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Abstract. In this paper we extend a theorem of Sternberg and Bileckii. We
study a vector field, or a diffeomorphism, in the vicinity of a hyperbolic fixed
point. We assume that the eigenvalues of the linear part A (at the fixed point)
satisfy ch order algebraic inequalities, where Q » 2 , then there is
CK-linearization in the vicinity of the fixed point, where K is the Q-smoothness
of A . We give an explicit and simple algorithm for computing K . An illustra-
tive example from celestial mechanics is included which shows that our main theorem
is an improvement over previously known theories. We also show that if the vector
field or diffeomorphism depends smoothly on a parameter, then the linearizing con-

jugation depends smoothly on the parameter.



1. Introduction

The theory of']inearization in dynamical systems represents one of the fun-
damental problems that arises in the study of ordinary differential equations.
In this theory one begins with a nonlinear vector field defined near a fixed
point, and one seeks sufficient conditions for the existence of a smooth cur-
vilinear coordinate system with the property that the vector field is linear
when written in terms of the new coordinate system. Given such a linearization
theory, a natural question then is to determine the smoothness of the new cur-
vilinear coordinate system. Also, if the new coordinate system is lacking in
smoothness, one may try to determine the obstacles to smooth linearization. In
this paper we will study these problems.' We will show that satisfactory answers
can be given, and that these answers are significantly better than previously
known results.

In order to be more precise, let X be a finite dimensinnal Banach space

with norm | * | . Let U be an open set in X and let M > 1 . Consider two
CM-vector fields  f and g on U with a common fixed point Xp = 0, i.e.,
f(0) = g(0) =0. Let N be a positive integer with N < M. We shall say

that f and g are CN-conjuqate near x = 0 1if there are neighborhoods

v

1V, with 0eV, = U (i =1,2) and a CN-diffeomorphism H:iV, > V

1 2
satisfying the following two properties: (i) H(0) = 0. (ii) Whenever x(t)

is a solution of x'

f(x) with x(t) e V; for t in some interval I , then
y(t) = H(x(t)) 1is a solution of y' =g(y) fort e I . Similarly, whenever
y(t) 1is a solution of y' = g(y) with y(t) e V2 for t e I , then

x(t) = H'l(y(t)) is a solution of x' = f(x) fort e I.



The mapping y = H(x) above is referred to as a CNigpnjugation between

g(y) . This definition extends to topological conjugacies

x' = f(x) and y'
(i.e., N = 0) by simply requiring H to be a homeomorphism that satisfies (i)

and (ii). For N > 1 , statement (ii) above can be replaced by
g(H(x)) = DH(x)f(x) , x e Vg
-1 _ Ayl
F(H " (y)) = DH " (y)a(y) » yeV,

where DH and DH'1 denote the respective Jacobian matrices.

In this paper we will study the question of a CN-conjugation between
x'" = Ax + F(x) = f(x) (1.1)
and the associated linear equation
y' = Ay (1.2)

where A = DF(0) and D'F(0) =0 for P=0,1. If Eq. (1.1) and Eq. (1.2)
are CN-conjugate near x = 0 , then we shall say that f admits a

CN-]inearization.

Let A be an (n x n) matrix with eigenvalues Aseeeshy repeated with

multiplicities and let J(A) = {Apseeennp} denote the spectrum of A . Let

m = (ml,...,mn) be a vector with nonnegative integer entries Myseoesm and

n b

define y(x,m) by
Y(A’m) = A i (mIAI + co e + mnAn) ’

where A is a complex number. Let |m| = My + eee +m



We shall say that A is hyperbolic if Rex # 0 for all A e J(A) . Ais
said to be stable if Rex < 0 for all e J(A) . A is said to satisfy the

Sternberg condition of order N , N> 2, if y(r,m) # 0 for all x e )(A) and

all m satisfying 2 < |m| < N . We shall say that A satisfies the strong
Sternberg condition of order N , if A satisfies the Sternberg condition of

order N and
Re y(a,m) # O (1.3)

for all A e J(A) and all m with |m| = N . It is easy to see that if A
satisfies the strong Sternberg condition of order N > 2 , then A is
hyperbolic.

Let A be hyperbolic and let I*(A) or z-(A) denote, respectively,
those eigenvalues A e £(A) with Re x > 0 or Re a < 0. We shall say that A

is strictly hyperbolic if A is hyperbolic and both :*(A) and z-(A) are

nonempty. If A s hyperbolic and zi(A) # ¢ , we define the spectral spread

ol by

i = max { [Re a] : 2 e zi(A) }
min { |Re A| : x e Z1(A) }
where i =+ or -.

Let Q be a postive integer and let A be hyperbolic. We define the

Q-smoothness of A to be the largest integer K > 0 such that:

(1) Q - Kp~ > 0, if TH(A) = 4 .

(2) Q- Kp* >0, if 1-(A)

¢ .
(3) There exist positive integers M,N with Q =M + N,

M - Kot >0, N-Kp~ >0, when A 1is strictly hyperbolic.



Since the spectral spreads are > 1, we see that the Q-smoothness of A satis-
fies K < min(M,N) when A 1is strictly hyperbolic.

The object of this paper is to prove the following two theorems concerning

CK-1inearizations:

Theorem 1. Let Q > 2 be an integer, and assume that F is of class c30

on U X with 0 ¢ U where D'F(0) =0 for P=0,1. Let A be strictly

hyperbolic, and consider one of the following two assumptions:

(A) Assume that A satisfies the strong Sternberg condition of order Q.

(B) Assume that DPF(O) =0 for 0<P<Q-1 and that
Re y(a,m) # O
for all e [(A) and all m with |m| = Q.

Under either assumption (A) or (B), Eq. (1.1) admits a CK—linearization,

where K 1is the Q-smoothness of A,

If A is stable, then one can weaken the assumption on the smoothness of F.

In particular we will prove the following result:

Theorem 2. If A is stable, then Theorem 1 remains valid when F ié_gj

class CZQ.

Remarks 1. Sternberg (1957, 1958) studies the question of finding suf-
ficient conditions that Eq. (l.1) admits a CS-linearization. He showed that
there is a function V(s,Al,...,xn) > 0 with the property that if A is hyper-
bolic and satisfies the Sternberg condition of order N where N > s + V

b

then Eq (1.1) admits a C3-linearization. While there are several alternate



proofs of Sternberg's Theorem [cf. Chen (1963), Hartman (1964), Nelson (1969),
Pugh (19**) and Takens (1971)], the implicit formulae of V are very compli-
cated. See Hartman (1964, p. 257), for example. Our theorems assert that
under the stronger assumption that (1.3) is valid, we can give sharper and
similar estimates on the order of smoothness of the conjugation to the linear
system. For the CO-linearization theory see Grobman (1959, 1962), Hartman
(1960ab, 1963, 1964) and Palmer (1980).

2. Our methods extend easily to the question of smooth linearization for
diffeomorphisms in the vicinity of a fixed point. This extension, together with
an associated application to the linearization of a vector field near a periodic
orbit, is given in Section VII. Our theory for the hyperbolic case where K =1
is similar to but not as strong as a theorem of Bileckii (1973, 1978). On the
other hand for K > 2 we show that our results are stronger. (See Section IX.
Also compare with Ise and Nagumo (1957).)

3. Because of Bileckii's Theorem for the C1-1inearization, we do not feel
that our statement on the order of smoothness of the linearizing conjugation is
the best possible estimate. However, for the strictly hyperbolic case, it is
shown in Sell (1983a) that if A satisfies the strong Sternberg condition of
order Q, where Q = 2N or 2N + 1, then one cannot expect the linearizing
conjugation to be smoother than class CN.

4, The assumptions about the smoothness of the vector field F in Theorems
1 and 2 have not been optimized. 1In the stable case, our methods suffice when

F is of class CQ *K
CQ +H+ K

, and in the strictly hyperbolic case one needs F to be
of class , where H = max(M,N) and K 1is the Q-smoothness of A.

The assumption that +y(A,m) # 0 for 2 < |m| < Q allows one to introduce
a polynomial change of variables to eliminate the terms in Taylor series expansion

of f with order between 2 and Q . (This implies that assumption (A)

is stronger than assumption (B) in the above theorems.) As we shall see, the



stronger assumption that Re y(A,m) # 0 for |m| = Q allows us to eliminate
the remainder term in the Taylor series expansion of f.

The arqument which we present is based on the theory of nonlinear pertur-
bations of linear equations with exponential dichotomies, cf. Coppel (1965).
The change of variables we introduce gives rise to a related nonlinear differen-
tial equation on a different finite dimensional Banach space. The quantities
y(a,m) , for x e J(A) and |m| = Q , will arise as the eigenvalues of the asso-
ciated linear equation, and Ineq. (1.3) will ensure that this linear equation
has an exponential dichotomy.

In the next section we will present a heuristic proof of these theorems for
the case K = 1. This will include a "derivation" of the associated nonlinear
equation along with a brief review of the Taylor series expansion theory. The
primary purpose of this section is to motivate the line of argumentation deve-
loped in Sections III and IV.

In Section V we will study the question of the smoothness of bounded solu-
tions of small (nonlinear) perturbations of linear equations that have exponen-
tial dichotomies. The proof of Theorems 1 and 2 will be given in Section VI.

Our approach to the linearization problem is to show that the linearizing con-
jugation is a fixed point of a suitable integral operator. In this context we
also show that the linearizing conjugtion varies smoothly in terms of a parameter
when the coefficients of the vector field are smooth functions of the parameter.
See Section VIII.

we'wish to thank Philip Hartman, Michael Jolly, Charles Pugh, and Clark
Robinson for some helpful comments and criticisms of earlier versions of this
work. We are also grateful to Richard Moeckel for suggesting the problem in
celestial mechanics, which is described in Section IX. Finally we express our
deepest appreciation to Kenneth Meyer and Yasutaka Sibuya for their patience,

their thoughtful suggestions, and their strong encouragement.



II. Heurisitc Proof. Taylor Series Expansions.

In this section we shall present a heuristic proof of our theorems for the
case K =1. Let us begin with a brief review of Taylor's Theorem, cf.
Dieudonne (1960) and Abraham and Robbin (1967).

Let F:V1 > V2
X . For ace V1 let DF(a) denote the linear part of F at x =a , i.e.,

be a smooth function where V1 and V2 are open sets in

DF(a) 1is a linear map of X into itself. For integers P = 2,3,... let

P

DPF(a) denote the higher derivatives of F at x =a . Thus D F(a) ¢ LS

P b
the space of multi-linear (P-linear) symmetric mappings of X x...xX (P-copies)
into X, for P = 2,3,... .

The Taylor series expansion of F near a ¢ V1 is aiven by

F(x +a) = Fyla) + Fy(a)x + Fz(a)<x>2 + F3(a)<x>3 oo .

One then has Fo(a) = F(a) , Fl(a) = DF(a) and Fk(a) = (k!)'leF(a) € L: for

k = 2,3,... . Also <x>k denotes x...x (k-copies), and

2
Foa)ao® = Fy(a) <x,x>

represents the value of Fz(a) at the point (x,x) € X x X , with Fk(a)<x>k

defined similarly. It is convenient to define LS = X and Li = L(X,X) , where

the latter denotes the space of linear mappings of X into X .

