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Abstract. In this paper we study a model of tumor which grows or shrinks due to proliferation of cells which
depends on nutrient concentration modelled by a di�usion equation. The tumor is assumed to be spherically
symmetric, and its boundary is an unknown function r = s(t). It is shown that there is a unique stationary
solution with radius r = R0 which depends on the various parameters of the problem. Denoting by c the
quotient of the di�usion time-scale to the tumor doubling time scale, so that c is small, we prove that

(i) lim inf
t!1

s(t) > 0

(ii) If c is su�ciently small then s(t)! R0 exponentially fast as t!1.
(iii) If c is not \su�ciently small" but is smaller than some constant  determined explicitly by the parameters

of the problem, then lim sup
t!1

s(t) < 1; if however c is \somewhat" larger than  then generally s(t) does not

remain bounded and, in fact, s(t)!1 exponentially fast as t!1.
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1. The model.

In this paper we consider the growth of a tumor, assuming that it has a spherical shape

fr < s(t)g (r = jxj; x = (x1; x2; x3))

at each time t; the boundary of the tumor is given by r = s(t), an unknown function of t. We

shall study the model initiated by Byrne and Chaplain [4] (see also [3] [5]); other models are

described in [1] [2] [7].

Denote by �(r; t) the nutrient concentration in the tumor. The time t is measured in minutes

so that the di�usion time scale R2
0=D is of unit order; here R0 is the length-scale of the tumor

and D is the di�usion coe�cient of the nutrient concentration.

Denote by �B the constant nutrient concentration in the vasculature. Then � satis�es the

di�usion equation

c
@�

@t
=

1

r2
@

@r

�
r2
@�

@r

�
+ �(�B � �)� �0� if r < s(t); t > 0(1.1)

where � is the rate of blood tissue transfer per unit length, �0� is the nutrient consumption

rate, and c = 1=T where T denotes the tumor doubling time. Typical values for T are on the

order of a day, in which case c is small.

The rate of growth of the tumor depends on the number of cells contained in it. Denoting

by S(�) the cell proliferation rate within the tumor, the tumor radius then evolves according

to
d

dt

�4
3
�s3(t)

�
=

Z 2�

0

Z �

0

Z s(t)

0

S(�)r2 sin#drd#d':(1.2)

We shall consider the case where S(�) is linear, i.e.,

S(�) = �(�� �
�)(1.3)



where � and
�
� are positive constants. We also assume that

� =
=
� or r = s(t);

=
� constant.(1.4)

The model (1.1){(1.4) was studied in [4]. Assuming that

=
� >

�
� >

��B

� + �0
;(1.5)

a steady solution was computed and its stability was discussed. In this paper we study in more

detail, and with rigorous mathematical proofs, the behavior of the time-dependent solution as

t!1.

In the sequel we shall work with

� � ��B

� + �0
instead of �:

Setting

~� =
�
� � ��B

� + �0
; �� =

=
� � ��B

� + �0
; � = � + �0

and choosing � = 3, the system (1.1){(1.5) reduces to

c
@�

@t
=

1

r2
@

@r

�
r2
@�

@r

�
� �� if r < s(t); t > 0(1.6)

1

3
s2(t)

ds(t)

dt
=

Z s(t)

0

(� � ~�)r2dr;(1.7)

� = �� or r = s(t);(1.8)

and

�� > ~� > �:(1.9)

Finally, we have an initial condition

�(r; 0) = �0(r) if 0 < r < s(0);
@�0

@r
(0; 0) = 0(1.10)

where s(0) is given.

Our main results are the following:

(i) lim inf
t!1

s(t) � � > 0, and � can be chosen arbitrarily close to the stationary radius R0 if

c is su�ciently small.

(ii) If c is small enough so that

3c�� + 3ce��=c < �

then s(t) is uniformly bounded.

(iii) If

c(�� � ~�) >
�

3
and

�
c(�� � ~�)� �

3

�2
> c�~�

then, for some initial data,

s(t)!1 exponentially fast as t!1:
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(iv) If c is su�ciently small then s(t)! R0 exponentially fast as t!1; thus the stationary

solution is globally asymptotically stable.

In x2 we establish the uniqueness of the stationary solution and in x3 we establish existence,

uniqueness and some properties of the solution to (1.6){(1.10). The assertions (i), (ii), (iii) and

(iv) are proved in sections 4, 5, 6 and 7, respectively.

