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1. INTRODUCTION

Consider the one-dimensional Schr�odinger equation

(1.1)  00(k; x) + k2 (k; x) = V (x) (k; x); x 2 R;

where the potential V is real valued and belongs to L11(R); i.e.
R
1

�1
dx (1 + jxj) jV (x)j is

�nite. The scattering states of (1.1) correspond to its solutions behaving like eikx or e�ikx

as x! �1: Among such solutions are the Jost solution from the left fl(k; x) and the Jost

solution from the right fr(k; x) satisfying

(1.2) fl(k; x) =

8><
>:
eikx + o(1); x! +1;

1

T (k)
eikx +

L(k)

T (k)
e�ikx + o(1); x! �1;

fr(k; x) =

8><
>:

1

T (k)
e�ikx +

R(k)

T (k)
eikx + o(1); x! +1;

e�ikx + o(1); x! �1;

where T is the transmission coe�cient, and R and L are the re
ection coe�cients from

the right and from the left, respectively. The scattering matrix associated with V is given

by

(1.3) S(k) =

�
T (k) R(k)

L(k) T (k)

�
;

and it satis�es

(1.4) S(�k) = S(k)�; k 2 R;

where the asterisk denotes complex conjugation. The bound states correspond to the

square-integrable solutions of (1.1), and such states occur only at certain negative k2

values known as bound-state energies. The recovery of V using a re
ection coe�cient, the

bound-state energies, and the so-called norming constants constitutes the inverse scattering

problem, and its solution can be obtained by using one of the available inversion methods
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[Fa64,DT79,Ma86,CS89,Sa93]. When there are no bound states, a re
ection coe�cient

uniquely determines the potential.

In this paper we consider the inverse scattering problem when the data consist of

the re
ectivity r = jLj = jRj; that is, the magnitude of the re
ection coe�cients. Unless

otherwise stated, we assume that no bound states exist, so that by the above discussion

the unknown potential can be determined provided we can �nd the phase of L or R: Such

problems are motivated by interesting applications in neutron and x-ray scattering studies

of surface and interface structures, see e.g. [FR91,FY96,ZC95].

It is well known that in general one cannot uniquely determine the potential from

re
ectivity data, although uniqueness is known for certain special classes of potentials,

see e.g. [Cl93,KST95,BM96]. Hence, we will augment our scattering data by including

also the re
ectivity corresponding to the situation in which a known nontrivial potential

is placed to the left of the unknown potential (Figure 1). Use of this kind of data has been

considered by several researchers recently (e.g. [KS92,MB96,HWAF95,HWSAF96]), so let

us explain right away how the approach taken here relates to these other works.

Consider a potential V (x) = V1(x) + V2(x) where V1(x) = 0 for x > a and V2(x) = 0

for x < a; for some �nite a: From our point of view, V2 is the unknown potential we wish

to determine, and V1 represents a known layer \in front of" V2; i.e. we are measuring the

re
ected intensity of waves incident from the left. For any choice of V1 we thus assume that

jLj can be measured for 0 < k < +1; where L is the left re
ection coe�cient implicitly

de�ned in (1.2). Thus, data for the inverse scattering problem consist of fjLj; V1g; or

equivalently fjLj;S1g; where S1 is the scattering matrix for V1 and is de�ned as in (1.3).

(We assume that V1 also has no bound states.) In general we may assume that such data

are available for several di�erent choices of V1:

In [KS92] it was shown, under somewhat restrictive conditions on the potential, that
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the data fjLj; V1g; for one choice of V1 satisfying a nondegeneracy condition, determine V2

uniquely. On the other hand in [MB96,HWAF95,HWSAF96] it was shown that fjLj; V1g

for three di�erent choices of V1 determines V2 under less restrictive conditions.

There is a further distinction between the method of [KS92] (the one-measurement

method) and that of [MB96,HWAF95,HWSAF96] (the three-measurement method) which

we wish to emphasize, namely the former is a global method while the latter is local. By

a global method we mean that one recovers the phase of L2 for all k given the scattering

data for all k; while in the local method one can recover the phase of L2 at any one �xed

value of k from the scattering data at the same �xed value of k: For most purposes a local

method will be preferable, since unavoidable inaccuracies at high or low frequencies will

not a�ect the computed solution at other frequencies. The local method will also tend to

be easier from a computational point of view. On the other hand, with a global method

we may be able to get more accurate phase information at high and low frequencies than

could be obtained with a purely local method.

