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Abstract. This paper deals with the e�cient computation and bifurcation analysis
of periodic solutions of large-scale dynamical systems, such as systems arising from the
spatial discretization of partial di�erential equations. The Newton{Picard method is an
e�cient single-shooting based technique based on a Newton-like linearization which ex-
ploits the low-dimensional dynamics observed in many systems. The dominant, stability-
determining Floquet multipliers are easily recovered from the computations. In this pa-
per, we develop an algebraic framework which generalizes older variants of the Newton{
Picard method (including the Recursive Projection method) and which allows us to
explain and to monitor the convergence behavior. Special attention is paid to algorith-
mic aspects which improve the robustness of the method. The e�ciency of the approach
is illustrated by some numerical results.
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1. Introduction.

1.1. Continuation of periodic solutions. This paper deals with

the e�cient computation of periodic solutions of partial di�erential equa-

tions (PDEs) and the determination of their stability. We consider a

parameter-dependent autonomous dynamical system

dx

dt
= f(x; 
); x 2 RN ; 
 2 R;(1.1)

with N \large", and with f derived from a �nite element or �nite di�erence

spatial discretization of a parabolic PDE. We will assume that f is C2-

continuous in x and 
 in the region of interest. For a �xed value of the

parameter 
, a periodic solution is determined by N+1 unknowns, namely,

the initial conditions x(0) 2 RN and the period T . To �nd these unknowns

we use the system �
x(T )� x(0) = 0;

s(x(0); T ) = 0;

where the second equation is a phase condition needed to eliminate the

invariance of periodic solutions of autonomous dynamical systems under

time translation (see, e.g., [23]). When computing a branch of periodic
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solutions, the parameter 
 is allowed to vary and an additional condition,

the parameterizing equation, is added. The unknowns x(0), T and 
 are

found by solving 8<
:

x(T )� x(0) = 0;

s(x(0); T; 
) = 0;

n(x(0); T; 
; �) = 0;

(1.2)

with � an arti�cial parameter. With a good choice for n, one is able to

pass around fold points and to detect other bifurcations without any dif-

�culties. We use pseudo-arclength parameterization [2], but other choices

are possible [19, 23].

1.2. Stability of periodic solutions. Let '(x(0); T; 
) denote the

solution of (1.1) at t = T for a given initial condition x(0) and let

(x(0)�; T �; 
�) denote a solution of (1.2). If @'

@x
denotes the partial deriva-

tive of '(x(0); T; 
) with respect to x(0), then the monodromy matrix M�

is given by

M� :=
@'

@x

����
(x�(0);T�;
�)

:

M� is a full and nonnormal matrix. We denote its eigenvalues, i.e., the

Floquet multipliers, by ��i ; i = 1; : : : ; N . As is well known [23], one eigen-

value of M� has the value 1. The corresponding eigenvector is the tangent

vector to the limit cycle in (x(0)�; 
�),

b�T :=
@'

@T

����
(x(0)�;T�;
�)

= f('(x(0)�; T �; 
�); 
�):

If all Floquet multipliers except the trivial Floquet multiplier 1 lie inside

the unit circle, the periodic orbit is (asymptotically) stable. If at least one

Floquet multiplier lies outside the unit circle, the periodic orbit is unstable.

If f in (1.1) is the result of a space discretization of a parabolic PDE,

there are usually few Floquet multipliers close to or outside the unit cir-

cle. Moreover, the values and the number of those Floquet multipliers are

basically independent of the discretization used and the dimension N of

the discretized system. This property will be exploited in the numerical

method proposed in this paper and this will lead to a substantial reduc-

tion in computational cost, compared with classical approaches to compute

periodic solutions and their stability.

1.3. Computation of periodic solutions. The method described

in this paper is based on single shooting (the extension to multiple shooting

is discussed in [14]). In this approach, the nonlinear system8<
:

r(x(0); T; 
) := '(x(0); T; 
)� x(0) = 0;

s(x(0); T; 
) = 0;

n(x(0); T; 
; �) = 0

(1.3)
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(equivalent to the boundary value problem (1.1){(1.2)) is solved for the

unknowns x(0), T and 
, using a Newton-like method. If a direct linear

system solver is used to solve the linearized problem, the N � N -matrix
@'

@x
must be computed or approximated by solving the variational form of

(1.1) or by numerical di�erentiation. In the former case, anN2-dimensional

linear initial-value problem must be integrated together with (1.1), and in

the latter case the nonlinear system (1.1) must be integrated N times with

perturbed initial data. Both approaches are prohibitively expensive when

N is large. Also the storage and factorization of the full N �N -matrix is

expensive.

In this paper, we develop an e�cient single-shooting based technique,

based on a Newton-like linearization, in which the explicit calculation of

the matrix @'

@x
is avoided. This approach requires only the calculation of

the action of @'

@x
on a p-dimensional subspace of RN with p � N , a com-

putationally less expensive task. The linearized system is solved by using

a combination of direct linear system solvers and iterative solvers (e.g.,

Picard iteration). We also recover information on the dominant, stability-

determining Floquet multipliers. The proposed method is an extension

of the Newton{Picard method presented in [15, 20] and is also related

to the Recursive Projection Method (RPM) of Shro� and Keller [24] and

the condensed Newton{supported Picard method of Jarausch and Mack-

ens [9, 10, 11]. Compared with the approach in [15, 20], we develop in this

paper a general algebraic framework, which covers the methods presented

in [15] and which allows us to explain and to monitor their convergence

behavior.

Note that our approach is in
uenced by the knowledge that the prob-

lem is set in a continuation framework, and hence, for a given 
, reasonably

accurate starting approximations for x(0) and T and for the Floquet mul-

tipliers are known. This makes some of the linear algebra techniques much

more robust than when used in a one-o� problem.

The plan of the paper is as follows. In section 2 we derive the algebraic

framework from which several variants of the Newton{Picard method can

be derived and we present a strategy for analyzing the convergence behav-

ior. In section 3 we study the convergence behavior of several Newton{

Picard variants. In section 4 we show how to use the convergence analysis

to develop a very robust method. The computation of the basis for the

low-dimensional subspace needed in the algorithm is discussed in section 5

and the solution of the two types of linear systems that occur is discussed in

section 6 and 7. In section 8 we present some test results. Finally, section

9 presents our conclusions.

2. The Newton{Picard method: algebraic framework.

2.1. Derivation of the method. A single shooting pseudo-arclength

continuation method solves the nonlinear system (1.3) for the unknowns
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x(0), T and 
. We assume that ', s and n are twice di�erentiable with

respect to x(0), T and 
. For ease of implementation, the parameterizing

equation n(x(0); T; 
; �) = 0 should not involve time integration or integrals

along the limit cycle. In our experiments, we used the pseudo-arclength

parameterization

n(x(0); T; 
; �) = �x (x(0)� xp(0))
T
xs(0) + �T (T � Tp) Ts

+�
 (
 � 
p) 
s = 0;
(2.1)

where (xp(0); Tp; 
p) is the point generated by the predictor and (xs(0); Ts;


s) is the normalized predictor direction. This equation forces the solution

to lie in the hypersurface through the predicted point and orthogonal to

the predictor direction in some weighted scalar product. We refer to [2, 23]

for other parameterizing equations.

The use of Newton's method for solving (1.3) leads to the repetitive

solution of linear systems of the form2
64

M (�) � I b
(�)

T b
(�)



c
(�)T

s d
(�)

s;T d
(�)
s;


c
(�)T

n d
(�)

n;T d
(�)
n;


3
75
2
4 �x(0)(�)

�T (�)

�
(�)

3
5

= �

2
4 r(x(0)(�); T (�); 
(�))

s(x(0)(�); T (�); 
(�))

n(x(0)(�); T (�); 
(�); �)

3
5 ;

(2.2)

where2
64

M (�) � I b
(�)

T b
(�)



c
(�)T

s d
(�)

s;T d
(�)
s;


c
(�)T

n d
(�)

n;T d
(�)
n;


3
75 =

@('; s; n)(x(0); T; 
)

@(x(0); T; 
)

���� (x(0)(�); T (�); 
(�))
;

followed by an update

x(0)(�+1) = x(0)(�) +�x(0)(�);

T (�+1) = T (�) +�T (�);


(�+1) = 
(�) +�
(�):

From now on, we drop the superscript (�) from our notation whenever the

formula remains clear. With an appropriate parameterizing equation, (2.2)

will be nonsingular at hyperbolic periodic solutions, fold points and all bi-

furcation points that do not involve an (additional) +1 Floquet multiplier.

We make the following assumptions.

Assumption 2.1. Let y� = (x(0)�; T �; 
�) denote an isolated solution

to (1.3), and let B be a small neighborhood of y�. Let M(y) = @'
@x(0)

(y) for

y 2 B and denote its eigenvalues by �i; i = 1; : : : ; N . Assume that for all

y 2 B precisely p eigenvalues lie outside the disk

C� = fjzj < �g; 0 < � < 1(2.3)
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and that no eigenvalue has modulus �; i.e., for all y 2 B

j�1j � j�2j � � � � � j�pj > � > j�p+1j; : : : ; j�N j:

Note that M(y�) = M�, i.e., the monodromy matrix. Our method is

designed to be e�cient for p � N . Let the column vectors of Vp 2 R
N�p

de�ne an orthonormal basis for the subspace U of RN spanned by the

(generalized) eigenvectors ofM(x(0); T; 
) corresponding to the eigenvalues

�i, i = 1; : : : ; p; and the column vectors of Vq 2 R
N�(N�p) = R

N�q de�ne

an orthonormal basis for U?, the orthogonal complement of U in RN . In

general, U? is not an invariant subspace of M(x(0); T; 
). Vp and Vq could

be computed by the real Schur factorization of M(x(0); T; 
). However,

we will use Vq , the basis for the high-dimensional space U?, only in the

derivation of the method, but not in the �nal algorithms (see section 6). In

actual computations eigenvalues may move out of or into C� as the iteration

proceeds and our code is able to deal with this. However as the iteration

comes close to convergence, the approximate solutions y remain in B and

Assumption 2.1 holds.