2. The stationary solution.

A stationary solution satis�es

1

r2
@

@r

�
r2
@�

@r

�
� �� = 0 if r < R0

and is given by

�s(r) = ��
R0

sinh
p
�R0

sinh
p
�r

r
(2.1)

where (by (1.7))

1

3
~�R3

0 =

Z R0

0

�s(r)r
2dr:(2.2)

Substituting �s(r) into (2.2) we �nd that

tanh � =
�

1 + ��2
; � =

p
�R0(2.3)

where

� =
1

3

~�

��
;(2.4)

by (1.9)

0 < � <
1

3
:(2.5)

Theorem 2.1. There exists a unique stationary solution, i.e., there exists a unique solution

� of (2.3).

Proof. We need to prove that the function

g(�) = 1 + ��2 � � coth � (0 < � <
1

3
)(2.6)

has a unique zero �, � > 0. We compute:

g(�)

�2
! �� 1

3
< 0 if � ! 0;

g(�)

�2
! � if � !1:

Hence it su�ces to show that the function

h(�) =
g(�)

�2
is strictly monotone increasing:(2.7)

We have

h0(�) =
� cosh � � sinh � � 2(sinh �)2 + �2

�3(sinh �)2
:
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Denoting the numerator by k(�), it su�ces to show that k(�) > 0. But a straightforward

calculation shows that

k(4)(�) = 16� cosh � � sinh � > 0

whereas k(j)(0) = 0 for 0 � j � 3, so that indeed k(�) is a positive function.

Remark 2.1. Let �(�) denote the solution of (2.3) and set s(�) =
p
��(�). Then

g(s(�);�) = 0 where

g(u;�) =
1

u2

�
1 + u2 � up

�

cosh(u=
p
�)

sinh(u=
p
�)

�
:

One can check that

gu > 0; g� > 0

so that
@s

@�
= �g�

gu
< 0:

Also, s(�)! 0 as �! 1

3
, and s(�) > 1 if � � 1

6
. It follows that there exists a unique constant

�crit such that 0 < �crit <
1

3
and

s(�crit) = 1; i.e.; �(�crit) =
1p
�crit

:

By (2.3), x = 1=
p
�crit solves tanh x = x=2, so that

13

48
< �crit = 0:2727 : : : <

14

48

and

�(�) >
1p
�crit

if 0 < � < �crit;

�(�) <
1p
�crit

if �crit < � <
1

3
:

This remark corrects the assertion made in [4] that �(�) > 1p
�
for 0 < � < 1

3
.

3. The evolution problem: General properties.

Throughout this paper it is assumed that

0 � �0(r) < �� for 0 � r < s(0); and

�0(r) is a continuous function.
(3.1)

Theorem 3.1. The system (1.6){(1.10) has a unique solution �(r; t); s(t), and

0 < �(r; t) < �� if 0 < r < s(t); t > 0;(3.2)

s(0)e�~�t � s(t) � s(0)e(���~�)t if t > 0;(3.3)

�~�s(t) � _s(t) � (�� � ~�)s(t) if t > 0:(3.4)
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Proof. We �rst assume that a solution exists and derive the estimates (3.2){(3.4). By

the maximum principle, � cannot take non-positive minimum in the set fr < s(t)g, so that

�(r; t) > 0 if 0 < r < s(t). Similarly � cannot take positive maximum, larger than or equal to

��, in the set fr < s(t)g.
Next, from (1.7) and (3.2) we get the inequalities in (3.4), from which we also deduce the

estimates in (3.3).

Local existence and uniqueness of solutions to (1.6){(1.10) can be proved by standard argu-

ments as for the Stefan problem [6; chap. 8]; instead of the Stefan condition _s = ��x we now

have the free boundary condition (1.7), which actually makes the analysis simpler. Finally, the

a priori estimates (3.3), (3.4) enable one to extend the solution step-by-step to all t > 0.

