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1 Introduction

We consider variational integrals of the form,

I(u) = /Q F(Du(z))ds, (1.1)

where 2 C R" is a bounded open set, u: 2 — R™ is a mapping belonging
to Wh2(Q), Du(z) denotes the gradient matrix of u at z € 2, and f is a
smooth strongly convex function with uniformly bounded second derivatives
defined on the set M™*™ of all real m X n matrices. We recall that f is
said to be strongly convex if there exists a constant v > 0, such that for all
£e M™™ X € M™ " the inequality fpgpg(X)gflf% > v[€]? holds. Here and
in what follows we will be using Einstein’s summation convention.

We shall consider the regularity of minimizers of I in W12(Q2). Here by a
minimizer we mean a function u € WH2(Q) such that for any smooth function
¢: Q — R™ compactly supported in Q the inequality I(u + ¢) > I(u) holds.
When f is strongly convex, it is not difficult to see that u is a minimizer of
if and only if u is a weak solution of the Fuler — Lagrange equation of I, i.e.
u satisfies (in the sense of distributions)

Oa fpi (Du(z)) = 0, i=1,---m. (1.2)

A classical result of C.B. Morrey ([Mo]) says that when n = 2,m > 1,
every minimizer of I(u) is regular. This is also the case when n > 2,m =1
by celebrated results of De Giorgi( [Del]) and Nash ([Na]). The methods used
in the proof of De Giorgi and Nash can not be extended to the case m > 2
as shown by a counterexample of De Giorgi ([De2]). The first example of a
nonsmooth minimizer for a smooth strongly convex functional of the type (1.1)
was constructed by Necas in high dimensions (see [Ne|). He considered the
function u: R™ — R™ defined by
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and for large n constructed a strongly convex function f on M nxn’ for which
u is a minimizer of the corresponding functional /. Later Necas, Hao and
Leonardi ([HLN]) were able to modify this construction and make it work for
n > 5. They used u given by
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Important counterexamples to regularity of solutions of elliptic systems
which are not of the form (1.2) can be found in [GM] and [NJS]. For a
comprehensive treatment of regularity questions we refer the reader to [Gi].
Interesting sufficient conditions for regularity are given in [Ko].

The purpose of this paper is to give a counterexample to regularity of weak
solutions of (1.2) in the case n = 3,m = 5. We use exactly the same u defined
by (1.4) and construct a smooth strongly convex function f such that u is
a minimizer of /. The main idea of our construction is the following. Let
K = {Vu(x),z € Q} be the set of gradients of u. We find a null Lagrangian
L (see Definition 2.1 below) such that

VL(X)=Vf(X), VXeK (1.5)

for a smooth strongly convex function f. Then u will satisfy the Euler —
Lagrange equation of I automatically. To find the null Lagrangian we use
the symmetries of the function u. We will see below that there is, up to a
multiplicative factor, a unique quadratic null Lagrangian on M®°*3 which is
invariant under the symmetries of the function w. It turns out that this null
Lagrangian satisfies a necessary and sufficient condition for the existence of a
strongly convex f satisfying (1.5).

2 Preliminaries

First we introduce some basic facts about null Lagrangians.

Definition 2.1 (see [Bal]) L: M™"™ — R is a null Lagrangian if for each
smooth u: R* — R™,

div VL(Vu(z)) = 0. (2.1)

We recall the following classical theorem about null Lagrangians (see [Da]

or [BCO)).

Proposition 1 Let L: M™™ — R, the following conditions are equivalent:
i) L is a null Lagrangian.

ii) L is a linear combination of subdeterminants.

iii)L is rank-one affine, i.e. t — L(A + tB) is affine for each A € M™*" and
each B € M™*™ with rank B = 1.



From now on, let  be the unit ball in R?. Consider u = (u;;(z)) given by

ziz; 2| -
= — —dij, 1,7 =1,...,3.
af 3% !

uij(z)

Then for each z € Q,u(z) € {4 € M¥3, A = Al trA = 0} = R5. For each
R € SO(3) we have

u(Rz) = Ru(z)R' = ps(R)u(z),

where we denote by po;+1 the unique irreducible representation of SO(3) of
dimension 2¢ + 1. This notation will be used throughout the paper. An easy
calculation shows that

Vu(Rz) = ps(R)Vu(z)R' = ps ® p3(R)Vu(z).

Lemma 2.1 There ezists a unique (up to multiplication by a scalar) quadratic
invariant null Lagrangian L on M®*3 which is invariant under the above action

of SO(3).