The orthogonal projectors P and Q of RN onto U and U? are given

by

P := VpV
T
p ;

Q := VqV
T
q = IN � VpV

T
p :

(2.4)

Qv can be computed without actually knowing the matrix Vq . For any

�x(0) 2 RN there is the unique decomposition

�x(0) = Vp��p+ Vq��q = �p+�q;

�p = Vp��p = P�x(0);(2.5)

�q = Vq��q = Q�x(0)

with ��p 2 Rp and ��q 2 RN�p . Substituting (2.5) in (2.2) and multiplying

the �rst N equations at the left-hand side with [Vq Vp]
T , one obtains2

664
V T
q MVq � Iq 0 V T

q bT V T
q b


V T
p MVq V T

p MVp � Ip V T
p bT V T

p b

cTs Vq cTs Vp ds;T ds;

cTnVq cTnVp dn;T dn;


3
775
2
664

��q

��p

�T

�


3
775

= �

2
664

V T
q r

V T
p r

s

n

3
775 :

(2.6)

Note that since Vp and Vq de�ne bases for orthogonal subspaces and since

Vp is a basis for an invariant subspace of M , V T
q MVp is zero. At the limit
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cycle, the vector bT is an eigenvector ofM for the trivial Floquet multiplier

1 and thus a vector in the subspace U . Hence, during the Newton iteration

the term V T
q bT is usually small and was neglected in the methods presented

in [15].

System (2.6) can be solved by �rst applying one step of block-Gaussian

elimination to reduce (2.6) to an upper block triangular system. This

corresponds to �rst computing ��qr, ��qT and ��q
 by solving the (N � p)-

dimensional systems�
V T
q MVq � Iq

� �
��qr ��qT ��q


�
=

�
�
V T
q r V T

q bT V T
q b


�
;

(2.7)

then computing ��p, �T and �
 by solving the (p+2)-dimensional system2
4 V T

p MVp � Ip V T
p (bT +MVq��qT ) V T

p (b
 +MVq��q
)

cTs Vp ds;T + cTs Vq��qT ds;
 + cTs Vq��q

cTnVp dn;T + cTnVq��qT dn;
 + cTnVq��q


3
5

2
4 ��p

�T

�


3
5 = �

2
4 V T

p (r +MVq��qr)

s+ cTs Vq��qr
n+ cTnVq��qr

3
5

(2.8)

and �nally computing

��q = ��qr +�T ��qT +�
��q
 :(2.9)

We call the three systems contained in (2.7) the Q-systems and the system

(2.8) the P -system. Note that the matrix in (2.8) is nonsingular i� the

matrix in (2.2) is nonsingular. All information about stability and the

occurrence of bifurcations is preserved in the low-dimensional system (2.8).

At this point, we have not yet obtained any savings. In fact, the

above scheme is even more expensive than using Gaussian elimination to

solve (2.2). To reduce the computational cost signi�cantly, we make the

following approximations:

� The basis Vp is not computed exactly. Instead, an approximate

basis is computed using orthogonal subspace iteration. We will

discuss this procedure in section 5. Note that the term V T
q MVp is

no longer zero and a nonzero element should be introduced at the

(1; 2)-position in (2.6). However, we will neglect this term.

� TheQ-systems (2.7) are solved approximately using iterativemeth-

ods, e.g., Picard iteration. To avoid the need for the basis Vq , we do

not compute the (N � p)-dimensional vectors ��qr, ��qT and ��q
 ,

but we compute directly the N -dimensional vectors �qr = Vq��qr,

�qT = Vq��qT and �q
 = Vq��q
 (see section 6). Note however

that the Q-systems can also be solved by more powerful iterative

methods (e.g., GMRES), as suggested in [14].

Since we use a Picard iteration to solve the Q-systems, we have called

our method the Newton{Picard method. The variant described above is
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denoted by the abbreviation CNP , for continuation variant of the Newton{

Picard method.

In the �xed parameter case, i.e., when 
 is considered to be �xed, we

can omit the last row and column in (2.8) and the term in ��q
 in (2.7)

and (2.9). We �rst compute ��qr and ��qT from

�
V T
q MVq � Iq

� �
��qr ��qT

�
= �

�
V T
q r V T

q bT
�
;(2.10)

using a Picard iteration, then compute ��p and �T from

�
V T
p MVp � Ip V T

p (bT +MVq��qT )

cTs Vp ds;T + cTs Vq��qT

� �
��p

�T

�
=

�

�
V T
p (r +MVq��qr)

s+ cTs Vq��qr

�
;

(2.11)

and �nally compute

��q = ��qr +�T ��qT :(2.12)

This variant is denoted by the abbreviation NPGS, because of the simi-

larity with the method that we developed in [15] and denoted by NPGS(l)

(Newton{Picard Gauss{Seidel method).

Since M = @'(x(0); T; 
)=@x(0), the matrix-vector products Mv are

rescaled directional derivatives. They can be computed without requiring

the full monodromy matrix M , using a variational equation or �nite dif-

ference approximation. If a variational equation is used, Mv = z(T ) with

z(t) the solution of the initial value problem

_z = fx('(x(0); t; 
); 
)z; z(0) = v:

ThisN -dimensional linear di�erential equation must be integrated together

with the nonlinear equation (1.1) if the trajectory '(x(0); t; 
) has not been

stored. The second approach is to approximateMv using a �nite di�erence

formula, e.g., the �rst-order formula

Mv �
1

�
['(x(0) + �v; T; 
)� '(x(0); T; 
)] :

This requires one additional time integration of the N -dimensional non-

linear equation (1.1). Note that both time integrations should be done

using the same sequence of time steps and order of the method when using

a variable stepsize/order method, or the time integrations must be com-

puted with very high accuracy. More details on both procedures can be

found in [15, 14].
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2.2. Convergence analysis. We now derive the relationship be-

tween the error after a Newton{Picard step on one hand, and the residuals

of the Q-systems (2.7), the accuracy of the basis and the higher-order terms

on the other hand. This relationship not only explains why some of the

variants developed in [15] sometimes perform badly or even fail, but it can

also be used to control the convergence of the method described above.

Based on this convergence analysis we will develop more robust variants of

the Newton{Picard method in section 4.

Let�
Qrr QrT Qr


�
=

�
Qr QbT Qb


�
+(QMQ� I)

�
�qr �qT �q


�(2.13)

(with �qr = Vq��qr, etc.) be the N -dimensional residuals of the Q-systems

(2.7) (i.e., Vq� the actual residuals of (2.7)). We will use the notation �q�
to denote the three vectors �qr;�qT and �q
 . From a Taylor expansion

around the starting point (x(0); T; 
) of the Newton-Picard step we get

Qr(x(0) + �q +�p; T +�T; 
 +�
) =

Qr(x(0); T; 
) +QM�q ��q +QM�p

+�T QbT +�
 Qb
 +O(�q;�p;�T;�
)2:

(2.14)

Using (2.9) (in terms of the N -dimensional vectors �q� instead of the

(N�p)-dimensional vectors ��q�) and (2.13), this relation can be rewritten

as

Qr(x(0) + �q +�p; T +�T; 
 +�
) = Qrr +�T QrT
+�
 Qr
 +QM�p+O(�q;�p;�T;�
)2:

(2.15)

Similarly,8>>>>>>>><
>>>>>>>>:

V T
p r(x(0) + �q +�p; T +�T; 
 +�
) =

V T
p r(x(0); T; 
) + V T

p MVq��q + V T
p MVp��p� V T

p ��p

+�T V T
p bT +�
 V T

p b
 +O(�q;�p;�T;�
)2;

s(x(0) + �q +�p; T +�T; 
 +�
) = s(x(0); T; 
) + cTs Vq��q

+cTs Vp��p+ ds;T�T + ds;
�
 +O(�q;�p;�T;�
)
2;

n(x(0) + �q +�p; T +�T; 
 +�
) = n(x(0); T; 
) + cTnVq��q

+cTnVp��p+ dn;T�T + dn;
�
 +O(�q;�p;�T;�
)2:

By �rst substituting (2.9) in the right-hand side of this expression, then

comparing the resulting expression with (2.8) to eliminate most terms and

�nally premultiplying the �rst set of equations with Vp, one can show that8>>>>>><
>>>>>>:

Pr(x(0) + �q +�p; T +�T; 
 +�
)

= O(�q;�p;�T;�
)2;

s(x(0) + �q +�p; T +�T; 
 +�
)

= O(�q;�p;�T;�
)
2;

n(x(0) + �q +�p; T +�T; 
 +�
)

= O(�q;�p;�T;�
)2:

(2.16)
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Note that we supposed that the (low-dimensional) P -system (2.8) is solved

accurately. Otherwise the residual2
4 V T

p (r +M�qr)

s+ cTs �qr
n+ cTn�qr

3
5+

2
4 V T

p MVp � Ip V T
p (bT +M�qT ) V T

p (b
 +M�q
)

cTs Vp ds;T + cTs �qT ds;
 + cTs �q

cTnVp dn;T + cTn�qT dn;
 + cTn�q


3
5
2
4 ��p

�T

�


3
5

(2.17)

must be added in the right-hand side of (2.16).