We conclude this section by deriving an integral equation for s(t). We multiply (1.6) by r2

and integrate in (r; t) to get

c

Z
r<s(t)

r2�(r; t)dr � c

Z t

0

s2(t)�� _s(t)dt� c

Z s(0)

0

r2�0(r)dr

=

Z t

0

s2
@�

@r
(s(t); t)dt� �

Z t

0

dt

Z s(t)

0

r2�(r; t)dr:

Using the relation Z s(t)

0

r2�(r; t)dr =
1

3
s2(t) _s(t) +

1

3
~�s3(t)

which follows from (1.7), and setting

B = c(�� � ~�)� 1

3
�;(3.5)

f(t) =
1

3
s3(t);(3.6)

we �nd that
1

3
cf 0(t) =

Z t

0

s2
@�

@r
(s(t); t)dt+Bf(t)� �~�

Z t

0

f(t)dt� (3.7)

where

 = (c�� � 1

3
�)f(0)� c

Z s(0)

0

r2�0(r)dr:(3.8)

Note that, by the maximum principle,

�r(s(t); t) > 0 for all t > 0:(3.9)

4. lim inf
t!1

s(t) > 0.

Theorem 4.1. There exist positive constants ��; T0 such that

s(t) � �� if t � T0:(4.1)

Proof. We divide the proof into two steps.

Step 1. We assume that

s(t) � �0 if t � T1(4.2)
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for some T1 > 0, and show that if �0 is su�ciently small then we get a contradiction.

Introduce the function

v(r; t) = ��
s(t)

r

sinhMr

sinhMs(t)
for t � T1(4.3)

where M2 = �+ 2 +N and N is any positive number. If �0 is small enough then

v = ��
M + M3r2

6
+O(r4)

M + M3s2

6
+O(s4)

= ��(1 +O(s2));

d

dt

� s(t)

sinhMs(t)

�
=

d

dt

1

M +
M3s2(t)

6
+O(s4)

=
1

M

d

dt

�
1� M2s2

6
+O(s4)

�
= �Ms _s

3
(1 +O(s2))

� M

3
~�s2(1 +O(s2)) by (3.4);

and

vt � ��
sinhMr

r

M

3
~�s2(1 +O(s2)) � ��~�M2

3
s2(1 +O(s2)):

It follows that

cvt ��v + �v= cvt � (M2 � �)v = cvt � 2v �Nv

� c��~�M2

3
s2(1 +O(s2))� 2��(1 +O(s2)):

Choosing �0 small enough so that

jO(s2)j < 1

4
if s � �0 and c

~�M2

3
�20 < 1;

we conclude that

cvt ��v + �v < 0 if r < s(t); t > T1:(4.4)

Consider the function

w = � � v + z

where

z = ��e��(t�T1):

It satis�es

wt ��w + �w � 0 if r < s(t); t > T1;

and it is positive on fr = s(t); t > T1g and on ft = T1; r < s(T1)g. By the maximum principle,

w > 0 if t > T1, i.e.,

�(r; t) � v(r; t)� z(t):(4.5)
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This inequality can be used to estimate _s from below:

1

3
s2(t) _s(t)=

Z s(t)

0

(�(r; t)� ~�)r2dr

�
Z s(t)

0

(v � ~�)r2dr �
Z s(t)

0

z(t)r2dr

� 1

3
(�� � ~�)s3 +O(s5)� 1

3
��e��(t�T1)s3(t)

where jO(s5)j � 1

6
(�� � ~�)s3 if �0 is small enough. It follows that for some large enough

T2 (T2 > T1)

_s(t) > 0 if t � T2;

i.e., s(t) is monotone increasing. This implies (by a standard result for parabolic equations

[6; Chap. 6]) that �(r; t) converges to a stationary solution. By Theorem 2.1 we must then have

lim
t!1

s(t) = R0, which is a contradiction if we initially choose �0 < R0.

Step 2: Choose 0 < �1 < �2 < �0 (say �2 = #�0; �1 = #2�0; 0 < # < 1), �0 as in Step 1.

Without loss of generality we may assume that s(t) is not � �0 for all t > 0. Then, by Step 1,

there exists a t = t1 such that s(t1) = �0. We shall prove that

s(t) � �1 for all t > t1;(4.6)

and this establishes the theorem.

Suppose (4.6) is not true. Then there exist

t1 < t2 < t3

such that s(t3) = �1; s(t2) = �2 and

�1 < s(t) < �2 if t2 < t < t3;(4.7)

_s(t3) � 0:(4.8)

In order to derive a contradiction we need to construct a subsolution to �, and this requires us

to �rst obtain a lower bound on �(r; t2).

