7, a?, we obtain

2

u(y) N
Vu(z)[2e™®) < Cet®) (/ ¢ dy) +C —— = L(x)+13(x).
| ( )| = 2 \x—y\ Z:‘x_sz 1( ) 2( )

Since u(z) = 2In |z — z;| + O(1) as z — z;, the function I5(z) is locally
integrable, and by (4.7)

1
I2($) =0 (W) as ‘$| — OQ.

Hence Ir(z) € L*(R?).
From the estimate

e (¥) et (v)
/ dy < / dy +/ Wy < C,
R2 ‘x - y‘ lz—y|<1 |-77 - y| |lz—y|>1

and (4.7) we also find that

1
Il(ﬂf):O(W) as |.’17|—>OO,
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and is also integrable. We now prove (12). From (5) with x = 2 we first

obtain .
/ Fiodr = —= / e“(e* —1)dz (4.12)
R2 2 Jre2

Let us denote B(z;,6) = {z € C! ||z — z;| < ¢}, and
Br={z€C!'||z| <R}, Sr={z€C'||z|] =R}.

Let us choose § small enough so that B(z;,d)(j = 1,---,N)’s are mutually

disjoint and R large enough so that B contains all of B(z;,d)’s. Integrating

(9) over Bg \ U}_, B(z;,6), we obtain by the divergence theorem

N

0 —
s = / e*(e* — 1)dx + Zj{ “T 5 Yuds.
Sg OF Br\UN_, B(2;,9) = lo—zy1=0 |7 = 7]
(4.13)
Now, using the representation formula of u(z) in (4.12), we deduce
7{ ] -Vuds:Qf - -Vin|z — zj|ds + o(1)
|z—2z;|=6 |‘T - z_7| |z—z;|=6 |'T - ZJ‘
0
:2% 8—1nrds+ o(1) =4m + o(1)
|z|=5 T (4.14)

as 6 — 0. Substituting (4.14) into (4.13), and passing § — 0, we find that
ou
—ds = e"(e" —1)dz + 4mN. (4.15)
Sk 67'

From (4.12) and (4.15)

/ Flzda:——— hm% —ds—{—27rN
R2 2 R—oo or

and for our solution, u(x) = uc(z) given by (2.13), it suffices to show that
there exists a positive constant C' such that

1 .. Oue
—— lim

_ N2 3
2 P o ds =2nN + 4+ Ce” 4+ O(e”) (4.16)
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as € — 0. Taking into account the formula for u.(z) in (2.13), it suffices, in
turn, to prove the followings, (4.17)-(4.19).

1 0
-3 B}I—I)I;o ng B In pe oxds = 2N + 4, (4.17)

o A

gim f QmolEE) e (4.18)
R—o0 Sk 87‘

where C is a positive constant independent of &, and

im § 2422 00 o, (4.19)
R— oo SR 87"

as € — 0. We first prove (4.17). From the formula (2.1) one can write

2 In _ 2
or Peaz = Pe,a* ane’a;
_ geav+2 2 f(2)?
peos | (L+ 2N 42F(2) + s 2)?
2f()PeEN P ENF (2) + s
(1+2N2F(2) + 7% | (4.20)
with
\f(z)|2 = (N + 1)27"2N +p2N—1(9)7"2N_1 + -+ po(0)

and

IF(2)]> = N2 4 gon 1 ()N - 4 go(6),

where p;(6)’s and gx(#)’s are functions only of §. Thus, substituting

0
E|f(z)\2 =2N(N + 1)27“2]\7_1 + (2N — 1)p2N_1(9)r2N_2 + -+ p1(0),
and

0
ElF(Z)P = (2N + 2)r*NM T 4 (2N + 1)gan11(0)r?N + -+ + q1(0)
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into (4.20), we have for each € > 0

0
7 In pe o+ ds
%SR or e

1 0 2| (2)[2e2N P2 2 |F(2) + s |2
—§ o @R - T s
se [F(2)]2 | Or 1+ e2N42|F(2) + |