The relations (2.15) and (2.16) allow us to analyze and to monitor

the convergence of (variants of) the Newton{Picard method. At the end

of the Newton{Picard step, all terms in these relations can be computed

without extra matrix{vector products or time integrations of (1.1). The

evaluation of Qr(x(0) + �q + �p; T + �T; 
 + �
) and Pr(x(0) + �q +

�p; T +�T; 
 +�
) requires a time integration of (1.1), but we need to

do that time integration anyway at the beginning of the next iteration step

and as a test for convergence. The matrix{vector products M�q� needed

for the evaluation of the residuals (2.13) are also needed to build the P -

system (2.8). From the subspace iteration to compute the basis Vp (see

section 5) we can recover MVp, so

QM�p =
�
I � VpV

T
p

�
MVp��p

can also be computed easily. The evaluation of (2.17) is also cheap (if

needed at all). Hence the higher-order terms in (2.15) and (2.16) can also

be computed, since all other terms are known. Note that we assume here

that the numerical errors made in the evaluation of each of the terms are

much smaller than the size of each of those terms, i.e., we assume that

all time integrations and matrix{vector products are computed accurately

enough.

Let us now discuss the e�ect of some of the terms in (2.15) and (2.16)

in more detail. This discussion is mathematically not very rigorous but it

gives an intuitive explanation of the performance of the methods.

� The Picard iteration to solve the Q-systems (2.7) has a linear

asymptotic convergence rate j�p+1j. If we use starting values

�q� = 0, we expect that after the Picard iteration kQrrk <

kQr(x(0); T; 
)k, kQrT k < kQbTk and kQr
k < kQb
k (since

(2.14) yields Qrr = Qr(x(0); T; 
), etc., at the beginning of the

Picard iteration). However, since M is a nonnormal matrix, the

residuals (2.13) may initially grow before converging. This may

cause divergence of the Newton{Picard step if the number of Pi-

card iterations is �xed in advance. We have never observed this

phenomenon in practice, but it is clear that a truly robust method

should use an adaptive number of Picard iteration steps.
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� The update (��p;�T;�
) does not only depend on the P -project-

ion of the initial residual, but also on the Q-projection because of

the terms V T
p MVq, c

T
s Vq and c

T
nVq in (2.8). In general, the norms of

�qr and PM�qr are of the same order of magnitude as the norm of

Qr(x(0); T; 
): If Qr(x(0); T; 
) is much larger than Pr(x(0); T; 
),

the P -system (2.8) usually has a large right-hand side since �qr
and thus V T

p M�qr (and possibly, cTs �qr and cTn�qr) are large.

The norm of the right-hand side of the P -system is typically of

the same order of magnitude as the maximum of the norms of

the P - and Q-projection of the initial residual and the update

(��p;�T;�
) will be large if either Pr(x(0); T; 
) or Qr(x(0); T; 
)

are large. The size of the terms �T QbT , �
 Qb
 and QM�p

thus depends on both Pr(x(0); T; 
) and Qr(x(0); T; 
), and will

be large if either Pr(x(0); T; 
) or Qr(x(0); T; 
) are large.

� As discussed before, QbT is often small. Hence we can often neglect

this term (as we did in [15]) and set �qT = 0. However, we

have observed that setting �qT = 0 sometimes slows down the

convergence during the �rst Newton{Picard steps.

� The term Qb
 on the other hand may be quite large and setting

�q
 = 0 (hence Qr
 = Qb
) may cause convergence problems.

The right-hand side of the P -system (2.8) is usually at least of

the order of magnitude of the Q-projection of the initial residual.

Hence �
 and �
 Qb
 can be quite large. Thus a robust method

for continuation should not set �q
 = 0 without �rst testing for

the size of Qb
 .

3. Convergence analysis of some Newton{Picard variants.

In [15], we developed four variants of the method described above,

two for a �xed parameter and two for pseudo-arclength continuation. All

variants were derived by approximating terms in (2.6):

� the term V T
q bT is neglected since this term is usually small,

� the term V T
q MVq � Iq is approximated by

�

 
l�1X
i=0

�
V T
q MVq

�i!�1
:(3.1)

In some variants, we also neglected other terms. We now describe

these variants in more detail.

3.1. Fixed parameter variants NPGS(l) and NPJ(l). When

the parameter 
 is considered to be �xed, the last row and column and the

terms �
 and n in (2.6) can be omitted, leading to the systems (2.10) and

(2.11).

NPGS(l). A �rst �xed parameter variant is obtained by using the

approximation (3.1) for V T
q MVq�Iq and neglecting V

T
q bT in (2.10). Hence
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��qT = 0 and

�q = Vq��q = Vq

l�1X
i=0

�
V T
q MVq

�i
V T
q r;(3.2)

which corresponds to l Picard iterations with starting value ��q = 0. ��p

and �T are solved from (2.10) which reduces to�
V T
p MVp � Ip V T

p bT
cTs Vp ds;T

��
��p

�T

�
=

�

�
V T
p (r +M�q)

s+ cTs �q

�
:

(3.3)

The �rst term in the right-hand side of this system is up to higher order

terms equal to V T
p r(x(0) + �q; T; 
), i.e., the P -projection of the residual

at the end of the Picard iterations. If l = 1, this scheme corresponds to

�rst doing a time integration Picard iteration step restricted to the space

U? followed by a Newton-based single shooting step in the space U starting

from the end point of the time integration. Therefore, we have called this

scheme the Newton{Picard Gauss{Seidel method, denoted as NPGS(l),

where l stands for the number of Picard iteration steps.

NPJ(l). A second �xed parameter variant is derived by also neglect-

ing the terms V T
p MVq and c

T
s Vq in (2.6) and (2.11). �q is computed using

(3.2) and ��p and �T are solved from�
V T
p MVp � Ip V T

p bT
cTs Vp ds;T

��
��p

�T

�
= �

�
V T
p r

s

�
:(3.4)

Because (3.2) and (3.4) are fully decoupled, we have called this variant the

Newton{Picard Jacobi method with l Picard steps, denoted as NPJ(l).

Note that the NPJ(1) method corresponds to the �xed parameter variant

of the recursive projection method developed by Shro� and Keller [24].

3.2. Continuation variants CNP(l) and CRP(l).

CNP(l). A �rst continuation variant is obtained by using the approx-

imation for V T
q MVq � Iq and neglecting V T

q bT in (2.6), i.e., we solve the

linear system2
6664
�

�Pl�1
i=0

�
V T
q MVq

�i��1
0 0 V T

q b


V T
p MVq V T

p MVp � Ip V T
p bT V T

p b

cTs Vq cTs Vp ds;T ds;

cTnVq cTnVp dn;T dn;


3
7775

2
664

��q

��p

�T

�


3
775 = �

2
664

V T
q r

V T
p r

s

n

3
775
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exactly. In [15], we propose to use the Sherman{Morrison formula to solve

this system. Alternatively, we can use the block Gauss elimination method

proposed above. In this case, we �rst compute �qr and �q
 from

�qr = Vq

l�1X
i=0

�
V T
q MVq

�i
V T
q r;

�q
 = Vq

l�1X
i=0

�
V T
q MVq

�i
V T
q b
 ;

then ��p, �T and �
 are computed from

2
4 V T

p MVp � Ip V T
p bT V T

p (b
 +M�q
)

cTs Vp ds;T ds;
 + cTs �q

cTnVp dn;T dn;
 + cTn�q


3
5
2
4 ��p

�T

�


3
5 =

�

2
4 V T

p (r +M�qr)

s+ cTs �qr
n+ cTn�qr

3
5

and �nally we compute

�q = �qr +�
�q
 .

This variant is denoted as CNP (l), for continuation variant of the Newton{

Picard method with l Picard steps. Note that this method requires two

sequences of l Picard iteration steps and is considerably more expensive

than the �xed parameter methods if l is large.

CRP(l). The second pseudo-arclength continuation variant is found

by also neglecting the terms V T
p MVq , c

T
s Vq and cTnVq in (2.6). We �rst

solve ��p, �T and �
 from

2
4 V T

p MVp � Ip V T
p bT V T

p b

cTs Vp ds;T ds;

cTnVp dn;T dn;


3
5
2
4 ��p

�T

�


3
5 = �

2
4 V T

p r

s

n

3
5

and then compute

�q = Vq

l�1X
i=0

�
V T
q MVq

�i
V T
q (r +�
 b
) :

This variant is denoted as CRP (l) for continuation variant of the recursive

projection method with l Picard iteration steps, since CRP (1) corresponds

to the method for continuation in [24].
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3.3. Convergence behavior of NPGS(l) and NPJ(l). In [15], we

showed that the NPGS(l) and NPJ(l) schemes have linear asymptotic

convergence rate j�p+1j
l
(where �p+1 is the largest eigenvalue smaller than

the threshold � for the basis Vp). However, this result has several limita-

tions, since a perfect basis Vp is assumed, and it only gives the asymptotic

convergence rate, but no information about the transient behavior. More-

over, the proof does not generalize to the CNP (l) and CRP (l) schemes.

We now study the convergence behavior of these methods using (2.15)

and (2.16) and we illustrate the discussion by analyzing the convergence

observed in actual computations.

Neglecting V T
q bT in the NPGS(l) and NPJ(l) methods corresponds

to setting ��qT = 0 in the algebraic framework described in the previous

section.