Recall that a function F:V1 > V2 is of class CN on V1 , wWhere V1 is
an open set in X , if and only if for every a ¢ V1 and x sufficiently small

one has



N
F(x + a) = Fo + le toeeo + FROOT 4 FR (2.1)

where Fk € L: » 0 < k < N, is independent of x, continuous in a, and

Fr = Fpr(x,a) satisfies

im (x| Ny = 0 (2.2)
x + 0
cf. Glaeser (1958) and Abraham and Robbin (1967). Furthermore, if F ¢ M+ 1 R
then the remainder term FR in Eq. (2.1) can be written in the form
_ 0, N+1 o S . .
FR(x,a) = FR<x> where FR e L N+ 1 1S 9given by
o _1 1 NN + 1
Fr = NT fo (1 -t)D F(tx + a)dt , (2.3)

cf. Dieudonne (1969).
Let us now turn to the linearization problem for K =1 . As a first step,

consider a change of variables of the form

x = u + S<ud? = u + S<u,ud (2.4)

where u e X and S ¢ Lz . Next we will replace u with u = etAu0 (a solu-

tion of Eq. (1.2)) and S by a time-varying function S(t) so that the
resulting function x = x(t) given by Eq. (2.4) is a solution of Eq. (1.1).
This implies, as we now show, that S = S(t) must satisfy a related differen-

tial equation on LZ . By differentiating Eq. (2.4) with respect to t we get

x' =u' +'3% (S<u>2) Ax + F(x)

[}

Au + AS<ud? + F(u + S<ud?)

or equivalently



'a% (S<ud?) = AS<ud® + Fu + S<ud?) . (2.5)

The left side of Eq. (2.5) is

—
w
e
j e
-
<
A4

~

[}

S'<u,u> + S<u',ud> + S<u,u'>

S'<ud? + {S,A}<ud?

where {S,A} ¢ Lz is defined by

S<Au,v> + S<u,Av> .

{S,A}<u,v>

Assume, for the moment, that there is a continuous function of (u,S) ,

S

G(u,S) ¢ L, s

with the property that

G(u,S)<u>2 = F(u + S<u>2) . (2.6)

S

From Eq. (2.5) we then get the following differential equation on L2 .

S' = LS + G(u,S) (2.7)

where LS = AS - {S,A} .
Conversely, given any solution S(t) of Eq. (2.7), one can easily verify

that the function

At At

x(t) = e ug + S(t)<e Ug,e ug>

is a solution of Eq. (1.1).

The important feature underlying this approach is the observation that the

spectrum of the linear operator L in Eq. (2.7) is

(L) = {y(x,m) : x e J(A) and |m| =2} .
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(See Lemma 12 below.) We see then that if A satisfies the strong Sternberg
condition of order 2, then the linear equation S' = LS admits an exponential
dichotomy. Next assume that the function G(u,S) 1is bounded and Lipschitz-
continuous in S with a sufficiently small Lipschitz constant. Then there is a
unique bounded continuous function S(u) with the property that for every

ug € X the function S(eAtuo) is a solution of Eq. (2.7), see Section V.

Consequently the change of variables
x = H(u) = u + S(u)<u,u> (2.8)

is a Co-conjuqation between Eq. (1.1) and Eq. (1.2) near u = 0 . Of course,
we want to construct a Cl-conjugation. However because of the quadratic terms
in (2.8), H(u) can be smooth even when the continuous function S(u) is nondif-
ferentiable at u =0 .

Our proofs of Theorems 1 and 2 build on this general approach. In the
strictly hyperbolic case the actual change of variables we use (even for K = 1)
will be a variation on the theme described above. The modification is needed in
order to show that the final change of variables x = H(u) 1is smooth in a full
neighborhood of u = 0 . The key to implementing this approach consists of two
lemmas which are developed in Section IV.

It may be helpful to expand a bit on the notation used for operators
S ¢ LS , where Q > 2 . As noted above, S 1is a Q-linear symmetric mapping of

X x «eo x X (Q-copies) into X . We shall let

s<xtyee O (2.9)

denote the value of S at the Q-tuple {xl,...,xQ} , Where xi e X,
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1<ic<Q. If x =x for 1<i<Q, then we shall abbreviate (2.9) and

write
s> = S<Kyaa XD . (2.10)
Likewise if xi =u for 1 <i<Q-j and xi =y for Q-j+1<ix<0Q
then we shall write (2.10) as
sl Iewsd = scuyeni,uuv,en., v (2.11)

where (Q - j) copies of u and j copies of v appear on the right side of (2.11).

b <h>C  for integers a,b,c > 0 is defined similarly.

The expression sad? <>
Now assume that X = U + V , where U and V are disjoint linear sub-
spaces of X , and let {el,...,en} be a basis for X with the property that
{el,...,ea} is a basis for U and {ea+1,...,en} is a basis for V . Any
vector x € X can be written uniquely as x = z?=1 Xi€5 and we can identify
X With the n-tuple of scalars (Xl""’xn) .
Llet a = (al,...,an) be an n-tuple of nonnegative integers and define

la| = a; t ... ta and al! = allaz!...an! . If x = 2?=1 X;e, we define

n

a a
the product x% = x 1 vee x N , and adopt the convention that 00 =1 . One then
1 n

has

sl = 5 d(Q,a) xS
lal=Q *

where d(Q,a) = Q!/a! is the multinomial coefficient,

(2.12)

- Qa® -
Sa - Se S<e1,ooo’e1’ LI 2N ’en,oo.,en> [y

a . . .
and e~ denotes a; copies of ey, a, copies of €y » «.. a, CODiES of e

occuring in the bracket <...> .
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A similar decomposition is possible for (2.11) when u e U and ve V.

First we note that u® = 0 whenever there is an i » a + 1 with a; > 1. If

a = (al,...,an) is an n-tuple define

a(U) = (al,...,aa,O,...,O)
a(V)

n

(O’ooo,o,aa_‘.l,o-o,an) °
Thus o« = a(U) + a(V) . Equation (2.11) then yields

s Ievsd = 7 d(Q - 3,0(U))d(Fa(v))u e (Vs (2.13)

o

where the summation in (2.13) is over all n-tuples o« with |a(U)| = Q - j

and Ja(V)| =3 .



13

III. Preparatory Analysis

The proof of Theorem 2 (where A is stable) is a variation of the argument
used for Theorem 1. Therefore we will concentrate at first on the case where

the matrix A in

x'" = Ax + F(x) , xe X, (1.1)

is strictly hyperbolic. Let U and V denote, respectively, the unstable and

stable subspaces for the linear equation

w' = Aw . (1.2)

By making a preliminary linear change of variables, if necessary, we can assume
that the complementary spaces U and V are orthogonal with respect to some

preassigned inner product on X . Thus X =U+V and if w=u + v , where

ueV and v e V , then one has |w|2 = |u|2 + |v|2 . Alsoif w=u+v,
then there is a 6 € R with the property that |u| = |cos 6| |w| and
[v] = |sin o] |w]| .

It will be convenient to introduce the following notation for a continuous

function f:X » Y , where X and Y are two Banach spaces:

Supp f = closure {x ¢ X : f(x) # 0}

ifu = sup{|f(x)|: x e X}
If]_ = sup{|f(x)|: |x| < 1/5}
1. o = suplIf(X)[: Ix] <},

where r > 0 . The last two norms will also be used for continuous functions

defined in a suitable neighborhood of the origin in X .
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Next we turn our attention to the nonlinear term F(x) in Eq. (1.1). We
assume that F is of class CM on X , where M > 2.

Define B by
M
B = max{|F|_,|DF|_,eee, [DF|_} . (3.1)

We now make two alterations on Eq. (1l.1). The first is a rescaling of the
variables, where x is replaced by ex and ¢ is a positive real parameter. The

second alteration is a truncation of F so that
Supp F € {x ¢ X: |[x| <r}, (3.2)

where r will be chosen later and will satisfy r < 1/5 . Since we will want
to have qontrol over the choice of the parameters ¢ and r , it will be impor-
tant to keep track of how these alterations affect the nonlinear function F .

For 0 < e <1 we define
Fo(x,e) = e-lF(eX) .
Then we replace the nonlinear term F(x) in Eq. (1.1) with Fo(x,e) to get
x' = Ax + FO(x,e) . (1.¢)

For 0<e <1, Eq. (1.1) and Eqg. (l.e) are equivalent since one can change
from (1.1) to (l.e) by replacing x with ex .

By the chain rule one has
DKFO(x,e) = e IDkF(ex)

where Dk denotes the k-th derivative with respect to x . We can now prove

the following result:
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M

Lemma 1. Let F be of class C° where M 3> 4.,

(A) Then for 0<e <1 and 0 < K< M one has
K-1g

b

IDXFO ) < RMLoRr ) <

where B 1is given by (3.1).

(B) Furthermore if F satisfies DpF(O) =0 for 0<P<Q, where

2 < Q < M-1 , then one has

b

for 0<K<Q+1,0<e<l and r<1/5.

Proof: Part (A) follows from the chain rule formula cited above. In order

to prove (3.3) we claim that for 0 <K< Q+ 1 and |x| < 1/5 one has

IDF (x) | < iy IDOFEF_1x | @F1K < x| OHLK (3.4)

+

Inequality (3.4) is established by induction and by noting that for 0 < K < Q

one has

K d

DMF(x) =[5 5 DF(tx)dt = f) DX*

F(tx)x dt

since DKF(O) = 0. As a result of (3.4), one has
IDKF(ex) | < 31K B x 1K

for |x| <1/5. Since r < 1/5, Ineq. (3.3) follows from Part (A). Q.E.D.
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In order to restrict the Supp F so that (3.2) is satisfied we will

replace F0 by
Fr(xae) = ol [x])F° (x,¢) (3.5)

where o 1is the scalar-valued function that is defined by Eq. (3.6) below and

which satisfies
Supp a € {x e X: |[x| <r}.

Define p:R + R by

1 , t <0
p(t) = 1-c IESM(S - l)Mds , 0<t<1l
0 , t>1

where ¢! = j;sM(s - l)Mds . Next define a:X + R by

a(lx]) = a(Ix]) = p(2r7t x| - 1), (3.6)

for |x| » 0. Then one has a(|x|) =1 for |x| <r/2 and ao(|x|) =0 for

|x| > r . Consequently the differential equation
x' = Ax + Fr(x,e) (l.e,r)

agrees with (l.e) for |x| < r/2 and F. satisfies (3.2). Furthermore if F
is of class CM , then Fr is of class CM in the x-variable. Also for

0 < P <M one has

OPF (x.e) = Jf.o(0)0" Ma DKF(x,e) (3.7)
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Dieudonne (1969). In addition for 0 < k < M one has
nDkau°° < zkr'knkan°° . (3.8)

Let us summarize the above in the following lemma.

Lemma 2. Let F_ be given by Eq. (3.5) where F 1is of class ",

M>4,and DPF(0) =0 for 0 <P <Q with 2<Q<M1. Thenfor 0<K<M

and r < 1/5 one has

0%k | <28 3K p 0

b

where B is given by (3.1), p = max{nDPpum: 0<P<M} and p 1is the map-

ping defined before Eq. (3.6).

Proof. The proof of this lemma is based on Eq. (3.7) and (3.8) as well as
Lemma 1. As a consequence of these we have the following for r < 1/5 and

0<K<Q+1:

K K (K K-k kg0
|D Fr'r,m < Je=ol) 10" Can [DTF |r,m
K Ky K-k -K+k +1-k
< De=0li) 2 r o 48 2t
- B 3Kp eQ r'K+Q+1

K-k 3K by the Binomial Theorem. For Q + 2 < K < M we break

since 25=0(E) 2
the summation in the first line above into two sums and apply Lemma 1 with

(3.8) to obtain



18

|DKFr|r < §Q+1 ) 2K'kr'K+k o eQ B r0+1'k

K- k K+k k-1
+ zk Q+2( ) 2 e B

K 0 €Q r—K+Q+1 K 0 r-K+Q+2 eQ+1

< B3 +B 3

<28 3¢, 0 KL

since Q>2,0<e<1 and r<1. Q.E.D.