Since _s(t)=s(t) � �~�, we have

t2 � t1 �
1

~�
log

�0

�1
� 1

and, similarly,

t3 � t2 �
1

~�
log

�2

�1
� 2:

The domain

D1 = f(r; t); r < ~�2 � �2(1 + e~�1); t2 � 1 < t < t2g
contains the domain D0 = fr < s(t); t2 � 1 < t < t2g. We introduce the solution W to

cWt = �W � �W in D1;

W ( ~�2; t) = ��; t2 � 1 < t < t2;

W (r; t2 � 1) = 0; r < ~�2:

7



We can represent w = e�t=cW by Green's function for the heat equation cwt = �w,

w(r; t) =

Z t2

t2�1

Z
r= ~�2

w
@G

@r
:

Using the estimate ���@G(x; �; t)
@r

��� � C

t3=2
e��

jx��j2

t (C; � positive constants)

(which can be obtained by comparison with Green's function for a rectangular domain con-

structed by a series of reections [6; p. 85]), we �nd that

W (r; t2) � "0 > 0(4.9)

where "0 depends only on 1; ~�2; c and �, i.e., only on �0; �2; ~�; c; �.

By the maximum principle � � W in D0 and thus, in particular,

�(r; t2) � "0; r < s(t2):(4.10)

Next we introduce the domain

D2 = fr < s(t); t2 < t < t3g

and a comparison function in D2:

v(r; t) = ��(t)
s(t)

r

sinhMr

sinhMs(t)
(4.11)

where
��(t) = eN(t�t2)"0; t2 < t < t3;

N =
1

t3 � t2
log

��

"0
;

(4.12)

so that ��(t3) = ��. As in Step 1 we compute

cvt ��v + �v = c
_��(t)

��(t)
v + ��(t)

� @
@t
��+ �

�� v

��(t)

�
� �c

_��(t)

��(t)
� (M2 � �� 1)v +O(s2) � 0

(4.13)

if M2 = � + 2 + N . Thus v is a subsolution. (We need to note here that if we take �2 =

#�0; �1 = #2�0 with # �xed, 0 < # < 1, then 1; 2 are uniformly bounded from above, and "0
is uniformly bounded from below. Therefore N is uniformly bounded from above and the same

holds for M . Hence the O(s2) term in (4.13) is negligible if �0 is small enough.)

In view of (4.10) and the de�nition of ��(t); � � v on t = t2 and on r = s(t). Hence, by the

maximum principle, � > v in D2 and, in particular,

�(r; t3) > v(r; t3) = ��
s(t3)

r

sinhMr

sinhMs(t3)
:

Using this in (1.7) we deduce that _s(t3) > 0, a contradiction to (4.8).
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Theorem 4.1 does not give a sharp bound on ��. Such a bound can be obtained by going

more carefully over Step 1. This is done in the following lemma.

Lemma 4.2. let � > 0 be de�ned by

1

�2
=

1

R2
0

+ c~��:(4.14)

Then the inequality

s(t) < �(4.15)

cannot hold for all t su�ciently large.

Proof. We assume that (4.15) holds for all t > T1 and derive a contradiction; for simplicity

we take T1 = 0. Let v be de�ned as in (4.3).

We want to prove that

cvt ��v + �v < 0(4.16)

and Z s

0

vr2dr > ~�
s3

3
(4.17)

provided (4.14) holds; this will lead to a contradiction as in Step 1. SinceZ s

0

vr2 =
��s

sinhMs

Z r

0

r sinhMrdr = ��s3
h coshMs

Ms sinhMs
� 1

(Ms)2

i

(4.17) is satis�ed if and only if

coshMs

Ms sinhMs
� 1

(Ms)2
>

~�

3��
= �:(4.18)

But since the left-hand side is strictly monotone increasing in s and

tanh � =
�

1 + ��2
; or

cosh �

� sinh �
� 1

�2
= �;

(4.18) holds if and only if

Ms < � =
p
�R0:(4.19)

Note that the function

f(x) =
x cosh x

sinh x
� 1

satis�es: f(0) = 0; f 0(x) > 0. Since also _s � �~�s, and Ms < �,

cvt = c _sv
hsinhMs�Ms coshMs

s sinhMs

i
< c~�v

h� cosh �
sinh �

� 1
i
;

and the right-hand side is equal to c~�v��2. It follows that

cvt ��v + �v < (�+ c~���2 �M2)v < 0

provided

�+ c~���2 < M2:(4.20)
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Thus it remains to choose M which satis�es both (4.19) and (4.20). Since s < �, this is possible

if

�+ c~���2 =
�2

�2

which is precisely the relation (4.14).