For the NPGS(l) method, (2.15) and (2.16) reduce to

8>>>><
>>>>:

Qr(x(0) + �x(0); T +�T )

= Qrr +�T QbT +QM�p+O(�q;�p;�T )2

= (QMQ)
l
r +�T QbT +QM�p+O(�q;�p;�T )2

Pr(x(0) + �x(0); T +�T ) = O(�q;�p;�T )2

s(x(0) + �x(0); T +�T ) = O(�q;�p;�T )2:

(3.5)

� Let us �rst assume that the Q-projection of the residual

Qr(x(0); T ) at the beginning of the NPGS(l) step is large com-

pared to the P -projection Pr(x(0); T ). �q, V T
p M�q and hence the

right-hand side of (3.3) are usually of similar size as Qr(x(0); T ).

Hence one can expect that �p and �T will be at most of the

same order of magnitude as Qr(x(0); T ). If the basis Vp is suf-

�ciently accurate, the terms �T QbT and QM�p will be much

smaller than the initial Q-projection of the residual. The terms

Qrr and the higher order terms dominate the Q-projection of the

residual at the end of the NPGS(l) step. If the higher order terms

are su�ciently small, both projections of the residual decrease if l

is su�ciently large.

� On the other hand, if initially the P -projection of the residual is

much larger than the Q-projection, �T and �p can be quite large

and the terms �T QbT andQM�pmay dominate the Q-projection

of the residual and limit its improvement, even if the basis is fairly

accurate. kQrk may even grow, but if the higher order terms are

not too large, the P -projection and the overall residual decrease.

After some steps, we return to the �rst scenario.

Thus we can conclude that the NPGS(l) scheme tries to keep the size

of the P -projection of the residual at or below the size of the Q-projection.

This is not the case for theNPJ(l) scheme. In this case we also neglect
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the terms V T
p MVq and cTs Vq , and the following relations hold:8>>>><

>>>>:

Qr(x(0) + �x(0); T +�T )

= Qrr +�T QbT +QM�p+O(�q;�p;�T )2

= (QMQ)
l
r +�T QbT +QM�p+O(�q;�p;�T )2

Pr(x(0) + �x(0); T +�T ) = PM�q +O(�q;�p;�T )2

s(x(0) + �x(0); T +�T ) = cTs �q +O(�q;�p;�T )2:

(3.6)

� First assume that the Q-projection of the residual at the beginning

of theNPJ(l) step is similar in size or larger than the P -projection.

Since the right-hand side of the P -system (3.4) is fairly small, we

can expect that �p and �T and hence the terms �T QbT and

QM�p in (3.6) will be small. kQrk can decrease substantially if

the higher order terms are small enough and if l is large enough.

However, �q will be large (typically of comparable size as the Q-

projection of the initial residual). Hence the term PM�q usually

is large (and depending on the phase condition use, cTs �q also)

and limits the decrease of the P -projection of the residual. In fact,

kPrk may even grow.

� On the other hand, if initially the P -projection of the residual is

much larger than the Q-projection, �q and hence also PM�q and

cTs �q are small. Pr will decrease substantially provided the higher

order terms are small. However, since �p and �T are relatively

large, the reduction of kQrk is limited by the size of the terms

�T QbT and QM�p. In fact, kQrk may even grow.

In general, the NPJ(l) scheme tends to keep kQrk much smaller than

kPrk, but this is only possible if the basis is accurate enough. Otherwise

the scheme continuously switches between both scenarios described above

and will alternately reduce kQrk and kPrk. Therefore the NPJ(l) needs a

more accurate basis than the NPGS(l) method for a similar performance

in terms of number of Newton{Picard iterations.

These points are illustrated in Figure 1 and 2. Figure 1 shows the

convergence history for the NPGS(8) method and Figure 2 for the NPJ(8)

method. Both computations were done for the same (stable) periodic orbit

and using approximately the same starting value. The letter B marks the

beginning of the Newton{Picard step, the numbers 1 to 8 the 8 Picard

steps and E the end of the step. After each Picard step, we updated the

point x(0) and computed the residual r to show how the residual and its

projections evolve during the iterations.

In these computations, we allowed the dimension p of the subspace

U (or the value of � in assumption 2.1) to change between every Newton{

Picard step, depending on the number of basis vectors that were considered

to be accurate enough (see section 5). The changes of the basis size explain

the jumps of the norms of the projections of the residual between successive

Newton{Picard steps.
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Fig. 1. Convergence history of the NPGS(8) method. The basis size used for the
�rst step was 2 and for the next steps 3 and 6.
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Fig. 2. Convergence history of the NPJ(8) method. The basis size used for the
�rst step was 2 and for the next steps 5, 5, 6 and 6.

Notice the approximately linear convergence of the Picard iterations.

The convergence factor is di�erent in di�erent Newton{Picard steps since

the dimension of U varies. Initially the curves for kQrk and kQrrk fall

together, but after a while, kQrk does not converge any further. This

is explained by the higher order terms in the expansion (2.15). In the

fourth Newton{Picard step in Figure 2 the convergence of kQrrk breaks
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o� because we have reached the level of roundo� errors. During the initial

Picard steps kPrk changes because of the term PM�q. As the Picard

iterations converge, �q settles down to a more or less constant value and

so does kPrk.

During the Newton step (from 8 to E in the �gures), kQrk sometimes

increases substantially. In the �rst Newton{Picard step in Figure 1 the

higher order terms dominate and no jump is observed. The jump during

the second iteration is caused by the term �T QbT and the jump during the

last step by QM�p. A similar scenario is observed in Figure 2. Initially,

higher order terms dominate the Q-projection in (3.6), then �T QbT and

during the �nal iterations QM�p.

In Figure 1 we see that the NPGS(8) method converged in three steps.

In this case, the convergence speed was clearly limited by the accuracy of

the basis and by the size of the term QbT . Figure 2 for the NPJ(8) method

shows a di�erent picture. This scheme needed �ve steps to converge. We

clearly notice the irregular convergence behavior predicted above. During

the initial step, the P -projection of the residual does hardly decrease be-

cause of the term PM�q, but the Q-projection decreases nicely as it did

in the NPGS method. In the second step, k�qk is much smaller and the

P -residual decreases a lot. However, since �p and �T are large, the terms

�T QbT and QM�p are large and prevent the decrease of kQrk. kQrk

even grows. The third step shows a similar picture as the �rst step. In the

fourth step, the basis is accurate enough and the term QbT is small enough

so that both projections of the residual can decrease.

In [14] a similar analysis is presented for the NPGS(1) and NPJ(1)

methods, where only 1 Picard step is used to solve the Q-systems. In

this case, the convergence of the Q-projection of the residual is limited

by the convergence of the Picard scheme. In the NPGS(1) method, the

P -projection of the residual is much below the Q-projection, while in the

NPJ(1) method the convergence of the P -projection is completely gov-

erned by the term PM�q and the Q-projection of the residual is kept well

below the P -projection.

In general, the NPGS(l) scheme will pro�t more than the NPJ(l)

scheme from a large number of Picard steps l . The latter scheme needs a

more accurate basis before it can pro�t from a larger value of l and from

a smaller residual Qrr since the update �p and hence QM�p are usually

larger than in the NPGS(l) scheme.

3.4. Convergence behavior of CNP (l) and CRP (l). The picture

for the continuation variants is not so di�erent. For the CNP (l) scheme
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we get8>>>><
>>>>:

Qr(x(0) + �x(0); T +�T; 
 +�
) = Qrr +�T QbT
+�
 Qr
 +QM�p+O(�q;�p;�T;�
)2;

P r(x(0) + �x(0); T +�T; 
 +�
) = O(�q;�p;�T;�
)2;

s(x(0) + �x(0); T +�T; 
 +�
) = O(�q;�p;�T;�
)2;

n(x(0) + �x(0); T +�T; 
 +�
) = O(�q;�p;�T;�
)2;

(3.7)

and for the CRP (l) method8>>>>>>>>>><
>>>>>>>>>>:

Qr(x(0) + �x(0); T +�T; 
 +�
) = Qrr +�T QbT
+�
 Qr
 +QM�p+O(�q;�p;�T;�
)2;

P r(x(0) + �x(0); T +�T; 
 +�
) =

PM�q +O(�q;�p;�T;�
)2;

s(x(0) + �x(0); T +�T; 
 +�
) =

cTs �q +O(�q;�p;�T;�
)2;

n(x(0) + �x(0); T +�T; 
 +�
) =

cTn�q +O(�q;�p;�T;�
)2;

(3.8)

where

Qrr = (QMQ)lQr;

Qr
 = (QMQ)lQb
 :

The CNP (l) method will converge keeping kPrk at or below kQrk, while

the CRP (l) method will keep kQrk below kPrk and converge irregularly

if the basis is not accurate enough.

There is however an important di�erence in the behavior of the �xed

parameter and continuation variants if the nonnormality causes initial

growth of the residual Qr
 in (2.13). The analysis presented in [14] shows

that in such a case both continuation variants can fail for an arbitrary �xed

value of l, even for a starting value arbitrary close to the limit cycle. This

indicates that it might be impossible to proof an asymptotic convergence

result for the CNP (l) and CRP (l) schemes without additional conditions

on the matrixM and/or the vector b
 . However, this is a rather hypothet-

ical scenario; we have never observed growth of the residuals (2.13) during

the initial Picard steps. But we learn from the analysis in [14] that in a

robust code l should be allowed to vary and the size of the term Qr
 should

be monitored.

4. Developing a robust method.

In this section, we �rst recapitulate the di�erent terms in (2.15) and

(2.16) that limit the convergence. Next we discuss how convergence prob-

lems caused by each of those terms can be treated. We then show that the

relations (2.15) and (2.16) can be exploited in two complementary ways.