The CK-conjugation we will search for will have the form
x = g(w,S) =u +v + Z?=O S].<u>Q = Jevyd (3.9)

where uelU , velV, SO""’SQ € LS. We will write w=u + v and
S = (SO,...,SQ) . The tensors SO""’SQ will depend on w ¢ X , but they will

be chosen so that S e ZQ+1 where

7 - s = (s ;] <1 for 0<j<Q. (3.10)

0,...,SQ):

What we need to do here is to derive some elementary properties about the change

of variables (3.9) in the vicinity of the origin x =w =10 .
First let r satisfy
0 <r <min(1/Q, 1/5) , (3.11)
where Q » 2 . Then observe that one has
0+1) 22 %< /2.

Consequently if r satisfies (3.11) and 9/32 < a < 1/2 then one has
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Q+ 1)1+ )% < 0+ 1)3/2)2 9 < (@ + 1)(9/16) 22 2
< (9/32)r < ar (3.12)

The next statement is easily verified.

Lemma 3. Let x satisfy Eq. (3.9) and let w=u+v. If Se¢ ZQ +1 ,

and |w| < r/2 , then x| <r.
Also if x 1is given by Eq. (3.9) and w = u + v , where
lu| = |cos o||w] , and |v| = |sin o||w| , then one has

Ix| > fu + v]| - Z?=0 |Sj<u>Q'”<v>J|

Q Q
> |wl - ijo |5j||W|
The next lemma then follows from the last inequality and (3.12).

Lemma 4. Let x satisfy Eq. (3.9) and let w=u+v. Let r satisfy

(3.11). If S eI and |w| = (1 +a)r, where 9/32 < a < 1/2 , then

x| >r .

Next we will need some estimates on the size of the derivatives of the

function g which is defined by (3.9).

Lemma 5. Let g be given by (3.9) where S ¢ ZQ+1 . Assume that r

satisfies (3.11). Then the following are valid for |w| < br , where

b = 41/32 :
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(A) 1o, 9l . <a(Q)

(8) 0% gl . < b(Q,K) rC , 0<K<Q,
K ]
€) by 9l. =0 , Q+1<K

@ folgl <@k dF o<k

(E) D g=2=0 » 2<L and 0< K.

The terms  a(Q), b(Q,K) and c(Q,K) are constants which depend only on Q

and K and not on r for r < 1/5.

Proof. We will use Eq. (2.13). Since S ¢ ZQ *1 one has ISje“| <1

for 0< j < Q and all n-tuples o« . Also one has
|ua(U) va(V)| < |w||“| = |w|Q
for every n-tuple o with |a| = Q. By using the facts that r < 1/5 ,

lu| < |[w| and |v| < |w| , part (A) 1is easily checked. For part (B) we dif-

ferentiate (2.13). Since one has

ok e o) ¢ arykry w@ - K (3.13)

for 0 < K< Q and every n-tuple o« with |a| = Q, parts (B) and (C) are imme-
diate. For parts (D) and (E) we first differentiate Sj<u>Q'j<v>j with respect

to S . Again from (2.13) one has

D S, sl = 7 e o) yal¥) (3.14)
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where the summation in (3.14) is over all n-tuples o with [a(U)| =0Q - j and
|a(V)| = j , and the coefficients e 1in (3.14) depend on j and o« and not on
ror S . We then apply 05 to (3.14) and use (3.13) to get Part (D). Finally

Part (E) is a consequence of the fact that g(w,S) is linear in S . N.E.D.
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IV. Factorization Lemmas.

In this section we will present two factorization lemmas which form the basis
of our approach to the linearization problem. However before doina this we need
to derive a formula for the partial derivatives of the composition of two smooth
functions. Such formulae can be found, with varying degrees of explicitness, in
Dieudonne (1974), Abraham and Marsden (1978) and especially Fraenkel (1978).

Let E = H o g denote the composition of two smooth functions where
g = g(xl,xz) depends on two variables X] € Xl’ Xy € X2 and Xl and X2
denote two finite dimensional Banach spaces. Let DTD; E denote the Kth deri-
vative with respect to Xq and the Lth derivative with respect to Xy Then
DfD;E is an element of LE,L(XI,XZ;Y) , the space of symmetric (K,L)-linear
mapping of X1 X eee X X1 (K-copies), X2 X eee X X2'(L-copies) into Y where Y

is a finite dimensional Banach space that contains the range of H .

Lemma 6. Assume that H and g are of class ™ . Then the composition

E=Hog is of class CM and for 1 <K+ L <M one has

Kile _ k Pnd..ya(P,q)
DIDE = § A(K,L,k,a)D'H 1 (D"Dq) (4.1)

where the following hold:

(A) The product Tn is taken over integers p and g satisfying

0O0<p<K and 0<qg<lL.

(B) o = a(p,q) is a matrix with nonnegative integer entries.

(C) The coefficients A(K,L,k,a) depend on K,L,k and « and not on the

functions H or g . The largest of these coefficients and the number of non-

zero coefficients are completely determined by K and L .
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(D) 1<k<K+L. (4.2)
(B) Ip,q alpsa) =k (4.3)
(F) I q Palpsa) =K (4.4)
(6) I, q dalpsa) =L . (4.5)

(H) The summation ) in (4.1) is taken over all k and o« subject to

the conditions given above.

Proof. The precise value of the coefficient A(K,L,k,a) is not essential
for our analysis, but it can be derived by using Fraenkel (1978). We will skip
these details.

One proves the lemma by induction on K + L . The validity of the lemma for
K+ L =1 is elementary. For the induction step we assume that (4.1) is valid

K+1,L KL+1

as stated and we then will verify it for D1 DzE and DID2 E . Our arqument

will apply equally to both derivatives, therefore we will verify (4.1) for

D§+1D;E only. Let

7= (%) 1 (0° 09 g)2(P:9)

denote a typical term in (4.1), and extend o to satisfy a(K+l,q) = 0 for
0 < g< L. ByLleibniz's formula, Dieudonne (1969) or Ahraham and Marsden (1978),

. . 1 . . . .
the derivative DlT will involve a sum of various terms. One such term is

1.0 A
(0" 1) (0}039) n (pPDdg)*(P9) = (DK+1)(p1pg)(1:0)+1 § (pPpdq)a(psa)
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where ﬁ denotes the product over (p,q) # (1,0) and 0O <p <K+l , 0<g< L.
The new a-matrix, which we denote by «° , is then formed by replacing «(1,0)
by a(1,0) + 1 and leaving the other entries unchanged. It is easily seen that
the above term then satisfies conditions (4.2-5) with «° replacing o ,

(k + 1) replacing k and (K + 1) replacing K.

The other terms in DiT have the form

a(p.q) (0¥H) (05 a) * P> 4) 1 (0103 )PV (pplg)e(m2)

where a(p,q) > 1 and T denotes a product over (m,2) # (p,q) or (p + 1,q) with
0<m<K+1,0< 2 <L. The new a-matrix, which we denote by «° , is then

given by

«®(p,q) = a(p,q) - 1,

a®(p + 1,a) = a(p + 1,q9) + 1

a®(m,2) = a(m,2) , (m,2) # (p,a),(p + 1,9) .
Once again it is easily seen that the above terms satisfy conditions (4.3-5)

with a° replacing a« , and (K + 1) replacing K . Q.E.D,

The first Factorization Lemma, which we derive next, will be used to prove

Theorem 2.

Lemma 7. (First Factorization Lemma) Let Q > 2 be an integer, and let

M and N be positive integers with Q =M+ N, Let H = max(M,N), and let F
c30

be of class . Define F (x,e) as in Section IIl. Assume that DPF(0) = 0

for 0<P<Q. Let U and V be complementary orthogonal subspaces in X

and let

x = g(w,S) =u +v+ Z?=O Sj<u>Q—j<v>j (4.6)



25

where uelU , veV and SO,...,SQ € LS . Assume that r satisfies

0 <r <min(1/Q,1/5) . (4.7)
Then there exist functions
60 x JW 1S, 0<j<Q,

with Gj = Gj(w;S) = Gj(u,v;SO,...,SQ) » W=u+v with uelU, veV, and

S = (SO,...,SQ) € ZQ+1 , satisfying the following properties:

(A) Each G; is of class ¢, 0<j<qQ.

(8) For x| <r and s¢ J*, one has
- 7@ Q-d,,\J
Frlx,e) = [iq 6<u> 7 cw>? (4.8)

where x is

%]

given by (4.6).

(C) For 0<j<N-1 the functions Gi have the form

X

Gj = Gj(u;Sn,Sl,..a ,Sj) 9

i.e. G, 1is independent of v and of S, for k >j.

(D) For N+ 1< j<Q the functions Gj have the form

Gj = Gj(v;Sj’Sj_'_l,oao,SQ) .

i.e., G, 1is independent of u and of Sk for k <j.

(E) Gj(w,S) =0 for |w|>3r/2,0<j<Q.

(F) There is a constant C1 » depending only on Q , and not on F , e or

r , such that
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K
I DW

D- G, 1 _<¢C

L
s j e 1

B el ri-0Hcc Bl -0 (4.9)

for 1 <K+L<Q and 0< j< Q.

(G) There is a constant C2 , depending only on Q and not on F , € or

r , such that

1G.u, < C, B drl-f ¢ C, B 2 pl-0
d (4.10)

L Q Q-H Q
nDS Gju°° < C2 Be'r < C2 B e

for 1 <L and 0<j<Q.

is a c®-function of a parameter 6 ¢ (& , then the

(H) If the function F
functions Gj are also CR-functions of 8, 0<R< =, Furthermore if

is compact, then the estimates (4.9-10) are uniform for 6 € ® .

(The norms u.n in (F-G) refer to the supremum for w e X and S ¢ XQ+1 .)

Proof. Let r satisfy (4.7). We beagin by defining the set Q , which
will contain the supports of the functions GO,...,GQ . Specifically let @
XxEQ+1

denote the set (w,S) in , where w=u+v with uelU,veV,

S = (SO”"’SQ) , |w| < (3/2)r and

x| = Ju + v+ z?=0 Sj ¢y | <r.