27 2N(N—|-1)2R2N—1 2(2N+2)€2N+2R2N+1
- 0 (N + 1)2R2N N 1 + €2N+2R2N+2 Rdo + O(

1
7

1

as R — oo. Thus (4.17) is proved. Next, in order to prove (4.18) we first
note

Iuwo(r) = / wo(t)tp®(t)dt + O(l) as r — 0o,
or 0 r

r

which is obtained by explicit computation, using the formula for wq(R) given
by (2.7)-(2.8) with f(t) = p2(t). From this fact we have

— lim
R— o0 Sr or R— o0

el gy -y 200D,
SE‘R r

27
—  im dwo(r)
R—oo Jg or

o . Bwo (R)
= A R

= 2«/ wo(t)tp®(t)dt > 0,
0

Rdf
r=R

where the estimate on I in the proof of Lemma 2.2 was used in the last
equality. The formula (4.18) is proved. Finally let us prove (4.19). By the
divergence theorem

lim Mds = lim Mds
R—o0 Sk r R—o0 S.r or
= lim Aul(z)dr = Au?(z)dz,
R—o0 B.r R2
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and

Aul(x)dz
R2

< / |Aul(z)|dz
RE

— [ 18uz@) i+ sl F) 1+ fof ) Hda
R2

1 % dx %
< Au:$21+$?7d37) (/ 71>
(L 1auea o) ([ =

< Clluzlly, < Clotlly, < C&,

where (4.2) was used in the last inequality. We thus proved (4.19). The proof
of the theorem is complete. B

Remark 4.1. Our method of construction of solutions of the problem (9), (10)
actually provides an explicit formula for approximation of those solutions.
Indeed, the proof of Theorem 2.1 is based on the following modified version
of Newton’s iteration method:

Un+1 = Un — [P;(UO)]_lpzﬁ(vn)

In our case the stating point is vg =0 € U1 and the functions pe 4, wo(x) are

given by explicit formula. It is well known (see [12]) that the above iteration
scheme has exponential rate of convergence.

APPENDIX

Proof of Lemma 2.1. Let w(r) be a solution to Lyw = f. Since po(r) is a
solution of (2.6) with f = 0, we try ansatz w(r) = £(r)po(r), and obtain &(r
below. By an elementary computation we have

[ =Liw =& + (295 + @)5

where we used the fact L@y = 0. Multiplying the above equations by ryq ,
we deduce that

d
J(wﬁﬁ') = rpgf” + (2¢hp0 + ©5)E = rpof.
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From this we immediately have

5(s)
"¢
G f_(z))2ds, re (0,1)
where ¢¢(-) is defined by
_1)2
¢r(s) = ;00 ) / tf(t) s € (0,00)

as in (2.8).
Thus, for r € (0,1) we find that

wi(r) = @o(r) /OT (fsi(‘z)fds

solves (2.6) for r € (0,1). Similarly we can deduce that for any ¢ > 0

wZ(T) = QOO(T) /1:_ (f)f_(z))st

solves (2.6) for r € (1, 0).
In order to extend our solution w(r) to the range r € (0, 00) we set

w(r) = @o(r) Or ¢f((31)_ 5 7(1) (islf(_lzj"

= I (r) + (7). (A1)

ds + ¢o(r)

We claim that w(r) ia a well-defined C7, (RL ) solution of (2.6).
Obviously I, € C;2 (RL). In order to show that I; € C2 (R} ) we observe
first ¢(s) € CL (RL), ¢f(s) € C*(0,k) for all k > 0. In particular, we have

S

fim = [ po(O)tf(t)dt =
0

s—0+ S

and there is no singularity near s = 0 of ¢7(s). Next we will show that

(1) = 0. (A.2)
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To see this we compute first

oy 5= Dnls) [° (1= 1(s)
(o) = St [ epomyar+ S

= J1(s) + Ja(s),
where we set
n(s) = (s + 1gpo(s) — 2(s — 1)spp(s).
We note J2(1) = 0. In order to show J;(1) = 0 it suffices to prove

n(1) =n'(1) =7"(1) =0. (A.3)