Theorem 4.3. For any " > 0 there holds:

lim inf
t!1

s(t) � R0(1� ")(4.21)

provided c is su�ciently small.

Proof. We proceed as in the proof of Theorem 4.1 but choose �0 = R0(1�
"

3
). Then Step 1

follows from Lemma 4.2. To proceed with Step 2 we choose �1 = R0(1� "); �2 = R0(1� "
2
).

We now need to take a larger constant M in order to control the derivative of ��(t) so that

v remains a subsolution. Indeed we take M2 = �+C1 for some large enough constant C1, and

then require that c is so small that

�+ C0c < M2(4.22)

where C0 is another constant. The constants C1 and C0 actually depend on c. Indeed the proof

of (4.9) shows that "0 = "1c where "1 is a positive constant independent of c, and, recalling the

de�nition of N in (4.12) we �nd that

C1 = ~C1 log
1

c

where ~C1 is a constant independent of c. The same holds for C0:

C0 = ~C0 log
1

c

where ~C0 is a constant independent of c.

In order to be able to choose M which satis�es (4.19), (4.20) and (4.22) it remains to show

that

�+ cmax
n
~���2; ~C0 log

1

c

o
<

R2
0�

R2
0(1� ")2

:

But this inequality is clearly satis�ed if c is su�ciently small.

5. Boundedness of s(t) for small c.

Theorem 5.1. If

3c�� + 3ce��=c < �(5.1)

then there exists a constant C0 such that

s(t) � C0 for all t > 0:(5.2)

We �rst need a lemma which estimates �r(s(t); t): In view of Theorem 4.1 we may assume

that s(t) � �� > 0) for all t > 0. Take �t > 1 and set K = s(�t). Since _s=s � �~�, we have, for
any # � 0,

s(t) < K + �K(�t� t) and �t� 1 < t < �t

10



where � = (1 + #)~�; later on we shall need to take # > 0.

Lemma 5.2. For any 0 < # < 1 there exists a constant C1 such that

0 � �r(s(�t); �t) � c(1 + #)~�(�� + e��=c)s(�t) + C1:(5.3)

Proof. We shall construct functions W;V such that

cWt � �W � �W;

cVt = �V � �V

in

D = fr < K + (�t� t)�K; �t� 1 < t < �tg;
and

W = ��; V = 0 or r = K + (�t� t)�K;

(W + V )(r; �t� 1) �
n
�(r; �t� 1) if r < s(�t� 1)

�� if r > s(�t� 1);

V (r; �t� 1) � 0 if r < s(�t� 1):

By the maximum principle it then follows that � � W + V in D0 = fr < s(t); �t� 1 < t < �tg
and, since � = �� = W + V at (s(�t); �t),

�r(s(�t; �t) � (Wr + Vr)(s(�t); �t):(5.4)

We take W simply as

W = ��eN(r+(t��t)�K�K)

where

c�KN = N2 � �;

or

N =
c�K

2
+
h�c�K

2

�2
+ �
i1=2

:(5.5)

We shall compare V with the solution v(x1; t) to

cvt =
@2v

@x21
� �v in f0 < x1 < K + (�t� t)�K; �t� 1 < t < �tg;

v = 0 if x1 = K + (�t� t)�K;

v � V at t = �t� 1 and v(x1; �t� 1) = 0 if x1 > s(�t� 1);

and vx1(0; t) = 0. Then v � V in D and, since v = V at (s(�t); �t),

Vr(s(�t); �t) � vx1(s(�t); �t):(5.6)

In order to estimate vx1(s(�t); �t) we introduce a function z,

z(�; t) = v(x1; t)e
�(t��t+1)=c; � =

p
cx1:
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Then

zt � z�� = 0 if � < b(�t� t) +K
p
c; �t� 1 < t < �t;

z = 0 if � = b(�t� t) +K
p
c;

z(�; �t� 1) � V and z(�; �t� 1) = 0 if � > s(�t� 1)
p
c

where b = �K
p
c. By Lemma 12 of [8]

jzt(
p
cs(�t); �t)j � (b2 + C1) sup jV (�; �t� 1)j:(5.7)

The proof of that lemma requires the assumption that the distance from the support of z(�; �t�1)
to the point (b+K

p
c; �t� 1) is uniformly bounded from below, that is,

#~�K
p
c � const. = c1 > 0;(5.8)

and it is here that we need to choose # > 0.