They can be used at the beginning of a Newton{Picard step (\a priori")
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to determine convergence thresholds for the basis and the various iterative

solvers for the Q-systems and they can be used at the end of the iteration

step (\a posteriori") to analyze the convergence behavior. Combining both

strategies leads to powerful, e�cient and robust methods.

4.1. Factors limiting convergence. From (2.15) and (2.16) it is

clear that �ve factors limit the improvement of the residual that can be

obtained from a given Newton{Picard step.

1. Higher-order terms neglected by the Newton linearization put lim-

its on both the Q- and the P -projection of the �nal residual.

2. Inaccuracy of the basis (the term QM�p) limits the Q-projection

of the �nal residual.

3. The accuracy of the solutions of the Q-systems (2.7) or (2.10) in-


uences the Q-projection of the �nal residual.

4. If the P -system (2.8) or (2.11) is solved inaccurately, the term

(2.17) shows up in (2.16) and limits the convergence of the residuals

Pr, s and n of the nonlinear iteration.

5. Numerical errors, especially in the evaluation of the matrix{vector

products and derivatives, but also in other operations, can also

limit the convergence.

4.2. Curing convergence problems. Robust methods will must

control each of these elements.

1. Higher-order terms can be controlled using damping strategies (see,

e.g., [1]). Note that this is not very important if the solver is

used in a continuation code. If the higher order terms are too

large, the solver fails and the predictor decreases the steplength

and generates a new and better starting value. However, damping

is useful to compute a single solution or to start the continuation

run if good starting values are not available.

2. In
uence of the basis inaccuracy. An inaccurate basis can limit the

improvement of the Q-projection of the residual. We must make

sure that all components of the basis are accurate enough. One

inaccurate basis vector can signi�cantly hurt the performance of

the Newton{Picard scheme.

3. The accuracy of the solution of the Q-systems. To avoid problems

with initial growth of the residuals (2.13), one should use a variable

number of Picard steps and test for convergence after each iteration

step. The convergence test is very cheap, since the result of the

matrix{vector product that is needed for the test can be used in the

next Picard step or to build the P -system. One can also consider

to solve the Q-systems using more advanced iterative methods. We

will also discuss the choice of good starting values for the iterative

methods.

4. The accuracy of the solution of the P -system. This is a low-

dimensional system and the best direct method should be used
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to solve this system, e.g., a least-squares based procedure.

5. Numerical errors can only be controlled by using high-quality time

integration techniques and robust, stable numerical methods at

each step in the algorithm.

4.3. A posteriori use of the convergence relations. At the end

of a Newton{Picard iteration step, the new residual is computed. If the

convergence goal for the iteration step is not reached, (2.15) and (2.16) can

be used to analyze what went wrong and to take the appropriate action.

� If the higher order terms caused divergence, a damping strategy

should be used or the Newton{Picard solver should return with

an error condition and rely on the continuation code to generate a

better starting value (by decreasing the stepsize).

� If the size of QM�p causes problems, the quality of the basis

should be improved and the solution of the Q-systems should be

recomputed. Re�ning the basis is expensive and should only be

done if the Newton{Picard step diverged or if a su�cient additional

decrease of the residual is possible.

� If one of the residuals (2.13) caused problems, some more Picard

iterations to solve the Q-systems should be done.

Remark that we can already test the size of the residuals (2.13) and

QM�p in (2.15) before the computation of the new residual r(x(0)+�q+

�p; T +�T; 
+�
) to check whether these terms have decreased enough.

The early detection of problems can avoid a super
uous integration of

(1.1). This is particularly important if the integration of (1.1) is expensive

compared to the matrix{vector products.

4.4. A priori use of the convergence relations. At the beginning

of a Newton{Picard iteration step, we can use (2.15) and (2.16) to deter-

mine the convergence thresholds for the computation of the basis Vp (see

section 5) and for the iterative solvers for (2.7) and (2.10), provided one

has good estimates for k�pk, j�T j and j�
j. Based on the initial residual

and estimates for the higher order terms, the goal for the residual at the

end of the Newton{Picard step is determined. Based on the estimates for

k�pk, j�T j and j�
j and the goal for the step, it is possible to derive

from (2.15) convergence thresholds for the iterative solver and computa-

tion the basis Vp. We now discuss two elements from this strategy in more

detail. First, we discuss the estimation of k�pk, j�T j and j�
j. Next we

propose a strategy to determine the goal for the residual at the end of a

Newton{Picard step.

4.5. Estimating the size of �p, �T and �
. We can estimate

k�pk, j�T j and j�
j based on the vectors bT and b
 and the residual r.

A very rough estimate can be obtained from (2.2). k�pk and the total

update k�x(0)k are usually of the same order of magnitude, even if the

Q-projection of the residual at the beginning of the step is much larger
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than its P -projection. Because of the term V T
p M�qr in the right-hand

side of the P -system (2.8), the initial residual of the Newton{Picard step

and the right-hand side of the P -system are usually of the same size. We

estimate that k�pk is of the same order of magnitude as the norm of the

initial residual, i.e.,

k�pk � krk :(4.1)

This estimate may be too pessimistic (i.e., overestimate the norm of �x(0))

if the limit cycle is very unstable. In the latter case, a small error in x(0) can

cause a large residual. The estimates for j�T j and j�
j are derived from

comparing the right-hand side of (2.2) with the columns corresponding to

�T and �
, e.g.,

j�T j �
krk

kbT k
; j�
j �

krk

kb
k
:(4.2)

We stress that these estimates are very crude and more work needs to be

done to develop better estimates.

4.6. Setting the convergence goal. Setting the convergence goal

for the Newton{Picard step is even harder. We determine a factor �goal
expressing the desired improvement of the residual, i.e., at the end of the

Newton{Picard step we wish to obtain

kr(x(0) + �x(0); T +�T; 
 +�
)k � �goal kr(x(0); T; 
)k :(4.3)

We will always ensure �goal � �req , a user-determined parameter. To

determine �goal, we proceed as follows. First, we estimate the higher

order terms in (2.15) and (2.16) based on the results of the previous

Newton{Picard steps. If the estimated higher order terms are larger than

�req kr(x(0); T; 
)k, we set �goal = �req . It is possible that the criterion

(4.3) cannot be met in this case, even if a damping strategy would be used.

If the estimated higher order terms are smaller than �req kr(x(0); T; 
)k

we have more options. By changing the strategy to determine �goal, the

Newton{Picard iterations can show either linear or quadratic convergence

behavior (or any behavior in between). Quadratic convergence can be ob-

tained by reducing krk in each iteration step to the level of the estimated

higher order terms. This requires a lot of work in each step, but reduces

the number of Newton{Picard iterations. This strategy makes sense if

the matrix{vector products are much cheaper than the integration of the

nonlinear system (1.1). We may also settle for linear convergence of the

Newton{Picard iterations, or something in between linear and quadratic

convergence, say

�goal = �1�!req �
!; 0 � ! � 1;

where � is the ratio of the estimated higher order terms to the initial resid-

ual. ! = 0 corresponds to linear convergence with convergence rate �req
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and ! = 1 corresponds to quadratic convergence. Once we have deter-

mined �goal, we set the goal for the Q-projection of the �nal residual and

for the individual residuals (2.13) and the basis iterations. We must also

put a lower limit on �goal since the obtainable improvement is limited by

the errors in the computation of the matrix{vector products and not only

by the higher order terms, and a wrong estimate for the higher order terms

may lead to an infeasible goal. Hence we limit

�best � �goal � �req

where �best is a user-determined parameter. Furthermore, to avoid unnec-

essary work, the residual should not decrease much below the convergence

requirement for the Newton{Picard procedure. This determines another

lower limit for �goal.

4.7. Minimizing the total cost. The parameter � in Assumption

2.1 is another important parameter to be determined. Lower values of �

result in more basis vectors and thus more work to construct the basis, but

a faster convergence of the Picard iterations used to compute the vectors

��q�. The ideal strategy for the choice of � and �goal should minimize

the total cost for the computation of the periodic orbit. However, it is

impossible to predict the total cost of the iterations in advance in terms

of the various parameters. A less ambitious goal is to minimize the ratio

of the computational cost to the improvement of the residual at each step.

This is also impossible since one cannot determine in advance the precise

cost of the subspace and Picard iterations, since this depends on the full

(unknown) spectrum of the matrix M .

5. Computing the basis.

A crucial aspect of the Newton{Picard method is the e�cient calcula-

tion and repeated updating of the basis Vp for the low-dimensional subspace

U . Recall that U is the space spanned by the (generalized) eigenvectors of

M corresponding to eigenvalues greater than � in modulus. Since we are

only interested in the dominant eigenvalues and since we are able to com-

pute matrix{vector products with the matrix M , subspace iteration can

be used. This is also proposed in [9, 10, 11] and [24]. In order to keep

the number of (expensive) matrix{vector multiplications low, we use the

most sophisticated version of this algorithm, namely, subspace iteration

with projection after each iteration and locking (de
ation).

5.1. Subspace iteration with projection and locking. Subspace

iteration computes an orthonormal basis for the eigenspace U , correspond-

ing to the p most dominant eigenvalues of a matrix M . Let

V [0] =
h
v
[0]
1 � � � v

[0]
p

i
;
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where
n
v
[0]
1 ; : : : ; v

[0]
p

o
is an orthonormal basis for an initial guess for the

subspace U . The convergence of subspace iteration can be accelerated by

using pe additional vectors, starting the algorithm with the matrix

V [0]
e =

h
v
[0]
1 � � � v

[0]
p � � � v

[0]
p+pe

i
;

where
n
v
[0]
1 ; : : : ; v

[0]
p+pe

o
is an orthonormal basis for an initial guess for the

dominant invariant subspace of dimension p + pe. We use the following

algorithm, which is a variant of Algorithm 5.4 in [22]. Because of the pro-

jection step, the basis vectors corresponding to larger eigenvalues converge

faster. Locking is used to avoid the updating of su�ciently converged basis

vectors [12].