Let Q(S) = {we X : (w,S) € @} denote the fibres of @ . Next define
- .S = . - Q Q-i J
E = E(w;S) = E(u,v,SO,...,SQ) = Fr(u + v + zj=0 Sj<u> <Y, €)

for (w,S) € @ . Since DpF(O) =0 for 0< P <Q it follows from (2.3) that

E(w:S) "10—11)_' (/2 (1-) T E(tw:s)dt ) w>?
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Furthermore one has
(0 E(tw;s)) an>? = ggo SQ) %7 o) E(tu,tvis) ¥ Iand .
For 0 < j < Q define

Hy = Hy(u,vss) ='U§'%"TYT /s (?)(l-t)Q'IDS'ng E(tu,tv;S)dt . (4.11)

One then has
Q Q-j, \J =50y Q-Jj J 4.1
Fr(u +v o+ ijo Sj<u> V> e) 2j=0 J.<u> <Y, (4.12)

for (w,S) e @ . Since Fr and E are of class C3Q, it follows from

(4.11) that each M, fis of class c2Q |

For 0<j<N-1 and O<k+3j<N-1 we define Dt Hg by
k ,0 _ ok -
Dv Hj = Dv Hj (at v=0). (4.13)
Similarly for N+ 1< j<Q and 0<k < j-N-1 we define DtHg by
k 40 _ nk -

For j in the range 0 < j < N - 1 , we use the Taylor series expansion of

H. about v =0 to get

Q-3 yd - oN-1-3 1 ko, Q-d,,5Jtk Q-J N
R S i LA NP P TP (4.15)

where HjR<u>Q'j<v>N is the remainder term. By Eq. (2.3) one has

1

1 N-1-j oN-j
Hig = Tr=T=T7 Jo (1-5) 7 Hi(u,sv3S) ds. (4.16)

By summing (4.15) for 0 < j < N - 1 and by interchanging the order of summation

one gets
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k Q-p,,\P N-1 Q-j, N
L SudT)Kud TR+ 2j=0 Higu>™ " <v>

(4.17)

By doing a similar analysis for j 1in the range N + 1 < j < Q one obtains

Q-Jeysd - Q-p 1 pkyo k Q-p 3P Q Meysyd
ZJ NRLISCE Zp N+1 Zk= T DuH +p<v> J<ud> TP+ zj=N+1H5R<u> SO
(4.18)
where the term HjR in the last equation satisfy
1 1 j-N-1,j-N
Hip = T =N =71 [, (1 - s)Y D’u Hi(su,viS)ds . (4.19)
By incorporating (4.17) and (4.18) into (4.12) we get
Folu+ v zQ s, Iyl ,e) = 10 p<u>°‘p<v>p , (4.20)
where the terms Gp in Eq. (4.20) are given by:
_op 1 k 0 k
6, = Leso 7T Dy Mpgw> »  0<peN-1, (4.21)
_oQ-p 1 gk 0 k
Gp = Ek=0 DU Hk+p<V> s N+ 1« p < Q s (4.22)
Gy = Hy + T35 Hap @ 19 Hocd N (4.23)

Jj=N+1 JR
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c2Q

Since the functions H,i are of class , it follows from the above for-

mulae that the functions

a) Gp are of class €29 for 0« p<N-1, and

Q+p

b) G. are of class C for N+1<p<Q.

p
c) GN is of class CZQ'H where H = max(M,N) < Q.

Lemma 4 implies that the Hi's and the Gp's vanish for
41/32 r < |w| < 3/2 r , so we define Gp(w,S) =0 for |w| > 3r/2. (The value

of the Gp‘s when S fails to satisfy S e ZQ+1 is immaterial for our argu-

ment. One could extend the definition of the Gp's to all of X x (LS)Q+1 in

0
any way so that Gp's are of class CQ and have compact support.) This

completes the proof of statements (A), (B) and (E) in the lemma.
In order to prove statements (C) and (D), we first observe that for

qu depends only on u and

0<j<N-1 and 0 <k +3<N-1, the function Dv j

on SO,SI,..;,Sk. Consequently from Eq. (4.21) we see that for 0 < p < N-1,

the function Gp depends only on u and SO,...,Sp . Similarly for
N+1<j<Q and 0<k <j-N-=-1, the functions DEH% depend only

on v and on SQ-k’SQ-k+1""’SQ . Consequently from Eq. (4.22) we see that

for N+ 1<p<Q, the function Gp depends only on v and

Sp » Spa1reeesSq -

In order to estimate the derivatives of the Gp's we adopt the following

CONVENTION: We will use the terms C5,C,4,Cc,... to refer to constants

which depend only on Q and not on F , ¢ or r.

The definition of the Gp's is based on the higher order derivatives of the

function E , which in turn is the composition of Fr and g .
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In order to estimate the derivatives of the Gp's we shall use Lemma 6 and the

formulae (4.11-23). For example, (4.11) yields
Q .
quu°° < C3qu Ev_ » 0<j<AQ.

Let us now apply Lemma 6 where H = F_ and g 1is given by (4.6). We claim

r
that for 0 < K + L < 3Q one has

¥t ey <, B2 20K | ok, 1<l (4.24)
W 'S © 4
N e, <cg el UK 0 <K (4.25)
Indeed by (4.1) we let
r w s
denote a typical term in the expansion for 05 Dt E . By Lemma 5(E) we see that

we can restrict our attention to those terms T for which a(p,q) = 0 for
g > 2. MNowLemma 5(B,D) implies that each of the factors (0P 03 g)*(P+a)  witn
the exception of (p,q) = (1,0) , is bounded by C6r(Q-p)a(p,q) . By combining

this with Lemma 2 and Lemma 5(A) we get

1M, < C, B 0 p k@l 7 1 (Q-P)a (4.27)

where T denotes the product over all (p,q) # (1,0) with 0 < p < K, and

0 <g<L. The exponent e of r in (4.27) is

A
e=-k+Q+1+7 (Q-palp,q)
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A
where J is the summation over all (p,q) # (1,0) with 0 < p < K and

0 <q<L. Byconditions (4.3-4) we get

(1]
|

=-k +Q+ 1+ 0k - Qa(1,0) - K + «(1,0)

(Q - 1)(k - «(1,0)) +Q+1 -K .

If k =a(1,0) , then by (4.3) all the other «'s vanish. Consequently

k and L =0 by (4.4-5). Also e=0Q+1-K.

one has K

If k # a(1,0) , then k > a(1,0) by (4.3). In this case one has
e>0-1+Q+1-K=20-K>Q+1-K
for 0 <L and
1T, < Cg B e r2Q - K

since r <1 . By incorporating this into (4.1) and summing one gets (4.24)
and (4.25).
From Eq. (4.11) we see that only the derivative DS E 1is used to determine

the Hy's . It follows then from (4.25) that IH1_ < Co B dr,0<¢jcq.

Also from (4.11) one has

L

KoL 1 0-1 K Q=i
Dy Ds Hi = Cig [y (1= t)777 b D™ DY D E dt .

Therefore it follows from (4.24 - 25) that

1K

Mol cc, Bl e L ok, (4.28)

j e 11

=

) Hjnm <C,, B eQ rl'K

) , 0<K. (4.29)

11
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We see then that (4.28-29) gives bounds for the terms DtHg and DﬁHg
appearing in (4.13-14). Similarly the remainder terms HjR appearing in

(4.15) and (4.19) satisfy

quan < C12 B eQ r1+j'N R 0<j<N-1, (4.30)

quRuw <Cp, 8 eQ pl-3+N R N+1<j<Q. (4.31)

By summing these various terms, we get

1- 1-N
G, < CyBel rP e el PN ocpana,
qunm <Cyy B ed p1+P-0 ¢ C;3 B 4l N+1l<p<Q.
Q 1-H
1Gyl, € Ci3Be™r .

This establishes the first inequality in (4.10).
In order to compute the derivatives of the Gp's we use formulae

(4.21-23). For example, for 0 <p < N-1 and 0 < K < Q one has

<u>k s

with similar expressions valid for N < p < Q. By applying (4.29) and summing

one obtains for 0 < K < Q:

K 1-K- ~Q-N
08 G, <y Bed PP ce B 0N w1 (a2

ple

K 1+p-K- 1-Q-M
1D, Gpu°° <Ciy B eQ pl¥P-K-Q ¢ 014 B eQ r1-Q , N+l <p<Q. (4.33)

Q rl'Q'H .

K
quGan <CiyBe

This establishes (4.9) for L =0 .
Estimating the derivatives Dﬁ Dt Gp for L > 1 is done similarly. For
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example for 0 < p < N -1 one has

HO X . (4.34)

D p-k

K AL _ b 1 K L 1k
w Ds Gp - zk=0 T Dw Ds Dy

By applying (4.28) and summing we then obtain

1D D

» G 1_<C

K L
S p o 15

SR (4.35)

for 0<p<N-1,0<K+L<Q,1<L, and

10X Bed P Ko, Beld M (4.36)

W

L
DS Gpum < C15 15

for N+1<p<Q,0<K+L<Q ad 1< L . Also one has

10k B ed pOKH o g QplH (4.37)

w

Dt G, < C

N" o 15 15

for 0<K+L<Q and 1< L. By combining (4.32-37) we obtain (4.9). As a
consequence of (4.35-37) we also have
L Q Q-p Q Q-N
||DS Gpu°° < C15 Be'r < C15 Be ' r (4.38)
for 0<p<N-1,1¢<L,
L Q p Q Q-M
1Dg Gpuoo < C15 Be r < C15 Be'r (4.39)

for N+1<p<Q and 1< L, and from (4.37) one has

L Q Q-H
IDg Gyl < CigBe™r

for 1 < L, which gives us the second inequality in (4.10).

The proof of statement (H) is straight-forward. The functions Hj and
Gj only involve derivatives of F = F(x,6) with respect to the x-variable.
Therefore Gj is as smooth as F 1in the e6-variable. The uniformity of the
estimates (4.9-10) for 6 1in a compact set is achieved by redefining B in

(3.1) to be a sup for |x| < 1/5 and 6 is the compact set. Q.E.D.
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The next factorization lemma will be used to prove Theorem 2, where the

is assumed to be stable.

matrix A
Lemma 8. (Second Factorization Lemma.) Let Q > 2 be an integer, and

Assume

¢®® . Define F_(x,e) as in Section III.

let F be of class
that DPF(0) =0 for 0 <P <Q andlet

x = g(v,S) = v + s<v>d (4.40)

where v € X and S ¢ LS . Assume that r satisfies

0 <r <min(1/Q,1/5) . (4.7)

Then there is a function G = G(v,S)

G:X x J1 > Ly

satisfying the following properties:

={Sel>: |S] <1},

with 21 0

Q.

(A) G is of class
(B) For |x| <r and Se ' one has

Frlx,e) = G(v,S)<V>Q (4.41)

where x is given by (4.41).

(C) G(v,S) =0 for v =20 and for |v| » 3r/2.

There is a constant Cl’ depending only on Q , and not on

(D)

r , such that

K L 1-K
ik oG, <cpB el (4.42)

for 1 <K+L<Q.
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(E) There is a constant C, , depending only on Q , and not on F , e, or

r , such that

1Gr, < C, B edr (4.43)

nDé Gn_<C,B eQ rQ (4.44)

2

(F) If the function F is a cR_function of a parameter 8 ¢ @ , then

the function G 1is also a CR-function of 8, 0<R< . Furthermore, if

is compact, then the estimates (4.42-43) are unfiform for 6 ¢ ® .

Proof. The argument here is a direct adaptation of the proof of Lemma 7.
In the present case, one should view the space U as consisting of the zero
vector only. Consequently 05 = 05 .« Only the term HQ remains, and this
agrees with GQ , which we define to G . Since Q derivatives are lost in
defining HQ , we see that when F is of class CZQ the function G of class
CQ . Parts (A), (B) and (C) in this case now follow from the corresponding
statements in Lemma 7.

By setting p = Q in (4.33) we get

K
v

i, G, <C,B eQ rl'K

14
for 0 <K< Q. Similarly (4.36) gives us

K AL Q Q-K
uDv DS Gnm < C15 Be'r

for 0 < K+L<Q and 1 <L . Putting these together we obtain (4.42 - 43).

In order to get (4.44) we set p =Q in (4.39) to obtain

L Q Q
uDs GI < C15 Be'r

for 1 <L . Finally it follows from (4.11) and the fact that DPF(O) = (0 for

0 <P <Q, that one has G(0,S) = 0. Q.E.D.
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V. Exponential Dichotomies and Smoothness.