Proof Consider the tensor space T' = {a;x € (R*)®?|aijr = ajik, asir, = 0}.
Clearly we have T & R & M°*3. By the Clebsch-Gordan formula (see [BD]),
we know that

Ps @ p3 = p7 D ps D ps.

We now identify the quadratic null Lagrangians on M°*3 with A2R3*®@ A2R® &
Hom(A?R3, A’R®) and consider the representation o of SO(3) on Hom(A?R?,
A?R?®) induced by ps ® ps. By classical group representation theory (see [BD])
we have

0= pygD p7rDps D ps D psDp:.

Therefore we see there is a unique one dimensional invariant subspace.

3 Constructions

3.1 Construction of L

Now we calculate explicitly the invariant quadratic null Lagrangian which will
be denoted by L in what follows. (We slightly abuse the notation, since L
is only determined up to a multiplicative factor.) Since we have M°*3 =
Vi @ Vs @ V3, where V; is the i—dimensional irreducible invariant subspace.



We know from the classical invariant theory (see [Wel]) that L must be of the
following form:

L(A) = o X|* + B]Y |* + 7| 2]

where A € M>3, A=X+Y +7Z, withXeV,YeVi,ZelVs.

We identify M5X3 with T = {aijk € (R3)®3\aijk = Qjik, Aiik = O} in the
obvious way. Now we use a classical procedure to decompose 7' into irreducible
subspaces ( see [Wel]). We first decompose T into the trace-free part 7" and
its orthogonal supplement T3, i.e. T = T' @ T3. An easy calculation shows
that the projection on T3 is given by a;j;, — —%5@'% + %&cmj + %(5]%771- with
Mk = Ggii, k = 1,2,3. Then we decompose T by using symmetrizations. We
have 7" = T} & Ty, where the projection on 7} is given by symmetrization,
Le. Qi — %(aijk- + ajki + akij); the projection on T5 is given by a;;, —
%(aijk + @ik — Qkji — Qki;), Which corresponds to the following Young tableau:

We remark that the antisymmetric part of any tensor in 7" is 0. We now
identify 77 with V7, T, with Vi, Ts with V3.

We now use the condition that L has to vanish on rank-one matrices. These
matrices correspond to the tensors in T which are of the form a;;;, = ¢;;&,
where C' = (c¢;;) is a trace-free symmetric matrix. A direct calculation of the
norms of the projections af;, of ay to T; gives

Qijk = azljk + “?jk + G?jk,

with

1 2 2 3
alel? = 5ICPIEP + ZICEP, a2l = SICPIEP - |CEP, o = Sl

ijk

From this we see that, using the same notation as above, L(A) = a|X|? +
B|Y|*> + | Z]? vanishes on rank one matrices if and only if

a:fry=(-2):1:3.

For our purpose, we will take « = —2, 3 = 1,y = 3 in the following.



3.2 The construction of f

We recall that K = {Vu(z),r € Q} = {Vu(z),z € S?} € M>*3, where u is
defined by (1.4), and where we have identified the 3 x 3 trace-free symmetric
matrices with R5. A necessary condition for the existence of a strongly convex
function f satisfying (1.5) is that there exist dp > 0, such that

VLX) (Y - X) < =6|Y - X[ VX,Y €K. (3.1)
We will see this condition is satisfied.
Lemma 3.1 For any X = Vu(z),Y = Vu(y) € K, where z,y € 5%, we have
L(Vu(z) — Vu(y)) > 8|z — y|*.

Proof: First we note that we have the following decomposition for Vu(z) €
K,z € S2.

.1 2 3
Uijk = Ugjp + Uiz T Ujp,

where
1
uly = —am + = (@i + 2500 + 2x0i5),
U’z?jk = 0,
4 2
U’?jk = —({Eiéjk + CUj&ik — _xkéij)-
5 3
and
2 64
‘Uzljk‘Q - 3, |u?]k|2 = B
Hence L(Vu(zr)) =12 vz € 5%,

Since L is quadratic, we have
L(Vu(z) — Vu(y)) = 2L(Vu(z)) — 2L(Vu(z), Vu(y)),

where we slightly abuse the notation by using L also for the symmetric bilinear
form corresponding to the quadratic form L.