Algorithm 1. Subspace iteration with projection and locking.

Input:

V
[0]
e =

h
v
[0]
1 � � � v

[0]
p � � � v

[0]
p+pe

i
routine to compute Mv.

Output:

orthonormal matrix Ve, where Span(Ve[1: p]) is a good approx-

imation for U ;

W =MVe and S = V T
e W .

begin

peff  0

W = V
[0]
e

repeat

Ve[peff + 1:p+ pe] W [peff + 1:p+ pe]

Orthonormalize the column vectors of Ve starting at col-

umn peff + 1.

Compute W [peff + 1:p+ pe] =MVe[peff + 1:p+ pe].

Compute U = V T
e MVe = V T

e W

Compute the Schur decomposition UY = Y S of U , order

the Schur vectors according to decreasing modulus of the

corresponding eigenvalue.

Ve  VeY , W  WY .

Determine the number peff of accurate vectors in Ve.

until peff = p

end

In [22] locked vectors are not updated: U is computed as U =

Ve[peff + 1:pe]
TW [peff + 1:p+ pe] and the step Ve  VeY , W  WY be-

comes Ve[peff+1:p] Ve[peff+1:p]Y ,W [peff+1:p] W [peff+1:p]Y . We

have chosen another approach and allow small updates to already locked

vectors based on information gained from the new matrix{vector products

of the other basis vectors. This is similar to the procedure used in LOPSI

[12]. This approach allows reordering of the eigenvalues in the Schur de-

composition and takes into account the (unlikely) case that an eigenvalue
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is initially underestimated, but converges to a value that is larger than a

locked eigenvalue.

We use pe � 2. This ensures that �p+1 converges in non-degenerate

cases, since �p+1 can be a complex eigenvalue. Convergence of the eigen-

value �p+1 is important in our strategy to select the value of p (see below).

Since the convergence factor of a simple eigenvalue �i is j�p+pe j = j�ij, a

larger value of pe greatly improves the convergence speed of the p domi-

nant eigenvalues. This compensates for the additional cost per subspace

iteration step due to the use of a larger basis.

In each Newton-Picard iteration step, the basis Vp must be (re)-

computed. If l is small and if � is rather large, we do not need a very

accurate basis; and if a good starting value for Vp is available, one or

two subspace iteration steps per Newton{Picard step are usually su�cient.

Otherwise, e.g., before the �rst Newton{Picard step, more subspace it-

erations are needed. Locking is then very useful if some of the Floquet

multipliers are large, since the corresponding basis vectors will converge to

the required accuracy in few subspace iteration steps, while for the other

vectors, more iteration steps are needed. In our code converged eigenval-

ues remain locked within a Newton{Picard step, but locking is normally

not maintained over successive Newton{Picard steps. Indeed, preliminary

locking of vectors and failing to unlock them again can lead to slow conver-

gence or divergence of the algorithm. Furthermore, there are theoretical

objections against this procedure, since M changes between two Newton{

Picard iteration steps and W is no longer exactly equal to MV for the

locked columns. In any case, all vectors are unlocked to compute accurate

values for the Floquet multipliers after the �nal Newton{Picard step.

We now discuss the convergence criterion we used, the choice of the

initial basis and a strategy for the determination of the basis size.

5.2. Convergence criterion. Our aim is to compute a (nearly) in-

variant subspace Span(Vp) of M and to ensure that the term V T
q MVp��p

which is neglected in (2.6) remains small. As can be seen from (2.15) and

Figure 1, it is important to control the size of the latter term. The conver-

gence criterion for the subspace iteration is based on [25] and requires no

new matrix{vector products with M . Let Vk = Ve[1:k], Wk = W [1:k] and

Sk = S[1:k; 1:k]. The number peff of vectors that are locked in Algorithm

1 is determined to be the largest value of k for which S[k + 1; k] = 0 (i.e.,

the (k; k) element of S is not the upper left element of a 2� 2-block) and

�k = max
k�pkk2=1

�pk2R
k



�I � VkV
T
k

�
MVk �pk




2

is lower than a user-determined threshold "sub for the basis accuracy. �k is

the largest singular value �max of

Zk = (I � VkV
T
k )MVk =Wk � VkV

T
k Wk =Wk � VkSk:(5.1)
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Note that Zk can be computed without new matrix{vector products with

M and that (5.1) is only valid if S[k+1; k] = 0. Under the latter condition,

we also have

Zk = Zp[1:k]:(5.2)

Zk is a N � k-matrix and we wish to avoid doing many computations

with it. Because of implementation issues, we only allow AXPY-operations

and scalar products with N -dimensional vectors. Furthermore, we wish to

determine �k = �max(Zk) =
q
�max(Z

T
k Zk) for di�erent values of k. Note

that

ZT
k Zk =

�
W T

k � STk V
T
k

�
(Wk � VkSk) =W T

k Wk � STk Sk

If we �rst compute A =W TW; then

ZT
k Zk = A[1:k; 1:k]� STk Sk;

and we can compute �k = �max(Zk) e�ciently for di�erent values of k.

Although computing the matrix ATA explicitly and then computing its

eigenvalues is not a very stable algorithm, this approach is accurate enough

for our purpose and it does not require the construction of the matrix Zk
(for an alternative approach, see [14]).

5.3. The initial basis. If a branch of periodic solutions is computed,

the �nal basis for the periodic solution at the previous continuation point

can be used as the initial guess for the basis V
[0]
e . To improve the robust-

ness of the calculation of the Floquet multipliers, components of V
[0]
e are

randomly perturbed at the start of each new continuation step. This helps

to ensure that new eigenvectors can enter the basis rapidly and that all

eigenvalues outside of the disk C� are computed.

For the �rst point on a branch we can either perform some subspace

iterations starting with random vectors or derive starting values from the

bifurcation point where the branch originates from. For example, at a

Hopf point with critical eigenvalues �i!, the Floquet multipliers of the

originating periodic orbit are given by

�i = e
2��

i

!

where �i are the eigenvalues of fx at the Hopf point. The initial basis

is then given by the Schur vectors corresponding to the p + pe rightmost

eigenvalues of fx. These eigenvalues and the corresponding basis can be

computed using appropriate iterative techniques, see, e.g., [17].

5.4. Basis size. During the subspace iteration, the dimension p of

the subspace U must be updated such that

j�1j � � � � � j�pj > � > j�p+1j � � � � � j�p+pe j :
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Choosing the value of p too large does not cause trouble. However, if p

is too small and if j�p+1j � 1, the Picard iterations used to solve the Q-

systems (2.7) will fail to converge. To ensure early detection of growth of

the size of the basis, we use a weaker threshold in the convergence criterion

for the decision on adding and removing basis vectors than in the criterion

for the locking of vectors. Suppose �1; : : : ; �i would be locked if the weaker

threshold were used and suppose nvec is the current number of vectors in the

basis. Let plarge and be the number of eigenvalues in the set f�1; : : : ; �ig

that are larger than �. Let psmall be the number of eigenvalues that are

smaller than rhist� with rhist < 1. (0:8 < rhist < 0:9 adds some hysteresis

to the criterion to avoid that we quickly add again a vector that has been

removed or vice versa.) Vectors must be added to the basis if plarge+ pe >

nvec. Vectors should be removed if psmall > 0 and (k � 1) + pe < nvec,

with k such that �k is the largest eigenvalue in the set f�1; : : : ; �ig that is

smaller than rhist�. Note that some test results in section 8 are computed

with a version of the code in which vectors were only removed if psmall > pe
(a too conservative criterion).

The combination of the use of extra vectors, random perturbations

of the starting values and our criterion for adding and removing vectors

proved to be reliable for our test cases. It is much simpler and more reliable

than criteria based on monitoring the convergence of the Newton-Picard

iteration, as used in [9, 24]. Indeed, slow convergence can also be caused by

an inaccurate basis or bad starting values. Increasing the value of p does

not the appropriate action in those cases and leads to a too large value of

p. The extra cost of using pe extra vectors is largely compensated by the

higher convergence speed of the subspace iteration.

6. Solving the Q-systems.

From the discussion in the previous sections, we can deduce the fol-

lowing requirements for the Q-system solver:

1. The Q-system solver must be able to use a variable number of

steps, controlled by a convergence criterion.

2. The solver must be able to start with a nonzero starting value,

since it is possible to derive good starting values for ��qr in (2.7)

| see below.

3. The solver should also output the terms M�q� or V T
p M�q� for

the construction of the P -system. These terms can be recovered

easily from the Q-system solver. We save a matrix{vector product

for the construction of the P -system in doing so.

4. During the a posteriori analysis we may decide that the solution of

one of the Q-systems needs further re�nement. Therefore the Q-

system solver should generate the necessary information to make

the restart as cheap as possible.
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We will �rst discuss the use of a Picard iteration scheme to solve the

Q-systems (2.7) or (2.10). Then we will discuss the choice of the starting

values for the various Q-systems.