As mentioned above, the proof of our main theorem will be based on the
theory of smooth solutions of perturbations of linear differential equations
with exponential dichotomies, a theory which we develop in this section. The

basic problem is to study bounded solutions of the differential equation
S' = LS + R(u,t,S) (5.1)

on a finite dimensional Banach space X , and the dependence of these solutions
on the parameter u . We assume that u e U , where U is some parameter

space, and t e R . We will also assume that the linear operator L is hyper-
bolic, which implies that there is a linear projection Po on X and positive

constants k and v so that

W(t,s)| < k eIt = sl (5.2)

where

oLt Poe'Ls , s <t
W(t,s) =

eLt [T - Po]e'LS , t<s.

1]

The solutions of Eq. (5.1) we seek will be fixed points S = S(u,t) , in the
class BC(U x R,X) of bounded continuous mappings of U x R into X , of the
operator

T s(u,t) = [* W(t,s)R(u,s,S(u,s))ds. (5.3)

We will assume that there are positive constants A , B and C such that

|R(u,t,S)| < A + B|S|
(5.4)
|R(u,t,Sl) - R(u,t,52)| < CIS1 - S,
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for all u,t,S,S1 and 32 . Furthermore we shall assume that R is of class

CQ , where Q will be specified below.

Lemma 9. Let R be of class CQ » Q> 0, and assume that (5.2) and (5.4)

are satisfied. If one has

2kB < v , 2kC < v (5.5)

then there is a function S e BC(U x R,X) that is a fixed point of J.

Moreover S is uniquely determined by [S|_< (v - 2kB)'12kA , Where

IS|, = sup{|S(u,t)|: ue U, teR}.
The basic idea is to show that :] maps the set
{S € BC(U x R,X): [S]_ < (v - 2kB) ™ 2kA)

into itself and is a contraction on this set. Since this is a straight-forward

argument we will omit the details. (See Coppel (1965).)

The next lemma addresses the question of the smoothness of the fixed point
S = S(u,t) of t’ . We formulate this as a local result which allows the deri-
vatives DSS(u,t) to be singular at some points u e U.

In the following we will assume R to be of class CQ , where Q » 1 , and
that (5.4-5) are satisfied. For N = 1,2,...,Q0 we define the set U(N) as the
collection of all u € U with the property that there is an open neighborhood

O(u) and positive constants A(N,u) and B(N,u) such that

sup DP 0P R(v,t,5)| < A(N,u) , 0<p<N-1 (5.6)

sup D) R(v,t,5)| < B(N,u) < vizk)'l, (5.7)
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where the sup is taken over all v e O(u) , t e R and |S]| < (v - 2kB)'12kA .
Note that for each N = 1,2,...,Q the set U(N) is an open (perhaps empty)

subset of U. Let V(N) = U(1) N ... NU(N).

Lemma 10. Let R be of class c » Q> 1, and assume that (5.2) and

(5.4-5) are satisfied. Let S(u,t) be the fixed point of 7J described in
N

Lemma 9. Then for N = 1,2,...,Q , the function S(u,t) is of class C" in the

u-variable for u e V(N). Furthermore if O(u) is chosen so that (5.6-7) hold,

then the Nth order derivatives of S are bounded in O0(u) by

-1

(v - 2kB(N,u))™" 2KA(N,u). (5.8)

Proof. The proof is by induction on N . Let us first lTook at the case
N=1. Let ueU(l) and lTet the neighborhood 0(u) and the constants
A(l,u), B(l,u) be determined by the above definition. First we note that
S(v,t) s Lipschitz continuous in v for v e O(u) . Indeed if

S, € BC(u x R,X) is chosen so that |[S_|_ < (v - 2kB)™'2kA and

ole

S5(v + h,t) = S (v,t)| < (v - 2kB(1,u))! 2kA(1,u) || (5.9)

of

for v +h, veO(u), then it is easily seen that (5.9) is satisfied by J SO .

Consequently the fixed point S(v,t) of J also satisfies (5.9).
Next consider the first variational equation of (5.3), which is
[7(1)5(1)(v,t) = [Z W(t,s) ROV (v,s,5°%(v,s),5(1) (v,s))ds, (5.10)
where

R(l)(v,s,S(O),S(l)) = DVR(v,s,S(O)) + DSR(v,s,S(O))S(I) ,
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S(O)(v,s) = S(v,s) is the fixed point of [J =t5(0) and S(l)(v,t) is the

formal derivative of S(O) with respect to v . Since R(l) satisfies
RO (v,s5,500) sy ¢ atu) + BL,u) sV
R (v,5,5(0) s(1)y R (v,s5,5(0) {1y B(1,u)[s{1) - s()y

for v e O(u) , s e R, and since 2kB(1l,u) < v , it follows that Lemma 9 is appli-

cable to the system
7 OO0 (v,t) = (2 u(t,s) R(v,5,5( (v,5))ds
sty = 2w, R M (v,5,50 (v,5),5D (v, 5))as

for v e O(u) . Consequently :I(l) has a unique fixed point S(l)(v,t) that

satisfies
s (v,t) ] < (v - 2kB(1,u))"12kA(1,u) (5.11)
for v e O(u) . Now (5.9) implies that the difference quotient
T IS, (v + h,t) = S (v,t)]

satisfies the same bound for v, v + h ¢ O(u) . The usual arguments based on
continuous dependence on parameters apply now as [h] + 0, and we see that
S(v,t) 1is of class ¢! in v for v e O(u) . Furthermore one has
p,S(v,t) = s (v,t) . (See Hale (1969) and Hartman (1964).) Also (5.11)
assures us that D,S satisfies the bound (5.8) on 0(u) for N = 1.

By restricting now to u e U(1) N U(2) , the above arqument applies to

S(l)(v,t) for v close to u . More generally, the verification of the induc-

tion step is now a straight-forward adaptation of the above ideas. Q.E.D.
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VI. Proof of Theorems

In this section we shall prove Theorems 3 and 4, which are stated below and

which imply Theorems 1 and 2.

Algebraic reduction: The first step in the proof is a standard algebraic

reduction cf. Poincare (1928), Siegel (1952), Sternberg (1957,1958) and Hartman
(1964). Since the proof of the following lemma can be found in these referen-

ces, we will not present it here.

Lemma 11. Consider the differential equation

"= Ax + F(x) , (6.1)

x
1}

where F e C', M>2 and D'F(0)

0 for P=0,1. Assume that A satis-

fies the Sternberg condition of order N where 2 < N <M. Then there is

C”-conjugation y = H(x) between (6.1) and y' = Ay + G(y) where DPG(O) =0

for 0 <P <N,

As a result of Lemma 11 we see that it suffices to prove only the
Statements (B) in Theorems 1 and 2. We direct our attention first to Theorem 1
where A is strictly hyperbolic and F e C°U and satisfies D F(0) = 0 for

0<P<Q.

The linear operator L: Let A be a given linear operator on X . This

induces a linear operator L = L(A) on LS by the formula
LS = AS - {S,A} (6.2)
where S ¢ LS and {S,A} is defined by

Q

{S,A}(xl,xz,...,xQ> = S<Ax1,x2,...,xQ>+S<x1,Ax2,...,xQ>+...+S<x1,x2,...,AxQ>.



41

The next lemma describes the spectrum of L in terms of the numbers y(x,m) .

Lemma 12. Let A be a linear operator on X and define L by Eq.

(6.2). Then one has

Y(L) = {y(x,m) : x ¢ J(A) and |m| =Q} .
Proof. While this result is well-known we include a brief proof. First
assume that the eigenvalues {Al,...,xn} of A are distinct and let

{xl,...,xn} denote the respective eigenvectors. For m = (ml,...,mn) define
m m m
X" as the "vector" product X" = xl1 cee xnn , where xl1 denotes ml—copies

of Xq » etc. Now fix m with |m| = Q and let i satisfy 1< i <n.

. i S
Define Sm € LQ by

where p = (py,...,p,) satisfies lp| = Q, Sp.m = 0 for p#m and
S m - 1 , and extend S; to be Q-linear and symmetric. One then has
LI P B PN p
L Sm X ASm X (Sm LA} X
=8 y(As;sm)x: = y(x;,m) Si xP
p’m -l’ -' -" m bl

i.e. S& is an eigenvector of L with eigenvalue Y(Ai,m) . Since the collection
{S;: l<ic<n, |ml =0Q}

forms a basis for LS we see that Lemma 12 is valid in this case.

If A does not have distinct eigenvalues, then one constructs a sequence
Av with Av + A as v » « and such that Av has distinct eigenvalues
{xr,...,x:} . It follows from Kato (1976, Sect. II.5) that J(A ) » J(A) as
v+ o, Since L(A) is continuous in A and since vy(a,m) 1is continuous in

the a's , we have X(L(AV)) > Y(L(A)) . Q.E.D.
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The exponential dichotomies. Since the eigenvalues of A satisfy

Re y(ar,m) # 0 for all A e Y(A) and all |m| = Q, where Q > 2, it follows that

A and L are hyperbolic. Consequently the linear equations

w' = Aw (6.3)

S' =LS (6.4)

admit exponential dichotomies on X and LS, respectively. Let

min { |Re y(A,m)| : y(x,m) is an eigenvalue of L }

min { Re A : Re A > 0 and x» is an eigenvalue of A }

-
]

min {-Re A : Re A < 0 and x is an eigenvalue of A }.

=
it

In the case of (6.4) this means that there is a projection Po on LS and

positive constants k and v such that

W(t,s)| < ke lt-s] (6.5)

where W(t,s) , the Green's function for (6.4), is given by

r

Lt -Ls
e Po e

s s <t,

W(t,s) = < (6.6)
eLt[I - Po] e'LS , t<s.

C

The number v appearing in (6.5) can be chosen to be any number in the interval
0<v<rT. (6.7)
For (6.3) we let p+ and p~ denote the spectral spreads of A, where A
is strictly hyperbolic. We now modify the wording used to define the Q-
smoothness of A and let K > 0 denote the largest integer for which there are

postive integers M and N such that Q =M+ N, K < min(M,N) and

AT M-Kpy>-r, AT(N-Kp~)>-T. (6.8)
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We will prove the following:

Theorem 3. Under the assumptions of Theorem 1, Eq. (1.1) admits a ck-

linearization where K 1is given by (6.8).

If K satisfies (6.8), then it is evident that K > Q-smoothness of A and con-
sequently Theorem 3 implies Theorem 1.
Let K satisfy (6.8) and fix a, 8, v >0, a>p', b>p  (See Fig. 1)

so that (6.5) and (6.7) hold and
i (A) € (- b, -8), £'(A) € (a,aaq) (6.9)

and a (M -Ka)>-v, B (N-KDb)>-v. Nowchoose ¢ sothat 0 < g <v

and
o M-Ka)>-v+ag, B(N=Kb)>=-v+oa. (6.10)
-bg -8 0 a aa
—e - .- -- —e e~ .- -—-—
Amin ’ Amax Amin Amax

Figure 1. Spectrum of A.
+

- =min,max { Re x : X ¢ £ (A) }.

>‘m1'n,max

It follows from (6.9) that there is a projection P on X and a positive

constant k such that

A b kB 3 0 (6.11)
ket ¢ |eAt P| <k e DBt ,t <0 (6.12)
ket ¢ &A1 2P| <k et 2t >0 (6.13)
1M 1 - P]| <k et 2t <0 (6.14)

where (for simplicity) we use the same k in (6.5) and (6.11-14). Without any

loss of generality we can assume that
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U = Range (I - P) = Unstable manifold
V = Range (P) = Stable manifold

are orthogonal subspaces of X.