Obviously n(1) = 0. Since

1'(8) = @o(s) = 3(s — L)gp(s) — 2(s — 1)seg (s), (A.4)

we also find that n’(1) = 0. In order to see n’/(1) = 0 we use substitution
sy = —p( — sp(s)po for the last term in the right hand side of (A.4), which
is immediate from the ordinary differential equation for ¢g, L1pg = 0. Thus,
we obtain

n'(5) = po(s) = 3(s — 1)y (s) + 2(s — 1) (¢wg + sppo)
= @o(s) — (s = D)gp(s) + 2s(s — 1)p(s)po(s),

from which 7" (1) = 0 follows easily. We thus proved (A.3), and hence (A.2).
From (A.2) we have

$5(8) = 95 (1) ((81)__8";2(1) cCL0,k)  VE>O0.

This implies I1(r) in (A.1), and hence w(r) belongs to C?(0, k) for all k > 0.
Now, in order to show that w(r) is a C? solution of (2.6) in (0, c0), it suffices
to prove that w(r) satisfies (2.6) on (0,1) and (1,00). For r € (0,1) we find
easily

w) = po(r) [ P ds = un(r),

which is a solution of (2.6) by construction.
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For r > 1, setting ¢ > 0, we have

" s) — e he(s) — T
o =i | [ D=0 [T D=0, er0r)

€ te s) —
:wz(r)+w0(r){_(1+ 2¢f(1) +/0 ¢ (s) </>f(1)ds}_

(1—s)?

By construction the first term above is a solution of (2.6), while the second
term is solution of the homogeneous equation of (2.6)(i.e. (2.6) with f = 0).
This completes the proof of Lemma 2.1. B

Proof of Lemma 2.2. From the explicit solution formula (2.8) we find that
wo(-) € C°(Ry), and thus (2.9) follows from (2.10). It suffices now to prove
(2.10). We observe from formula (2.8) that

T /14 2N+2\2 |
wo(r) = ¢o(r) /2 (1 i- Z2N+2> Ej) ds + (bounded function of r)

as r — 00, where
16)= [ e
0

Since po(r) — —1 as 7 — o0, (2.10) follows if

I=1(x0)= /000 wo(r)rp?(r)dr > 0.

Indeed, substituting 2 = ¢ in the integrand of I, then

I:32(N+1)4/OO (1—tN+1) 2N »
o \T+iNF1 ) (14 N+
1 1 — ¢N+1)2N
=32(N + 1)4/0 (1 —|—(tN+1)(1 -|)- tN+1)4dt
+32(N +1)* /100 a +(2N_+f;V(J1rlJ)rt:§+1)4dt
1 1 — ¢N+1)2N
= 32(N + 1)4/0 a +(tN+f)(1 J)Fttzv+1)4dt
1
— 32(N +1)* /0 q J(rls}fjlv;)f:;il)4d3

1 N+1 2\12N

_ g [F A=A =)

=32(N +1) /0 (1+tN+1)(1+tN+1)4dt>0’
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where we changed variable s = % in the third equality. B

Proof of Lemma 2.5. Suppose L be the differential operator introduced in
(2.6). Let us first observe that the following equality holds.

I 1 (N +1)2pANA2
116(1 4 r2N+2)2 | T (1 p2NH2)4 0

which can be verified by an elementary computation. We prove our lemma
for ¢4 only. The case for ¢_ is similar. Using the above identity, we have
the following