In a similar way one can prove that

jz�(
p
cs(�t); �t)j � (b+ C1) sup jV (�; �t� 1)j;

and this implies that

jvx1(s(�t); �t)j �
p
c(�K

p
c+ C1)e

��=c(5.9)

provided (5.8) is satis�ed. Note that if (5.8) does not hold then the slope b is uniformly bounded

and, by standard parabolic estimates, jz�j � C1 sup jV (�; �t� 1)j so that (5.9) is again valid.

By the maximum principle Vr � 0 at r = s(�t), so that from (5.6) we obtain the bound (5.9)

also for V . Recalling (5.4) and the de�nition of W , the estimate from above for �r, as asserted

in (5.3), follows.

Proof of Theorem 5.1. From (3.7) it follows that for any 0 < t1 < t2,

1

3
cf 0(t2)�

1

3
cf 0(t1) =

Z t2

t1

s2�r(s(t); t)dt+B[f(t2)� f(t1)]� �~�

Z t2

t1

f(t)dt

and therefore, using (5.3),

1

3
cf 0(t2)�

1

3
cf 0(t1) � 3c(1 + #)~�(�� + e��=c)

Z t2

t1

f(t)dt+ C1

Z t2

t1

f(t)2=3dt

+ B[f(t2)� f(t1)]� �~�

Z t2

t1

f(t)dt:

(5.10)

Suppose that the theorem is not true. Then for arbitrarily large M we can �nd t = t2 such

that

f(t2) = M2:

We take the smallest such t2 and de�ne t1 to be such that

M < f(t) < M2 if t1 < t < t2;

f(t1) = M ;

12



such a t1 exists if M > f(0). We then haveZ t2

t1

f 2=3(t)dt � 1

M1=3

Z t2

t1

f(t)dt:

Substituting this into (5.10) and choosing # small and M large (and recalling that � > c��), we

�nd that
1

3
cf 0(t2)�

1

3
cf 0(t1) < ��

Z t2

t1

f(t)dt+B[f(t2)� f(t1)](5.11)

for some � > 0. By assumption B < 0 (B is de�ned in (3.5)) so that the right-hand side is

< �jBj(M2 �M):

On the other hand the left-hand side is

� �1

3
cf 0(t1) = �1

3
cs2(t1) _s(t1) � �c(�� � ~�)

s3(t1)

3
= �c(�� � ~�)f(t1) = �c(�� � ~�)M;

which is a contradiction if M is large enough. 2

6. Unboundedness of s(t) for c not small.

In x5 we proved that if c is small enough, i.e., if

c�� < � and B < 0 (B as in (3.5))

then s(t) remains bounded as t!1. In this section we show that if B > 0 then s(t) may not

be bounded. More precisely, we shall prove that s(t) is unbounded if

B > 0:(6.1)

B2 >
(1 + �)2

�

c�~�

3
for some � > 0(6.2)

and
3

s(0)3
c

Z s(0)

0

[(1 + �)�0(r)� ���]r2dr > c~� � 1

3
��:(6.3)

Theorem 6.1. Under the assumption (6.1){(6.3),

1

3
s3(t) � f(0)e

3�B
c(1+�)

t
for all t > 0:(6.4)

Proof. Since �r(s(t); t) � 0, (3.7) yields

1

3
cf 0(t) > Bf(t)� �~�

Z t

0

f(t)dt� :(6.5)

We claim that the inequality

Bf(t) > (1 + �)(�~�

Z t

0

f(t)dt+ )(6.6)

13



holds for all t � 0. Indeed for t = 0 this follows from (6.3). If (6.6) does not hold for all t > 0

then there is a smallest t = t0 > 0 such that (6.6) holds for all t < t0, but

Bf(t0) = (1 + �)(�~�

Z t0

0

f(t)dt+ ):(6.7)

It follows that

Bf 0(t0) � (1 + �)�~�f(t0):

However by (6.5), (6.7) and (6.2),

1

3
cBf 0(t0)> B2f(t0)�B(�~�

Z t0

0

f(t)dt+ )

= B2f(t0)�
B2

1 + �
f(t0) =

�

1 + �
B2f(t0) �

c�~�

3
(1 + �)f(t0)

which is a contradiction.

Having proved (6.6) we now deduce from (6.5) that

1

3
cf 0(t) � �B

1 + �
f(t);

and (6.4) follows.