The parameters e and r : Next we fix the parameters e and r . With

F given so that D'F(0) = 0 for 0 < P<Q,we define F (x,e) as in

Section III. Then replace Eg. (6.1) by

x' = Ax + Fr(x,e) . (6.e,r)

Next we choose the functions
G0 X x gL, LS . 0<ic<Q

by Lemma 7. Let B be given by (3.1) and determine the constants C1 and C2
so that (4.9-10) hold. Next fix & sothat 0< &6 <1 and let e =r be

chosen so that

0 < r <min(1/Q,1/5) (6.15)

c,8 el "0 =cop el < verak. (6.16)

The nonlinear equations on LS : We now make a change of variables
x = g(w,s) =u + v+ 2?=0 Sj <u>Q'J<v>J (6.17)

where uelU, veV and S = (S

At At

by e u, and e Vo where U, € U and Vo € V . Also we replace S by a

0,...,SQ) € ZQ+1 . Next we replace u and v

time-varying function S(t) so that the resulting function x = x(t) given by

(6.17) is a solution of (6.e,r). As we next show, the entries SO(t),...,SQ(t)

must satisfy a related differential equation on LS while |x(t)| < r . By



45

differentiating (6.17) with respect to t we get

[ 1 1 d Q Q'j j -
' =ut 4 v+ (Zj=0 Sj <u> w>') = Ax + Fr(x,e) .
Since u' = Au and v' = Av this becomes

0-

d vQ Q-J, . Jy - Q A
gt (Ljog S5 <> Jaw?) = A(T5_ g S5 w>™™and)) + F (xe) .

If L is given by (6.2), then it follows from (4.8) that

| o L
Z?=o s Tyt = L(2?=05j adxP ey + F(x.e)

L(Z§=0 Sj <u>Q-J<v>J) + 2?=0 Gj(W,S)<U>O—J(V)J .

Therefore Sj = Sj(t) is a solution of

S% = LSj + Gj(W,S) ’ ‘ O < j < Q s (6'18)

Conversely if Sj = Sj(t) are solutions of (6.18) with |Sj(t)| <1 for t in
some interval [ and if the corresponding function x = x(t) given by (6.17)
satisfies |x(t)] <r for t e I, then x(t) is a solution of (6.e,r). (We
will also use the notation Gj(u,v,S) in place of Gj(w,s) in (6.18), where

W=uU-+V.)

Primary objective: Let us return to the change of variables given by

(6.17). We will apply the theory of Section V to the system of equations (6.18)

to find appropriate bounded continuous functions Si = Sj(w)
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0<j<Q.
We will then replace Sj in (6.18) by Si(w) to obtain

X =w+ o(w) =u+ v+ Z?:O Sj(w) SRR (6.19)

where w = u + v . The next lemma will be needed to show that the change of

K where K satisfies (6.8).

variables in (6.19) is of class C

For the purpose of proving the following lemma, we adopt a standard notation
for partial derivatives. Let h(w) = h(u,v) be a sufficiently smooth function
defined on an open set in X. An n-tuple of nonnegative integers

a = (al,...,an) will be called an index. We define

a _ 9
Dw h = h .
aw oo OW

For indicies o« and g of the form o = a(U), B = g(V) (See Section II)

define | | | |
alt|B
pepfh = — "a . —h. (6.20)
au au @ gy 2t av "
1 o0 0 a a+1 * 8 o n

The total partial derivative DE De h, where p and q are nonnegative inte-
gers, is a tensor whose components are given by (6.20) where |a| = p and
|8l = q.

For two indicies a and g8 we will write o < B8 provided 0 < a; < Bj
for all i. If a, B, and y are indicies with 0 < y, o < 8 then

o +y<B+y. Alsoif 0<B-a<y then |y -8 +a| = |y| - |B] + |a
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Lemma 13. Let x =w + &(w) be given by (6.19) where Si: X > LS denote

bounded continuous functions for 0 < j < Q. Assume that there is an integer

K>0 and w >0, v >0 suchthat M-Ka+yuy >0, N-Kb+t >0 and

K < min(M,N). This change of variables is of class ¢ when the following

three conditions are satisfied:

(1) For 0 < j < N-1, the function Sj = Sj(u) depends only on u e U

and is of class CK for u # 0, and for every index p = (pl,...,pa,O,...,O)

with 0 < [p| < K there is a constant d, such that

lpla-n
lul IDE S| < d (6.21)

in a punctured neighborhood of u = 0.

(2) For N+ 1<j<Q, the function Sj = Si(v) depends only on v e V

and is of class CK for v # 0, and for every index q = (O,...O,qa+1,...,qn)

with 0 < [q] < K there is a constant d, such that

lalb-T
[v| |Dv Sj(v)| < d, (6.22)

in a punctured neighborhood of v = 0.

(3) The function SN(u,v) is of class CK_ig u and v when u ¥ 0 and v % O,

Furthermore for any indices

p = (p19-"’pa’0s'°' 90) s q = (03--090,qa+190-°9qn)

with 0 < |p| + |q| < K there is a constant dy such that
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|u||P| a-y lVlqu b-1 |DS 03 Sy (usv)| < d3 » (u#0, v#0). (6.23)

Proof: We will show that each of the functions ¢J defined hy
éJ(u,v) = Sj(w) <u>Q_J<v>J » 0<j<Q, is of class CK in a neighborhood of

u=v=0. Itfollows from (2.13) that each &’ can be written in the form

o) = ) Sg,s u® vB

Where a = (al,...,aa,o,...,O) 9 B = (0’00-,0,Ba+19-0'98n) . ’al = Q = j ’
8] =J , and sg’s denote the components of Si . It will suffice to show that
each of the functions

E]

g = s?’B u® vB = syyB

where s = s;’s is a real-valued function satisfying either (1), (2) or (3),
depending on the choice of j , is of class CK in a neighborhood of u=v =10 .
Let us first look at the case where j = N . Then one has |a| = M ,

|8] = N . Now consider indicies p = (pl,...,pa,O,...,O) .

q = (0,...,0,qa+1,...,qn) where 0 < |p| + |q| < K. By Laplace's Formula one

has

rnt -r -t
pPodg = DPDIsucvP = § (D, Dy s)(oP u®) (037" vB)

(1}

(6.24)

D>

(Dg DS s) u@P*r B-qtt

-1

where the coefficients e, 3 depend on p, q, r, t, « and B (but not on u
and  v) and the summation J is over all indicies r and t with
0<r<p,0<t<qg and with p-r<aqa and qg-tc<g.

We then know that
U P*r) < lu||a|-|p|+r < IulM-|p|a+|r|a

< lulM-Ka+|r]a+u-u < lulM-Ka+u Iullrla—u
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Similarly one has

Ivs—q+t| < lle-Kb+ T Ivllt‘a-l’.

Therefore by part (3) of the lemma there is a constant d; such that

|(D: DS S)ua—p'H‘ vB-q+t| < d3|ulM-Ka+p |V|N-Kb+T.

Since M -Ka+yu>0 and N -Kb + 1 >0 it follows from (6.24) that

DE D3 g has a unique continuous extension to the linear manifolds u = 0 and
v =0, viz. DS De g=0 when u=0 or v=0. Similarly

for 0<j<N-1 and N+ 1< j< Q we conclude that 0503 g = 0 is the

continuous extension of DﬂDgg to the manifolds u=0 and v=0.

In order to complete the proof we need to show that the remainder term in

the Taylor series expansion of o) satisfies (2.2) with N replaced by K . For this

purpose it is convenient to divide the arqument into 4 parts:

(i) w=20
(ii) w=u,u=#+0

v,vezD0

(ii1) w

(iv)

=
]

u+v,u#0 and v 0.

We will show that in each of the four cases above and for 0 < j < Q , one has

Jj | P nd J
'(u + h,v + k) = & <h>Fk>™ + ¢
( ) b.q R

b

the summation ) is over integers 0 < p + q < K, the coefficient @3 q is the

5
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the total derivative Dﬂ 03 3! (which, we have seen, is continuous in w), and

j e
@R satisfies
Tim (k) el = 0 (6.25)

where 1 (h,k)1 = max(|h|,|k|) and the limit in (6.25) is taken as
(h,k) +(0,0). The main problem is to verify (6.25).

The argument for each of the following cases:

1) w=u+v,u#0; 0<j<N-1
2) w=u+v,v#0; N+1<j<Q
3) w=u+v,u#0 and v#0; ji=N

T s a sum of terms, and that each

term is the product of CK-functions near w . Hence oJ is of class CK near

js the same. By Eq. (2.13) we see that ¢

w .

For the case

4) w=0;0<jc<Q

j j Q-i i .
s where 0% = [Sj(w) - Sj(O)]<h> <k> . Since

Q » K and Sj(w) is continuous at w = 0 we see that ¢; satisfies (6.25).

we write ol = S, (0) @ Iasd + o

For the four remaining cases

5 w=u+v,v#0; 0<js<N-1
6) w=u+v,u#0; N+1<j<Q
7) w=u+v,u=0andvz#0; i=N
8) w=u+v,u#0andv=20; i=N
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the arguments are similar. Let us look for example at case 8) for j N .

i

o (u + h,k)

Sj(u + h,k)<u + h>M<k>N

s].(u,0)<u>M<k>N vol

where the last equation defines ¢§ . Now one has

3= S U+ nK)<u + e - s].(u,0)<u>M<k>N

M

= Ip=1 ( g ) Sj(u,0)<h>p<u>M'p<k>N

# [S;(u + hok) - S,(u,0)TKu + e

By using the continuity of Sj and the fact that K < min(M,N) , we see that

®J

R satisfies (6.25).

Solutions of Equation (6.18): We now assume that Re y(i,m) # 0 for all

A e )(A) and all |m| = Q . The (Q + 1)-equations given by (6.18) can be writ-
ten as a single system

S' = (diag L)S + G(w,S) (6.26)

where S = (SO,...,SQ) , G = (GO,...,GQ) and diag L 1is a square matrix with
(Q + 1)-blocks of L on the main diagonal and 0's elsewhere. Let W = diag W

be the Green's function for the linearized equation

S' = (diag L)S (6.27)

where W is given by (6.6).
We seek solutions of (6.26) in the form

S = (SpseessSq) = S(W)
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where S 1is a fixed point of the operator

T s(w) = [T W(0,s)G(w * s,S(w + s))ds (6.28)

in the class BC(X,(LS)Q * 1) . In (6.28) the function w -+ t = eAtw is the

solution of (6.3) passing through we X , and w=u + v where uelU and
veV
We want to apply Lemma 9 to the operator :1 given by (6.28). In order to

do this we define
IS| = max{|Sji :0<j<Q}

_ K qlL
b, Dg G| = max{[D D G,

J| :0<j<Q}

for 0<K+1Ll. By (4.10), (6.5), (6.7) and (6.16) we see that if
seBC(X, 7T 1) then
1 Fsen, <& ¢, lcs (6.29)
Also by (4.10) one has
|(6(w,S;) - G(w,S,)| < uD; Gi, [S; - S,
< C

< C

Since 2k C, B e < év < v by (6.16) we see that (5.5) is valid.

Therefore by Lemma 9, Eq. (6.28) has a unique bounded continuous solution

S(w) = (So(w),Sl(w),...,SQ(w)) . (6.30)
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Also by (6.29) one has
[S(w)]| < 6 <1 (6.31)

for all w=u+velX.
Because of the "triangular" form of the function G as describhed by
Lemma 7(C,D), we see that the function So(w) in (6.30) is the unique bhounded

continuous solution of

T oSo(u) = [T W(0,5)60(u + s,54(u - 5))ds . (6.32)

- 00

Therefore So(w) is independent of v since GO is independent of v .
Similarly Sl(w) is independent of v . In fact for 0< j< N-1, the
functions Sj(w) are independent of v ¢ V. We shall write them in the form
S. =S.(u) . For the same reasons we see that for N+ 1< j<Q, the

J J

functions Sj = Sj(v) are independent of u e U.