2 F IN+2 2
T cos?(N +1)6
/R2 (pwo — 2p%) % dz = /0 /(pwo —2p?) (7 r2NTEy2 rdrd6
0

27 [e’s} 2,2N 2N+2
8(N +1)r r
— 2 2
—/0 cos® (N + 1)9d9/0 [WWO —2 ] (e el

/OO 1L 1 2p2T2N+2 p
— - - lwg — —— »rdr
= TF/OO 1L1w() . 1 — 2p27-2N+2 rdr
o 2 (1 4 T.2N+2)2 (1 + 7'2N+2)2
00 2 2. 2N+2
= w/ { P _ 2 }rdr
o 2(1 ¥ 7.2N+2)2 (1 +,,.2N+2)2
= 77/00 e - 2 rdr
o L21+72N42)2 (14 72N42)
oo 5,,,4N 27“4N
. 4 _
= 647 (N + 1) /0 {2(1 i r2N+2)6 (1+ T2N+2)5 } rdr
5¢2N 242N

= 32n(N +1)* — dt (By ch f variable, t = 12
32w (N + )/0 {2(1+tN+1 (1—|—tN+1)5} (By change of variable %)

)6
* -5tV d 1 tNod 1
_ 4 el et
= 32m(N +1) /0 {10(N+ Dt + v TaN 1) & (1+tN+1)4}dt

3 o0 tN_l tN—].
=32 (N + 1)°N — dt
32m (N +1) / {2<1+tN+1>5 2(1+tN+1>4}
2N

> t
= -1 N+1)3N —————dt < 0.
6m(N +1) /0 (1+ (N+1)5 <

The proof of the lemma is completed. B
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Proof of Lemma 3.1. We write g.(z, a) as follows

r2N 4+ ehy(2)
L+ 2N+ +ehy(z) + 5[2)2
e8r2NV 4 &% (2)
T (e* + etr2NA2 1 la|2 + 2e?2Re {azN+1} 4 2e3Re {aha(2)} + 85h3((p.25’)

9e(2,a) = (

where

[hi(2)] < C(1+ [2*M71),
[ha(2)] < C(1 + |2|™),
[ha(2)] < C(1+ [22MF1).

There exists Ry > 1, ¢o € (0,1) such that |z| = r > Ry and |a|] < €2,
e € (0,ep) imply

4
2¢2|a|rN Tt < 2etr N < £ paN+2
- — 4
1
2¢3|a| |ha(2)| < Ce%(1 + [2|N) < Set + 2N +2)

3 1
Flha(2) < Ce3(1 + [ < St 4 Letpanaz

Substituting these estimates into the formula (A.5), we obtain

Cedr2N
(e* + e*r2N+2 4 |q|2 — 2e2|a|rN+1 — 2e3|al|ha(2)| — €5|hs(2)])?
Ce8r2N Cr2N

- (% + %T2N+2)2 < (1 + r2N+2)2

for all sufficiently large r. Below we put

_ N+1 z a
HE(Z, a) = £ (F (g) + m) .
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To estimate 693(?’“) and aggfgz 2) we compute as follows.
aj a;0ay,
09:(2z,a 4 ReH.(z,a
y:—igs(z’a) ( )2’
day € 1+ |He(z,a)]
09:(z,a 4 ImH.(z,a
g :——296(2”0,) ( )2’
8a2 € 1+ |H5(Z, a)|
0°ge(2,0) 4 ge(20a) 24 (2, 0) (Re H.(2,a))?
0a?  et1+|H.(z,a)]2 &t Jel%, (14 |He(z,a)[?)?’
0%gc(z,a) 24 ( )Re H.(z,a)Im H.(z,a)
a 4o — £ Z’a )
8&18@2 €4g (1 + ‘Hs(zaa)‘Z)z
0%g.(2,a) 4 g.(z,a) N 24 (2,a) (Im H,(z,a))?
— = - —ge(z,a i
a2 A1 Ho(za) 4! 1+ |H.(z,a)%)
Since
|Hc(2,a)| 1
1+ |He(z,a)]2 — 27
we have
2
09:(z,a) 4 Cr2N
2 "0, | S 20l S o oy
=1
and
82g€ (2,a) C Cr2N
Z < l9e(z,a)l < 2N+2)2
8a38ak € et(1+r )

for |z| > Rp. This completes the proof of the lemma. B
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