7. Stability of the stationary solution for small c.

In this section we prove that the stationary solution is globally asymptotically stable if c is

su�ciently small. This result was suggested by a formal two-scale asymptotic analysis in [4].

Theorem 7.1. Let (�(r; t); s(t)) denote the solution of (1.6){(1.10). Then, there exists a

number c0 > 0 and constants B and  such that if c � c0 then

js(t)� R0j � Be�t:

In particular, the stationary solution is (nonlinearly) stable.

Remark 7.1. Theorem 7.1 includes Theorem 4.3, except for the size of smallness of c: In

Theorem 4.3 the number � can be chosen to be anywhere between 0 and 1, and the corresponding

range for c then depends on �; if � is near 1, then c is arbitrary (by Theorem 4.1).

The proof of Theorem 7.1 is based on the following lemma.

Lemma 7.2. Let (�(r; t); s(t)) denote the solution of (1.6){(1.10) and (�s(r); R0) the sta-

tionary solution. Assume that

js(t)�R0j � �; j _s(t)j � � and j�(r; t)��s(r)j � � for some � > 0 and all t � 0.(7.1)

Then, there exists a number c0 > 0 and constants A and �, independent of c and �, such that

if c � c0
js(t)� R0j � A�

�
c+ e��t

�
; j _s(t)j � A�

�
c+ e��t

�
and j�(r; t)� �s(r)j � A�

�
c+ e��t

�
:

(7.2)

Proof. Let v = v(r; t) be de�ned by

v(r; t) = ��
s(t)

sinh(
p
�s(t))

sinh(
p
�r)

r

14



so that

c
@v

@t
� 1

r2
@

@r

�
r2
@v

@r

�
+ �v = c�� _s(t)

�
sinh(

p
�s(t))� cosh(

p
�s(t))

p
�s(t)

�
sinh2(

p
�s(t))

:

Then, using (7.1),

�Ac�� � c
@v

@t
� 1

r2
@

@r

�
r2
@v

@r

�
+ �v � Ac��

where here, and in the remainder of the proof, A denotes a generic constant independent of c.

This, in turn, implies that

0 � c
@(v + Ac�)

@t
� 1

r2
@

@r

�
r2
@(v + Ac�)

@r

�
+ �(v + Ac�)

and

c
@(v � Ac�)

@t
� 1

r2
@

@r

�
r2
@(v � Ac�)

@r

�
+ �(v � Ac�) � 0:

Recalling c < �, it follows that for any constants K > 0; 0 < � � 1

0 � c
@(v + Ac� +Ke��t)

@t
� 1

r2
@

@r

�
r2
@(v + Ac� +Ke��t)

@r

�
+ �(v + Ac� +Ke��t)(7.3)

and

c
@(v � Ac��Ke��t)

@t
� 1

r2
@

@r

�
r2
@(v � Ac��Ke��t)

@r

�
+ �(v � Ac��Ke��t) � 0:(7.4)

Since

j�s(r)� v(r; t)j � Ajs(t)� R0j(7.5)

we have

j�(r; 0)� v(r; 0)j � j�(r; 0)� �s(r)j+ j�s(r)� v(r; 0)j � � + Ajs(0)�R0j � �+ A�;

and taking K = A� in (7.3), (7.4) we get, by comparison,

j�(r; t)� v(r; t)j � A�(c+ e��t):(7.6)

Next, note thatZ s(t)

0

(v(r; t)� ~�) r2 dr = ��
s(t)

sinh(
p
�s(t))

Z s(t)

0

r sinh(
p
�r) dr� ~�

s(t)3

3

= ��
s(t)

sinh(
p
�s(t))

 
s(t) cosh(

p
�s(t))p

�
� sinh(

p
�s(t))

�

!
� ~�

s(t)3

3

=
��

�3=2
�(t)

�
�(t) coth(�(t))� 1� ��(t)2

�
where we have set

�(t) =
p
�s(t):(7.7)
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Then, letting

E(t) = �3=2
Z s(t)

0

(�(r; t)� v(r; t)) r2 dr(7.8)

and using (1.7), we obtain

1

3
�(t)2 _�(t) = �3=2

Z s(t)

0

(�(r; t)� ~�) r2 dr

= ���(t)
�
�(t) coth(�(t))� 1� ��(t)2

�
+ E(t)(7.9)

where, from (7.6){(7.8),

jE(t)j � A�
�
c+ e��t

� �(t)3
3

:(7.10)