Fixed Points of :I as Solutions of (6.26): Let S = S(w) = S(u,v) be the

fixed point of :7 described in the last two paragraphs and consider

S(w =+ t) =S(us.t,v+t) as a function of t . One then has

S(ust,vet) = fw‘ﬂ(o,s) G(ue (t+s), ve(t+s),S(ue(t+s), ve(t+s))

- 00

= [T W(t,&) G(ueE,veE,S(ueg,veE)

- 00

where the change of variables & =t + s was used in the last equality. By
differentiating the last expression with respect to t , we see that S(w -« t)
is a solution of (6.26) where w 1is replaced by w - t . By (6.31) one has

|S(w = t)] <6<l forall we X and teR.
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Conversely let ¢(t) be any solution of (6.26) (where w is replaced
by w - t) and assume that ¢ satisfies |[¢(t)| <1 for all t e R . We then
claim that ¢(t) = S(w * t) . It is easy to verify this by applying the uni-

queness portion of the Contraction Mapping Theorem to the operator

Foo(t) = f”_ﬂ(t,s) G(ues,ves,4(s))ds

on the class of continuous mappings ¢:R » (LS)Q +1 that satisfy |¢(t)] <1
for all t eR.

Now make the change of variables

X =w+ o(W) =u+v+ 2?=051(w) <u>Q'j <v>j (6.33)

where w =u +v ,uelU,veV and S = (SO”“’SQ) denotes the fixed point
of J . If we replace w by w-+t = eAt w , where |w | < (3/2)r , and
define x(t) =w -+ t + &(w < t) then we have the following facts as a con-

sequence of Lemmas 3,4 and Eq. (4.8):

(1) If |x(t)| <r for t in an interval I , then x(t) is a solution
of (6.e,r) for tel.
(2) If |w=-t]| <r/2 for t in an interval I , then x(t) is a solu-

tion of (6.e,r) for t el .

Next we will show that the change of variables in (6.33) is of class CK
for w near w =0 , where K 1is given by (6.8). Assuming this smoothness we
next see that D&(0) = 0 . Consequently by the Inverse Function Theorem the
change of variables (6.33) describes a CK-conjugation between (6.e,r) and

(6.3) near x =w =10 .
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Smoothness of Solutions: The last step in the arqument is to verify the

smoothness of the solution

S = (SO(“)""’SN-l(u)’SN(U’V)’SN+1(V)""’SQ(V))

of Eq. (6.26) and (6.28) as described in Lemma 13.

First let us consider Sj = Sj(u) for 0 < j < N-1. We will now show

that S;(u) is of class cK

the unstable manifold, and u # 0 then |u +* t| » +® as t » + o,

Consequently there is a T = T(u) » 0 such that |u * t| > 3r/2 for

It follows from (6.13) that for all ue U, u# 0,
|eAt[I - PJu| = |u - t| >-§£ , t > T
where T 1is defined by

-1 ol _ 3r 1
k e ——?'

|uf

Let j be fixed, 0 < j < N -1, and define R by

R(u,t,S) = Gi(eAtu,S) - Gi(eAt[I - Plu,S)

Recall that Gj depends only on u and SO’SI""’Si . By Lemma 7(E)

P nq At . -
D, Dg 65 (" [I-P] u ,S) =0 , t>T.
where T s given by (6.34) and 0 < p + q < Q . Since one has

At
0P 03 R | < [of D] 6] le""[1 - PI|P

it follows from (6.13-14), (6.34-35) and (4.9) that

for u# 0, with the aid of Lemma 10.

b

(6.34)

one has

(6.35)

sup |DS Dg R| < Cl B eQ r1-2Q P Laelp Zapcl BeQraD+1'20 (p+ap u|-3P (h.36)

where the supremum is taken over t e R and S ¢ ZQ+1 . Since (6.35) remains
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valid when u is replaced by (u + h) ¢ U where h 1is small, it follows that
(6.36) holds uniformly in a neighborhood of u in U . It follows that (5.6)
js valid in open neighborhood O(u) , for 1 <p +q< Q.

Let us next consider Dg R for 1 < q< Q. Since one has |Dt R| < IDE Gi|
it follows from (4.10), and (6.16) that
L Q
sup[Dg R| < C, B e’ < v8/2k (6.37)

where the supremum is taken over t ¢ R and S ¢ ZQ + 1 . Furthermore (6.37)
remains valid uniformly in a neighborhood of u in U , since (6.35) remains

valid when u 1is replaced by (u + h) ¢ U, where h 1is small. Therefore

(5.7) is valid, and its follows from Lemma 10 that Sj S.(u) 1ds of class CQ

J
when u#0, for 0 < j<N-1.

The argument that Sj = S.(v) is of class CQ for v # 0, when

J
N+1<j<Q, is similar. We omit these details.
Let us now consider SN = SN(u,v) for u+# 0 and v+ 0. It follows from

(6.12) and (6.13) that

IeAtw|2 = |eAt[I—P]u|2 + |eAth|2 > (-§% ), t<T, and T, <t

where T1 and T2 are defined by

-1 -gT, _3r 1 -laT, _3r 1

k e 1 = 5 Wl- , k "e"'2 = m (6.38)

Define

R(u,v,t,S) = GN(eAt[I - Plu, eAt Pv,S) .
By Lemma 7(E) one has

oP 09 bl Gy (e*tLI - Plu, eAtpy,s) = 0 (6.39)

for t < T1 and T2 <t provided 0<p+q+r<Q.
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Since one has

P nd of P nd pf Atp. P |Atp @
D, Dy D¢ RI < [D Dy D Gyl |e" [T - PII" e""P|

it follows from (4.9), (6.11-14) and (6.38-39) that

sup [P DI DL R| < C B Q 1-2Q \p.apaT, q -bagT,

-ap,, -bg (6.40)

< 2ap+ch1 0 .ap+ba+1-2Q | p+q+ap+bg lul ™" v]
where the supremum is taken over all t € R and S ¢ ZQ + 1 . Since (6.39)
remain valid in a neighborhood of w , it follows that (6.40) holds uni-
formly in a neighborhood of w . This establishes (5.6). Since
|D§ R| < IDE Gjl it follows (as above) that

L Q
sup IDS R| < C2 B e” < v§/2k (6.41)

uniformly in a neighborhood of w , which establishes (5.7). Hence SN R
is of class CQ in w=u+v when u# 0 and v+ 0.

In order to complete the proof of smoothness of the conijugacy we need to
verify that the functions Sj(u) , 0<j<N-1, Sj(v) , N+1<3j<Q and
SN(u,v) satisfy (6.21-23) for a suitable choice of y and t . Let K be
_1(

given by (6.8) and let (6.10) be valid. Now set u =a (v - o) and

T = 3'1(v -¢). Thenone has M-Ka+puy >0, N-Kb+t >0 and
K < min(M,N) . Let us now derive (6.21). Since S(w) = S(u,v) 1is a fixed point

of (6.28) one has
S(u,v) = [7 H(0,s) X(ePS[T - PIu,eMSPv)ds (6.42)

where X is defined by
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X(u,v) = G(u,v,S(u,v)) .

For u# 0 and v # 0 the infinite integral in (6.42) becomes a finite integral
from T1 to T2 » where T1 and T2 are given by (6.38). As a result one can
bring derivatives with respect to u and v under the integral sign. One then

has

0Pods(u,v) = [ W(0,5)(0PDIX)[eP LT - PIIPLeMSP1%s (6.43)

- Q0

provided 0 < p+q<Q. For u#0 and v # 0 it follows from (6.11-14) and
(6.38) that

IeAS[I - PP < kPePaas _ kpe(pa - u)as e(v -o)s , 0<sc« 75

leAsplq < k9 o-abBS _ kqe—(qb - T)BS e-(v-o)s s T1 <s<0
1Mo PP kP, s<o
1P P9 ckd , s»o0.

As a result we see that by (6.11-14) and (6.38) one has

ufPask e(Pa - w)os ¢ y2pa (3rgpa g o
v |97 em(ab-t)gg kqb(_gg yab T s

Consequently by (6.5) and (6.43) one has
ulPa¥ [v]9=T 0P D3 S(u,v)|

< [7 ke ISP pd xy_ kParadepta (3¢ ypatad o(v-o)ls] g

- 00

2  pa+gb+p+q , 3r \pa+gb .p .q
< k ( > ) 1D, D, Xr,
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which proves (6.23). The arguments for (6.21-22) are similar, and we omit these
details. This completes the proof of Theorem 2.
The arqument for Theorem 1 is straight-forward. When A is stable then,

by Lemma 8, the system (6.18) is replaced by a single equation
S' = LS + G(v,S)

where x = v + S<v>Q ,Q=N+1 and veV=X. (Here one has U = {0} )

The operator :S in (6.28) then becomes

T s(u) = [ W(0,s) G(v + s, S(v+ s))ds .

- 00

The rest of the argument now follows the reasoning used above.
An extension of Theorem 1 in the style of Theorem 3 is possible. Let A be

stable and let K » 0 be the largest integer such that K < Q and

AT (Q - KoT) > -T . (6.44)

One then has

Theorem 4. Under the assumptions of Theorem 1, Eq. (1.1) admits a

CK-linearization where K is given by (6.44).
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VII. Linearization of Diffeomorphisms.

The methods we used above extend directly to the problem of finding suf-
ficient conditions for a smooth linearization in the vicinity of a fixed point of
a diffeomorphism. We shall outline the main ideas here.

Let U be an open set in a finite dimensional Banach space X with
0eU. Let F,G:U » X be two CM-diffeomorphisms with M > 2 and with
F(0) = G(0O) =0 . A CN conjugation H between F and G near x =0 1is a
CN-diffeomorphism with H(0) =0 and F = H™1GH near x=0. If F is
CN-conjugate to G where G(y) = Ay is linear and A = DF(0) , then F is
said to admit a CN-linearization near x = 0.

For diffeomorphisms we say that a matrix A is hyperbolic if the eigen-

values Aseeesd, satisfy IAi| # 1 for all i . Also A is said to be
stable if |A1| <1 forall i. For m= (ml,...,mn) we define u(x,m) by

nom) = A0 e An")°1

where A 1is a complex number. We shall say that A satisfies the Sternberg

condition of order N > 2 provided u(x,m) # 1 for all x e J(A) and all m

with 2 < |m| < N . Finally A satisfies the strong Sternberg condition of

order N > 2 provided A satisfies the Sternberg condition of order N and
lu(a,m)| # 1

for all A e J(A) and all |m| = N .
Let A be hyperbolic and let Z+(A) or ) (A) denote, respectively, the

eigenvalues A e J(A) with |x| > 1. A is strictly hyperbolic if A is hyper-

bolic and both z+(A) and ) (A) are nonempty. If A is hyperbolic and

Xi(A) # ¢ , we define the spectral spread o' by

i _max{|log|r]]: X ¢ zf(A)}
min{|Tog|x||: A € £ (A)}

where i =+ or - .
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Let Q be a positive integer and let A he hyperbolic. We define the Q-

smoothness of A to be the largest integer K > 0 such that:

I

(1) Q-Ko >0 , it YY) =4 .