L(Vu(z),Vu(y)) = _QU}jk(x) uzljk(y) + 3“?jk($) Uzggk(y)

1
= -2 (—xixjxk + g(xléjk + xjéki + ackéz])> .
1
—YiY;iYr + g(yi(sjk + Y0 + Yibij)

4\? 2 2
+3 <g) (Ti0jk + 0k — gxlc(sz‘j) “(Yibjk + Y0k — gyk%‘)
= —2(z,y)" + 14(z, ).
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Let t = (z,y). Then —1 < ¢ <1, and we have

L(Vu(z) = Vu(y)) = 2L(Vu(z)) - 2L(Vu(z), Vu(y))
21 —1t) (—2(1+t+ %) + 14)
16(1 — t)

= 8lz —y|%

v

The proof of Lemma 3.1 is finished.
We have L(X) =12 for all X € K and therefore Lemma 3.1 gives
VL(Vu(z)) - (Vu(y) — Vu(z)) = —L(Vu(z) — Vu(y))
+L(Vu(z)) + L(Vu(y)) — 2L(Vu(z))
—L(Vu(z) — Vu(y))
—8|z — y|*.

IN

Since we have
21 20
Z|3? —yP <X -YP< §|3? -yl

for X = Vu(z),Y = Vu(y), we see that the condition (3.1) is satisfied.

It turns out that (3.1) together with the fact that L is constant on K is
also sufficient for the existence of a strongly convex function satisfying (1.5).
A natural attempt to make such an extension would be to take the convex hull
of K and consider a modification of the corresponding Minkowski functional.
However, since the convex hull of K may not be smooth at K, we need to
slightly modify this construction.

We fix € > 0 (the exact value will be specified later) and for each X € K,
consider the 10 dimensional ball of radius r, = ¢|[VL(X)| = €/160 passing
through X centered at X' = X — VL(X)e. We will denote the ball as Bx: ..

Lemma 3.2 When € is sufficiently small we have
- 1 -
VL(X)(Y - X) < —i\Y—X\Q, (3.2)

for each X € K and each Y € By, , where By, s defined above, with Y
being an arbitrary point of K.

Proof: The inequality
V-V < E[VLY)
gives

VLY) (Y -Y)< ——|Y —Y)?



Hence

VLX) (Y -X) = (VLX) = VLY))- (Y =Y)+ VL) - (VY - Y)
+VL(X) - (Y - X)

- 1 -
< W)Y -X||Y -Y]|— 2—\Y—Y|2 - g|Y—X\2,
€

and the statement follows easily.

Let S = UxexBx'r.. When € is small, the boundary of S is smooth by
elementary results about tubular neighborhoods (see [Hi] or [We2]). Lemma
3.2 implies that (for sufficiently small €) all the eigenvalues of the second
fundamental form of 0S are negative and bounded above uniformly on K by
a negative constant vy ( i.e the principle curvatures k;(X) < v < 0,Vi and
VX € K ). Since 0S is smooth, we conclude that 95 is locally strongly convex
at any point of U N 9S, where U is a small neighborhood of K.

Now take G to be the convex hull of S in V; & V3. Using Lemma 3.2 and
the fact that 05 is smooth and locally strongly convex in UN0S, we infer that
UNOG = UNAoS when the neighborhood U of K is choosen to be sufficiently
small. Let

Fi(X)=min{t > 0,X € tG}, F(X)=12F}(X).

Then F is smooth and strongly convex in U (see [Ro]), and VL(X) = VF(X)
for each X € K. Let ¢ be a smooth non-negative mollifier with support in B;
and let

F(5 = ¢(5 * Fa
where ¢;(x) = d7"¢(%). Define
H;s,(X) = F; +7|X .

Let 0 < n <1 be a smooth cut-off function satisfying n =1 in U’, and n =0
outside U, where U’ is an open neighborhood of K satisfying U’ C U.
Now define

H = (1 _n)HJ,T+77F'

A straightforward calculation shows that H is a strongly convex function on
V; @ V3 when 6 and 7 is small enough. Now take f(A) = H(X +Y) + |Z|? to
be our final function, where A € M>*3, A=X4+Y + 7 with X € V;,Y €
Vs, Z € V3. We know that f coincide with F/(X +Y)+|Z|? in the neighborhood
of K, thus VL(X) = Vf(X) for all X € K holds and f is a smooth strongly
convex function everywhere. This proves the following theorem:
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Theorem 1 Let Q = {z € R? |z| < 1} and let u: Q@ — R’ be defined by

xﬁﬁj — %(&j, i,7=1,---3, where we identify the 3 x 3 symmetric trace-

uij =
free matrices with R®. Then u is a minimizer of I(u) = / f(Du(x)), where

f 1s the smooth strongly convex function defined above.
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