Thus, the di�erential equation (7.9) for � can be written as

_�(t) = G(�(t)) + E(t)(7.11)

where

G(�(t)) � 3��

�
coth(�(t))� (1 + ��(t)2)

�(t)

�
(7.12)

and

��(t)A� �c+ e��t
� � E(t) � 3

E(t)

�(t)2
� �(t)A�

�
c+ e��t

�
:(7.13)

Now consider the functions

G�c(�) = G(�)� Ac��:(7.14)

It is easy to show that G00�c � 0, i.e. G�c is convex, for all c (and all �). Moreover,

G�c(0) = 0 and G0�c(0) =
1

3
� �� Ac�

and since, for � > Ac�,

lim
�!1

G�c = �1

we conclude that, for c su�ciently small, there exists a unique number ��c0 > 0 such that

G�c(�
�c
0 ) = 0:(7.15)

We further have that

G0�c(�
�c
0 ) < 0(7.16)

and

G�c(�) > 0 if and only if 0 < � < ��c0 :(7.17)

Then, from (2.3) we obtain

��c0 � �00 =
p
�R0 � �c0(7.18)

and, for some constant c0,

0 � �c0 � ��c0 � Ac� for 0 < c � c0:(7.19)
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Next, using the convexity of Gc we have, from (7.11) and (7.13)

_�(t) = G(�(t)) + E(t) = Gc(�(t)) + A�e��t�(t) +
�E(t)� Ac�� � A�e��t�

�
� Gc(�(t)) + A�e��t� � G0c(�

c
0) (�(t)� �c0) + A�e��t�;

that is

(�(t)� �c0)
_� G0c(�

c
0) (�(t)� �c0) + A�e��t (� � �c0) + A��c0e

��t:(7.20)

Integrating (7.20) and using (7.16) we get that

�(t)� �c0 � A�e��t ; 0 < � = minf�G0c(�c0); �g:(7.21)

Recalling the de�nitions of �(t), �c0 and making use of (7.18), (7.19), it follows that

s(t)� R0 � A�
�
c + e��t

�
and, using (7.21) to bound the right hand side of (7.20),

_s(t) � A�
�
c+ e��t

�
:

Similarly, using the the lower bound for E(t) in (7.13), one can prove that

�A� �c+ e��t
� � s(t)� R0 and � A�

�
c+ e��t

� � _s(t)

thereby establishing the validity of the �rst two inequalities in (7.2). Finally, the bound on

j�(r; t)� �s(r)j immediately follows by combining (7.5), (7.6) with the �rst inequality in (7.2).

Proof of Theorem 7.1. We may now establish the stability of the stationary solution by

repeated application of the preceding lemma. Indeed, combining (3.4) and (5.2), we know that

for c small the hypotheses of the lemma hold true that is, for c < c0, there exists an � > 0 such

that (7.1) holds. Then, by Lemma 7.1, we have

js(t)� R0j � A�
�
c+ e��t

� � 2Ac� for t � T0

where, for any given c such that 2Ac < 1 we de�ne T0 by

e��T0 = c:

Similar estimates hold for j _s(t)j and j�(r; t)� �s(r; t)j for t � T0.

Iterating this result we obtain

js(t)�R0j � A(2Ac)n�1�
�
c + e��(t�(n�1)T0)

� � (2Ac)n� for t � nT0;

with similar estimates for j _s(t)j and j�(r; t)� �s(r; t)j.
Finally, de�ne  > 0 by

(2Ac) = e�T0(< 1)

and, given t > 0, let n be the largest integer that satis�es nT0 � t < (n+ 1)T0. Then

js(t)�R0j � �(2Ac)n = �e�nT0 = �e�te�(nT0�t) � �eT0e�t = Be�t

as desired. 2
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8. Conclusions.

In this paper we have considered radial growth of nonnecrotic tumors in the absence of

inhibitors. The parameters of the problems are such that a unique stationary solution, with

radius R0, exists. We proved rigorously that according to this model the tumor will never totally

disappear. Furthermore, in the case where the tumor doubling time is large compared to the

time scale of the di�usion of nutrient (within the tumor), the radius of the tumor converges to

the stationary radius R0, and the convergence is exponentially fast. On the other hand if the

tumor doubling time is small compared to the di�usion time scale, then the stationary solution

is generally unstable and the tumor size increases exponentially fast to in�nity, for a large set

of initial data.
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