6.1. The Picard scheme. In [15, 20], we proposed to compute �q

using a �xed number of Picard iterations. With a variable number of steps,

the Picard iteration is given by�
��q�  ��q

[0]
� ;

��q�  V T
q MVq��q� + V T

q r� until convergence,

where r� denotes the residual r, bT or b
 and where ��q� denotes the cor-

responding unknown in (2.7) or (2.10). The use of the matrix Vq can be

avoided by premultiplying each term with Vq and instead compute the

N -dimensional vectors �q� = Vq��q�, i.e.,�
�q  �q[0];

�q  QM�q +Qr� until convergence.
(6.1)

The scheme has converged if

kQ (r� + (M � I)�q�)k � ";

where " is the convergence threshold. This test is basically free since the

matrix{vector product M�q� can be used in the next Picard step or to

construct the P -system. Our algorithmmust take into account two di�erent

start scenarios:

1. A starting vector �q� is given, but M�q� is not yet known.

2. Both �q� and M�q� are given. This occurs if the starting value

is 0 since then M�q = 0 and at a restart.

This leads to the following algorithm. Note that we have omitted the

subscript � from our notation in the algorithm.

Algorithm 2. Picard iteration for single shooting.

Input

Starting value �q[0]:

Optional: M�q[0].

Convergence threshold ".

Routine to compute Mv.

Basis Vp.

Right-hand side r.

Output

�q = Vq��q with ��q an approximate solution to�
V T
q MVq � Iq

�
��q = �V T

q r:

M�q.

begin

if �q[0] = 0 then

�q  0; M�q  0;
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else if M�q[0] is known

�q  �q[0]; Set M�q =M�q[0].

else

�q  �q[0];

Compute M�q.

endif

RES  
�
I � VpV

T
p

�
(r +M�q ��q)

while kRESk > " do

�q  
�
I � VpV

T
p

�
(M�q + r)

Compute M�q.

RES  
�
I � VpV

T
p

�
(r +M�q ��q)

end while

end

Note that this algorithm may return without actually updating �q if

the initial solution is accurate enough. This is important if �qT is being

computed since the term QbT is often small enough so �qT = 0 is su�cient.

In the actual implementation, we also stop if a predetermined maximum

number of iterations is exceeded. l steps of this algorithm require l matrix{

vector products if M�q[0] is known and l + 1 products otherwise.

6.2. Starting values. Starting values are needed at the beginning of

the Newton{Picard step and at a restart after the a posteriori analysis. Let

us �rst consider the latter case.

6.2.1. Starting values for a restart. If the basis Vp has not

changed, we can restart Algorithm 2 using the values of �q� and M�q�
returned after the previous run for the same right-hand side. The situation

is di�erent if the basis has been re�ned. We need to ensure that �q� lies

in the new subspace U?. Therefore we will reproject �q� and at the same

time make the corresponding updates to M�q�:�
�q�  

�
I � VpV

T
p

�
�q�;

M�q�  M�q� � (MVp)V
T
p �q�:

(6.2)

Note that MVp is known from the subspace iterations. Formula (6.2) pro-

duces a good starting value if vectors that were contained in Vp have not

changed much and if the basis size has not decreased (i.e., no new vectors

added to Vq). To cope with a decrease of the dimension of U we suggest

to add to the vectors �q� components in the direction of the eigenvec-

tors corresponding to the smallest of the p dominant eigenvalues before the

restart of the subspace iteration and to remove the unnecessary components

afterwards using (6.2).

6.2.2. Starting values at the beginning of a Newton{Picard

step. At the limit cycle, r = 0 and thus �qr = 0. Therefore we use

�q
[0]
r = 0 as starting value for the Q-system with right-hand side Qr.
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Although the vector bT does not change much during the iterations,

the right-hand side QbT can change considerably since b�T is an eigenvec-

tor of M� for the eigenvalue 1 (at least if we neglect the e�ect of time

discretization errors). At the limit cycle, Qb�T = 0 for a perfect basis and

hence �qT = 0. Thus �q
[0]

T = 0 is a reasonable starting value. Using the

result of the previous iteration as a starting value is not a good idea.

Except when the basis size changes, Qb
 is fairly constant. Hence one

can use the value of �q
 computed in the previous iteration as starting

value and reproject �q
 into U? using (6.2). To cope with the e�ect of a

decrease of the basis size, one can use the same procedure as for the restart

after a basis change. At the end of the Newton{Picard step, additional

components are added to �q
 using the procedure outlined above. The

projection (6.2) at the beginning of the next Newton{Picard step again

removes unnecessary components.

It is sometimes possible to derive better starting values at the be-

ginning of a Newton{Picard step by using components of the basis Ve in

Algorithm 1 that are not used in the basis Vp. This procedure is discussed

in [14].

7. Solving the P-system.

The cost of solving the small P -systems (2.8) or (2.11) is only a negli-

gible fraction of the total cost of a Newton{Picard step. If an exact basis Vp
and exact solutions of the Q-systems were used, the P -system (2.8) would

always be singular at a transcritical or pitchfork bifurcation point (and

(2.11 ) even at a fold point). It is very ill-conditioned in the neighborhood

of these points. To improve the numerical stability, the P -system can be

solved using the least-squares method [5] instead of Gaussian elimination,

since the cost is not a problem.

As an additional advantage of using the least-squares method, the

explicit parameterizing equation and phase condition can be omitted. In-

deed, the least-squares approach automatically selects good conditions, as

we now explain.

Suppose A 2 R
m�n with n > m and Rank(A) = m. The singular

value decomposition (SVD) of A is given by

A = U�V T(7.1)

where U 2 Rm�m and V 2 Rn�n are orthogonal matrices, � 2 Rm�n , with

�[i; i] = �i, �[i; j] = 0 if i 6= j, and �1 � �2 � � � � � �m > 0. Note that

Ker(A) = Span (V [m+ 1 : n])(7.2)

The least squares solution of Ax = b is given by

xLS = V�+UT b:
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with �+ 2 R
n�m a matrix with all elements equal to zero except the

elements on the main diagonal which are ��11 ; : : : ; ��1m . xLS satis�es

UT (b�AxLS) = 0

V [m+ 1 : n]TxLS = 0:
(7.3)

Hence xLS also solves the system�
A

V [m+ 1 : n]T

�
x =

�
b

0

�
:

Since A has full rank, this system is nonsingular and has a unique solution.

Let us �rst assume we only omit the parameterizing equation. This corre-

sponds to n = m+ 1 and the least-squares solution of Ax = b is precisely

the solution of �
A

vTm+1

�
x =

�
b

0

�
:

The least{squares approach chooses a parameterization equation which

minimizes the vector x. This resembles closely the approach used in CON-

TENT [13] for the continuation of steady-state solutions of f(x; 
) = 0.

When both the phase condition and the parameterizing equation are

omitted, the least-squares method will automatically choose a rather good

phase condition. Let

A =
�
A0 b0 b1

�
; A0 2 R

m�m , A 0b0 = 0;

and suppose 0 is a simple eigenvalue of A0. The least-squares solution xLS
of Ax = b satis�es

V [m+ 1 : m+ 2]TxLS = 0:

Since Ker(A) = Spanfvm+1; vm+2g and since

A

2
4 b0

0

0

3
5 = 0;

we also have �
bT0 0 0

�
xLS = 0:(7.4)

If A0 is not exactly singular and if b0 is close to the eigenvector correspond-

ing to the smallest eigenvalue of A0, then (7.4) is not exactly satis�ed, but

still
�
bT0 0 0

�
xLS � 0. The P -system (2.8) has precisely this property.

Suppose Vp is an exact basis, then at the limit cycle

V T
p (bT +M �qT ) = V T

p bT
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is the eigenvector of V T
p MVp � Ip for the trivial Floquet multiplier 1. The

SVD based least-squares approach implicitly adds a condition which is

almost equivalent to the phase conditions

bTTVp��p = 0(7.5)

or

bTT�x(0) = 0(7.6)

(since bTT�x(0) = bTTVp��p + bTTVq��q � bTTVp��p). The least-squares ap-

proach automatically selects a close to optimal condition, although con-

ditions like (7.5) or (7.6) with zero right-hand side cannot eliminate the

phase shift introduced by the predictor in the continuation code. If this is

a problem, an explicit phase condition should be used.

8. Test results.

In this section we will discuss some test results for two di�erent prob-

lems: the Brusselator model and a model studied by Elezgaray and Arneodo

in [3].

8.1. The Brusselator model. The one-dimensional Brusselator

reaction{di�usion system is modeled by the equations [8]8>>><
>>>:

@X

@t
=

DX

L2
@2X

@z2
+X2Y � (B + 1)X +A;

@Y

@t
=

DY

L2
@2Y

@z2
�X2Y +B

(8.1)

with Dirichlet boundary conditions(
X(t; z = 0) = X(t; z = 1) = A;

Y (t; z = 0) = Y (t; z = 1) =
B

A
:

(8.2)

We use the characteristic length L as the bifurcation parameter while the

other parameters are �xed at A = 2, B = 5:45, DX = 0:008 and DY =

0:004. For these parameter values, branches of periodic solutions bifurcate

from the trivial steady state branch (X = A; Y = B=A) at Hopf bifurcation

points at

LHk = k�

r
DX +DY

B �A2 � 1
= k 0:5130

[7]. For the reported results, we use an O(h2) �nite di�erence space dis-

cretization with grid size h = 1=32, yielding a system of ODEs of dimension

N = 62. The time integrations were done using the LSODE package [18].
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Fig. 3. Periodic solutions bifurcation diagram for the discretized Brusselator model
(h = 1

32
), period T versus the reactor length L. Roman numbers indicate the numbering

of the branches used in this section. Double one Floquet multipliers (pitchfork bifurca-
tions and Hopf points) and torus bifurcations are marked with � and � respectively. No
period doublings occur on the computed branches.