(2) Q-Kp" >0 it J7(A)

b .
(3) There exist positive integers M , N with Q=M+ N, M- Kp+ >0,
N -Kpo >0 when A is strictly hyperbolic.
We then have the following results:

Theorem 5. Let Q > 2 be an integer and assume that F:U » X is a

3% diffeomorphism of U with O e U, F(0) =0 and A =DF(0) . Let A be

nonsingular and strictly hyperbolic, and consider one of the following two

assumptions:

(A) Assume that A satisfies the strong Sternberg condition of order Q.

(B) Assume that DPF(0) = 0 for 2<P<Q-1andthat [u(a,m)| # 1
for all x e }(A) and all [m| =Q.

Under either assumption (A) or (B), F admits a CK—linearization, where K

is the Q-smoothness of A .

Theorem 6. 1f A is nonsingular and stable, then Theorem 5 remains valid when

2Q

F is of class C




62

The proofs of these theorems involve simple modifications of the arquments
used in Theorems 1 and 2. The re-scaling by e and the truncation methods
described in Section III apply to the nonlinear part F(x) - Ax . Likewise the
Factorization Lemmas 7 and 8 apply here as well. For the hyperbolic case, the

change of variables

X =Uu+v + 29_ S.<u>Q'J<v>J (7.1)
i=0 7j
leads to the family of difference equations

(n)) , 0<j<Q (7.2)

Sj(n +1) = LSj(n) + Gj (w=*n, Sj

where w * n 1is the solution of
we (n+1)=~A"- (n)

that satisfies w +« 0 =w . One seeks a function

as fixed point of the operator

T sw) =5 _ __ W(0,n) Gw =+ n, Sw-n)) (7.3)
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G W(m,n) = diag(W(m,n)) ,

where G = (G Q) s W

030'0,
m
L P0 L . n<m

W(m,n) = <

Lm[I - Po] ", m<n,

\
and P0 is the linear projection on LS with Range(P) being stable manifold of
L and Null Space (P) the unstable manifold of L . The theorems in Section V
on the existence of smooth solutions extend directly to (7.3). With these
observations, the proof of Theorems 5 and 6 follow the corresponding pattern of
the differential systems argument. |

Remarks 5. As in the case of Theorems 1 and 2, the two theorems for dif-
feomorphisms admit extensions in the style of Theorems 3 and 4. Define:

r =min {|1 - |y(x.m)[| = y(x,m) is an eigenvalue of L}

At=min {|x] : [x] > 1 and A is an eigenvalue of A}

A"= min {|)\|'1 : |x] <1 and A is an eigenvalue of A},
With these values of T, A" and A~ being used in (6.8) and (6.42), Theorems 3 and 4
extend to diffeomorphisms.

6. Theorems 5 and 6 apply directly to the problem of linearization
in the vicinity of a periodic solution of an autonomous ordinary differential
equation. This problem is reduced to the prohlem of linearizing a dif-

feomorphism by studying the Poincare mapping. See Hale (1969) and Hartman

(1964) for more details.

7. The problem of linearization in the vicinity of a general compact
invariant manifold is more complicated. We will present this theory in a forth-

coming paper, Sell (1983b).
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VIII. Dependence on Parameters.

The methods described above extend immediately to the problem of studying
the dependence of the linearizing conjugation on a parameter 6, when the coef-
ficients of

x'= A(8)x + F(x,0) (8.1)

depend smoothly on 6, where F is defined for x ¢ U and @ eé), and A(e) is defined for

] e:é). We can prove the following results:

Theorem 7. Let Q and R be integers where Q » 2 and 0 < R < » . Assume that

F(x,8) is of class C3Q in the x- variable for x ¢ U with 0 ¢ U EEQ.DEF(O’B) =0

for o e@ . Assume further that A(e) and F(x,6) are of class cR in the

e-variable. Let eo € ().29 fixed and let A(eo) be strictly hyperbolic, and consider

one of the following two assumptions:

(A) A(eo) satisfies the strong Sternberg condition of order Q

() DPF(0,6) =0 for 0<P<Q-1 and Rey(r,m) # 0

A
for all x e }(A(e)), all |m| = Q, and all o€V, where V is a neigh-

borhood of 6, .

Under either assumption (A) or (B) there is a neighborhood V of 8, and a

conjugation

X =W+ ¢ (w,0), e V

between (8.1) and

w'= A(8)w (8.2)

K
where ¢ 1is of class C in w and ® in 6 and K ;

wn
=
®

Q-smoothness of A(s,).
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Theorem 8. 1If A is stable, then Theorem 7 remains valid when F is of class

Theorem 9. With the modifications described in Section VII, Theorems 7 and 8

are valid for diffeomorphisms

Proof: We will prove Theorem 7. The modifications required for Theorems 8 and

9 are discussed at the end of Section VI and in Section VII.
The first step is to show that statement (A) can be reduced to statement (B).
If A(eo) satisfies the strong Sternberg condition of order Q > 2, then there is a
neighbrhood 'V of 0, with the property that A(e) satisifes the strong Sternberg
condition of order Q for all @ é,v . Next we note that the conjugacy y = H(x)
described in the Algebraic Reduction Lemma 11 is a CR - function of 6 for 8 € V.
One can show this easily in the case that Q = 2 , which is typical. In this case
one seeks a change of variables of the form
y = x + S(0) <x,x>
where S(e)eL; for eeaV and such that the y-equation does not have quadratic
-1

terms for o€V. It turns out that one has S(e) = L(e) F2 (6) where

F(x,08) = F2(e) Xy XDte e s
Fz(e) € L; and L(e) is the linear operator on LZ given by
L(e)S = A(8)S - {S, A(8)}.
Since y(a,m) # 0 for |m| = 2 we see that L(e)"1 exists and is a C'-function of o .
Hence S(6), which is the product of CR-functions, is itself a CR-function for
bE V.
The conjugacy between (8.1) and (8.2) then has the form

J J
X =w+ o(w,0) =u + v + ZQ Sj(w,e)<u> vy, (8.3)
j=0"
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see Eq. (6.33). The terms S = (SO,..., SQ) are fixed points of the operator
(6.28), where G now depends on 6 e V . Since the definition of G involves only
derivatives of F with respect to X, we see that G is of class CR in the
8-variable. Also the Green's function W(0,s) depends on the projection Pn=P0(e).
see Eq. (6.5), which is a CR-function of 6 since A is a CR-function of 6.
Therefore the integrand in (6.28) is a CR-function of 9.

Since the eigenvalues of A vary continuously in 6, there is a neighborhood V g;V
of eo such that (6.8) is valid for all 6 ¢ V , where K is the Q-smoothness of A(eo).
By restricting V further, if necessary, we can assume that (4.9-10), (6.5), and
(6.8-16) are valid uniformly for 6 e V , where K is the Q-smoothness of A(eo). It

then follows from Lemma 10, that the solution S = S(w,8) of (6.28) is a

R
C -function of 6. QED.
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IX. An Illustration ig_Ce]estia] Mechanics.

An interesting application of our theory can be found in the study of the
isosceles three-body problem in celestial mechanics, Moeckel (1983). This
problem arises when two of the three bodies have an equal mass m , and the
motion is confined so that these two bodies remain symmetric about a fixed axis
in R3 . The motion of the third body is then restricted to this axis of
symmetry.

The associated nonlinear system of equations describing this motion becomes

a differential system in RY , which we write as follows:

r' = vr cos ¢
v' = U(¢) cos ¢ - 1/2 vZ cos ¢ + 2rh cos ¢
(9.1)
o' = w
w' = U"'(¢) cos? o - 1/2 vw cos ¢ - (2U(¢) + 2rh - vz) sin ¢ cos ¢
with the energy relation
1/2(v2 cosz¢ rw? o+ wzr'l) - U(¢)cosz¢ = rh c052¢ , (9.2)

where h < 0 1is the enerqgy, w 1is the angular momentum,

3/2 2 ¢)-1/2]

U(p) = 1/2m My [a sec ¢ + 4(1 + 20 sin

and o = m/m3 is the mass ratio. The derivation of these equations, which are
real analytic in RY , and the physical description of the (r,v,¢,w)-coordinate
system is given in Moeckel (1983). The r-variable is a measure of the "size" of

the isosceles configuration.
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With the energy h fixed, the system of equations (9.1) represents a

# , Which is parameterized by the anqular

3-dimensional manifold M(w) in R
momentum w . We are especially interested in the manifold M(0) , since triple
collision can only occur on M(0). The set (r,v,¢,w) in M(0) with r =20
is a 2-dimensional submanifold; it is the McGehee triple collision manifold.

Let us now examine the fixed points of (9.1). There are six fixed points.
First we note that the equation U'(¢) = 0 has three solutions {¢_,0,¢+}
where ¢_< 0 < ¢, . Let ¢ denote any one of these solutions and define
Ve = (2U(4>C)]/2 >0 . Then the six fixed points are (r,v,¢,w) = (O,tvc,¢c,0)
where ¢. =¢_,0,¢, . We will now restrict our attention to the fixed point

P = (r,v,,Ww) = (0,-V0,0,0) (9.3)

2U(0) = g(a + 4) and g = m3/2m3 .

"

where v2
0

The variational equation of (9.1) at the fixed points (9.3) is given by

sr\/ v 0 0 0 sr
0
sv _ 2h , 0 0 sv (9.4)
8¢ 0 0 0 1 8¢
Sw 0 0 u"(0) -v0/2 sw

The (4 x 4) matrix A in (9.4) is in block diagonal form, and the eigenvalues

A of A are solutions of the equation
(A - v )a+ vo)[x(x +v,/2) - U"(0)] =0

At the fixed point P we obtain the four eigenvalues
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1 1 1
where J = 1/4(v20+ abu"(0)) /2 - lag /2(4 - 55q) /2 . On M(0) the meaninaful eiqgen-
values are AZ s A3 s A4 . In this case one has reasonance at the sixth order

since
)\2=2A2+2)\3+2>\4,A3=A2+3)\3+?A4,)\4=A2+2>\3+3A4

for all values of the mass ratio o . By a direct, and somewhat tedious calcula-
tion, one can show that there are no resonances of order < 6 . Hence the eigen-
values Xy , A3 , Ay oOf (9.4) satisfy the strong Sternberg condition of order 5 .
The spectral spreads are given by p+ =1 and

- Vo + 4
0" = = 9
Vo - 44

for 0 < a < 4/55, and o~

1 for « > 4/55. Theorem 1 then assures us that there
is a Cz-linearization provided p < 3/2 , which is equivalent to o« > 3/43 .
Since p depends continuously on o , Theorem 3 implies that there is an

a, < 3/43 for which there is a C2-1inearization for o > ag . Furthermore it
follows from Theorem 7 that for 3/43 < o < 4/55 , the Cz-conjuqacy is a
CR-function of « and B for every R, 1 <R &=, The example in Sell (1983a)
suggests that there is probably no C3-1inearization.

It is instructive to compare these results with the theory developed hy
Bileckii. First we note that Bileckii (1973, Theorem 4) is applicable to (9.1) on
M(0) for all o« > 0. For 0 < a < 4/55 it implies the existence of a
¢! 1inearization for (9.1) on M(0) . Bileckii (1973, Theorem 4) does not apply
A

for C2-linearization since one has, in Bileckii's notation, e 2 e I(A;2) for all

a, 0 <a < 4/55,
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The estimate in Hartman (1964, p. 257) does not imply a Cz—linearization for
any value of «a, 0 < a < 4/55. If the quantity B8 is sufficiently large, this
estimate does show the existence of a Cl-linearization for o satisfying
ay < o X 4/55 , where oy js near 4/55.

"In the full 4-dimensional manifold represented by (9.1) one has

A = AL A3ty

for all values of the mass ratio o . BRileckii's Theorem implies that there is

1 5. . .
a C -linearization.
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