The bifurcation diagram for the periodic solutions for L between 0:5 and 2

is shown in Figure 3. Several torus- and pitchfork bifurcation points were

detected on the branches. They were located accurately by taking very

small stepsizes along the branch. The new branches emanating from the

various pitchfork bifurcations were also computed. Note that on branch i

the torus bifurcation at L � 1:867 is immediately followed by a pitchfork

bifurcation at L � 1:887. On the emanating branch vii there is almost

immediately a torus bifurcation at L � 1:8904.

We have compared the e�ciency of two Newton{Picard variants, i.e.,

NPGS (with continuation in the parameter L) and CNP with a full New-

ton shooting approach to solve (1.3). In the latter approach, the Jacobian

matrix is kept �xed during each Newton iteration (Chord-Newton method).

In [15] we presented an extensive set of test results. These test results

showed the e�ciency of the Newton{Picard approach, but did not show

results on the robustness. Each of the results reported was the best result

over twelve runs with di�erent choices for the parameters in the algorithm,

and many of those runs failed. We will report results for the same four

branches as in [15], i.e., branches i, ii, iii and iv in Figure 3. As in [15],

we count each matrix{vector product for one initial value problem (IVP)
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Table 1

Number of IVP solves for the NPGS and CNP methods, 1-dimensional Brusse-
lator model. For comparison purposes, we also list the result for the Chord{Newton
method from [15].

Method branch i branch ii branch iii branch iv total

NPGS 996 1102 831 1304 4233

CNP 1194 1132 1051 1361 4738

Chord{Newton 2053 1607 1128 1874 6662

solve.

We have made the following choices in the NPGS and CNP methods.

� In the subspace iteration (Algorithm 1) we used pe = 2 and the

threshold to add vectors to the basis was 0:55, the threshold to

delete vectors 0:45. We switched to a Newton{Picard step as soon

as the Schur basis corresponding to all eigenvalues larger than 0:8

satis�ed �max(Zk) � 10�2 with Zk given by (5.1).

� Only the accurate basis vectors are used to construct the projec-

tors.

� The P -system is solved using the least-squares approach, omitting

the phase condition and the pseudo-arclength equation.

� The Q-systems are solved using two Picard iteration steps to com-

pute �qr and �q
 with a zero starting value and we set �qT = 0.

(This corresponds to NPGS(2) and CNP (2) of [15].)

� The Newton{Picard iterations were stopped once the residual and

the updates �p, �T and �
 were smaller than 10�6.

� After the Newton{Picard iterations, we computed all Floquet

multipliers larger than 0:7 until the corresponding basis satis�ed

�max(Zk) � 10�4. We also required that the changes between cor-

responding eigenvalues in two successive subspace iteration steps

were smaller than 10�4.

The results are reported in Table 1. Despite the small problem size, the

computational cost is substantially lower when a Newton-Picard approach

is used instead of a (Chord-)Newton method. Note that in [15] we reported

lower numbers for the number of IVP-solves to compute these branches.

However, the results in [15] were obtained with a less robust implementa-

tion, with highly optimized values of the parameters of the Newton{Picard

method for each run.

We did observe some failures during our tests with the NPGS and

CNP method, most of which were caused by the omission of the phase

condition. The least-squares based solution technique cannot remove a

phase shift introduced by the predictor while phase conditions using the

previous orbit as a reference solution can do that. In some cases, the phase

shift between two successive orbits grew as the continuation proceeded and

the predictor generated bad starting values, causing a failure of the continu-
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ation procedure. Hence omitting the explicit phase condition decreases the

robustness and is not as interesting as one would expect from the discussion

in section 7.

We also computed a branch of periodic solutions for the two-

dimensional variant of (8.1):

8>>>><
>>>>:

@X

@t
=

DX

L2

�
@2X

@x2
+
@2X

@y2

�
+X2Y � (B + 1)X +A;

@Y

@t
=

DY

L2

�
@2Y

@x2
+
@2Y

@y2

�
�X2Y +BX

(8.3)

on the unit square [0; 1] � [0; 1] with the Dirichlet boundary conditions

(8.2) on all boundaries. We used a second order spatial �nite di�erence

discretization with 10 � 10 and 20 � 20 discretization points, resulting in

ODE systems of dimension 200 and 800 respectively. The time integration

was done using the trapezoidal rule. We used the parameter values A = 2,

B = 5:45, DX = 0:004 and DY = 0:008 as in [21]. The trivial steady-state

solution X � A and Y � B=A has a �rst Hopf bifurcation at L � 0:72,

leading to a branch of stable periodic solutions. We computed this stable

branch from L = 0:78 to L � 3.

Using the 20 � 20 grid, we computed 17 orbits on this branch using

the NPGS method. Initially, at low values of L, the code works e�ciently,

requiring around 200 IVP solves per orbit. For higher values of L however, a

cluster of eigenvalues develops around �0:75. At the last computed point

(L = 3:12) more than 40 Floquet multipliers are close to �0:75. The

basis Vp grows from 12 vectors at the start point to 60 vectors at the last

point. The number of matrix{vector products grows excessively towards

the end of the computed branch. In total, we needed 4295 time integrations

(an average of 253) to compute the orbits. However, 9848 matrix{vector

products had to be computed to compute the dominant Floquet multipliers

with the desired accuracy. Still, the code did not fail in the presence of a

large cluster of eigenvalues and managed to increase its basis correctly as

the computations proceeded.

However, the numerical results are probably not a correct represen-

tation of the in�nite-dimensional system. Indeed, for these values of DX

and DY and for large L, the solution develops strong spatial gradients near

the boundaries during part of the period and we can not capture the gra-

dients well enough with the rather coarse discretization. We suspect that

the inaccurate representation of the physical model causes the cluster of

eigenvalues and the cluster might disappear on a �ner grid.

8.2. Model of Elezgaray and Arneodo. We also computed a

branch of a reaction-di�usion model studied by Elezgaray and Arneodo
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in [3]: 8>>><
>>>:

@u

@t
= D

@2u

@2x
+
1

�
(v � (u2 + u3));

@v

@t
= D

@2v

@2x
+ �� u;

(8.4)

with Dirichlet boundary conditions�
u(0; t) � u(1; t) � �2;

v(0; t) � v(1; t) � �4:
(8.5)

D is used as the bifurcation parameter. � and � are both �xed at 0:1.

We used second order �nite di�erences for the space discretization, the

trapezoidal rule for time integration and variational equations for the

matrix{vector products. The bifurcation diagram can be found in [6],

with a di�erent scaling of the equations however. (8.4)-(8.5) has a branch

of periodic solutions that emanates from a steady-state Hopf bifurcation

at D � 0:02630 and disappears in another steady-state Hopf bifurcation

around D � 0:03230. On this branch, there are period doubling bifurca-

tions around D � 0:03208 and D � 0:03227. In between the two period

doubling bifurcations, the branch is unstable and there are various chaotic

regimes limited by period doubling cascades near the two period doubling

points. The solution develops strong spatial gradients and a very �ne space

discretization is needed to compute the branch accurately. We did com-

putations using 63, 255 and 1023 discretization points and were able to

compute the complete branch, including the unstable part in the chaotic

region. All Floquet multipliers larger than 0.75 in modulus were also com-

puted. In the region with chaotic dynamics, one of the Floquet multipliers

grows to values around �190. Figure 4 shows the modulus of the computed

dominant Floquet multipliers on part of the branch. 87 orbits were com-

puted to construct Figure 4. There were 31 failures at which the stepsize

was decreased. 13254 time integrations were required (9171 for successful

continuation points and 4083 for failed points ), or an average of 112:3

time integrations per successfully computed continuation point. We never

needed more than 213 time integrations for a single orbit. Note that we

used conservative settings and did not try to optimize the parameters.

9. Conclusions.

In this paper we have described a class of Newton-Picard methods for

the e�cient computation of periodic solutions of large-scale systems of or-

dinary di�erential equations. The methods are based on a single shooting

approach and they combine a Newton iteration in a low-dimensional sub-

space (the eigenspace of the dominant Floquet multipliers) and a Picard

iteration in the orthogonal complement. They are particularly e�cient for

systems that exhibit low-dimensional dynamics, e.g., for discretizations of
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Fig. 4. Modulus of the computed Floquet multipliers for the model of Elezgaray
and Arneodo in terms of the parameter D, 1023 discretization points. Threshold � for
the basis computation: 0.75. The pluses stand for positive real Floquet multipliers, the
stars for negative real Floquet multipliers, and the circles stand for pairs of complex
conjugate Floquet multipliers.

partial di�erential equations, and when used in a continuation procedure.

Since the dominant Floquet multipliers are computed, stability information

is available and a bifurcation analysis can be performed.

The algebraic framework for Newton-Picard methods developed in this

paper allows us to derive several variants and to analyze their convergence

in detail. By exploiting the convergence properties within the implemen-

tation, we have achieved both e�ciency and robustness. The paper also

describes in detail several implementation aspects, such as the e�cient and

reliable computation of a basis for the low-dimensional subspace, the e�-

cient implementation of the Picard step and the stable solution of the low-

dimensional linear system. Finally, some numerical results are presented,

which illustrate the e�ciency of Newton-Picard methods for continuation

and bifurcation analysis of periodic solutions, when compared with a clas-

sical (\full-Newton") shooting approach.

Several extensions to the Newton{Picard methods described in this

paper have been developed. More sophisticated iteration schemes, such as

Krylov iteration methods, can be used in the high-dimensional subspace

instead of a Picard iteration [14]. The Newton{Picard approach has been

extended to multiple shooting [14] and also to the solution of so-called ex-

tended or determining systems for bifurcation points [4]. Finally, Newton-

Picard methods have been adapted to compute periodic solutions of delay
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di�erential equations and their stability [16].
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