The present paper �lls in the gap between the one- and three-measurement techniques

cited above, namely we consider the recovery of V2 from two re
ectivity measurements.

We will generally assume that one of the two measurements corresponds to V1(x) = 0; in

which case the re
ectivity measurement is just jL2j itself, where L2 is the left re
ection

coe�cient for V2: However the method could be easily adapted to the case of two nonzero

choices of V1; as shown at the end of Section 2.

We will derive two di�erent methods for determination of the phase of L2; one of

the global type and one of the local type. The global method, discussed in Section 2,

is in principle somewhat easier to use than the global method of [KS92], while the local

method, discussed in Section 3, is somewhat more complicated than its counterpart in

[MB96,HWAF95,HWSAF96]. Nevertheless, it is probably not possible to assert that any
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one of these methods is always better than the others, but rather it will depend on speci�c

circumstances. The methods will be illustrated with analytical and numerical examples.

2. GLOBAL TWO-LAYER METHOD

In this section we consider the recovery of V2 by using two re
ectivity measurements

at each k for k 2 [0;+1): This will be done by constructing L2: The construction of L2

requires the construction of an intermediate function for all k 2 R; and hence the method

described here is a global one. The intermediate function can be chosen as F de�ned

in (2.5), or alternatively the transmission coe�cients corresponding to the two measured

re
ectivities.

Let S1; S2; and S be the scattering matrices corresponding to the potentials V1; V2;

and V; respectively. Corresponding to Vj with j = 1; 2; as in (1.3), we have the transmission

coe�cient Tj and the re
ection coe�cients Rj and Lj ; from the right and left, respectively,

forming the scattering matrix:

Sj(k) =

�
Tj(k) Rj(k)

Lj(k) Tj(k)

�
; j = 1; 2:

Let us de�ne the transition matrix associated with S(k) :

�(k) =

2
64

1

T (k)
�
R(k)

T (k)
L(k)

T (k)

1

T (k)�

3
75 =

2
64

1

T (k)

L(k)�

T (k)�

L(k)

T (k)

1

T (k)�

3
75 =

2
64

1

T (k)
�
R(k)

T (k)

�
R(k)�

T (k)�
1

T (k)�

3
75 :

Similarly, let �1 and �2 be the transition matrices corresponding to S1 and S2: It is known

[Ak92] that

(2.1) �(k) = �1(k) �2(k):

Using the (1; 1)-entry in the matrix product in (2.1), we get

(2.2)
1

T (k)
=

1

T1(k)T2(k)
�
R1(k)

T1(k)

L2(k)

T2(k)
;
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from which we obtain

(2.3) L2(k) =
1

R1(k)

�
1�

T1(k)T2(k)

T (k)

�
:

Thus, knowing fR1; T1; T2; Tg we can construct L2: By an analytic continuation argument

it is not hard to see that R1(k) cannot vanish identically on any interval of the real axis,

unless V1 � 0: More generally, results in the theory of Hardy spaces [DM76] imply that

the set of points at which R1(k) = 0 is of measure zero, and so (2.3) still determines L2

almost everywhere, which is su�cient for the purpose of recovering V2 via inverse scattering

theory.

If V has no bound states, then T is determined [Fa64,DT79,CS89] by jLj given for k 2

[0;+1): If neither V1 nor V2 have any bound states, then V cannot have any bound states

either; this is because the number of bound states for V cannot exceed the total number of

bound states for V1 and V2: In this case, using fR1; jL2j; jLjg given for k 2 [0;+1); with

the help of

(2.4) jT1(k)j
2 = 1� jR1(k)j

2; jT2(k)j
2 = 1� jL2(k)j

2; jT (k)j2 = 1� jL(k)j2;

one can construct fT1; T2; Tg for k 2 C+; and hence with the help of (2.3) one can recover

L2 using fR1; jL2j; jLjg for k 2 [0;+1): We use C+ to denote the upper-half complex

plane and C+ for its closure. In summary, we have the following result.

Theorem 2.1 Assume V 2 L11(R); let V1 and V2 be its fragments with supports in (�1; a]

and [a;+1); respectively for some �nite a; and suppose V1 is nontrivial. If V1 and V2 are

free of bound states, then L2 for k 2 C+ is uniquely determined by fR1; jL2j; jLjg given

for k 2 [0;+1):

Although the construction of the transmission coe�cient in terms of the corresponding

re
ectivity is straightforward mathematically, it may not be so easy as far as practical

computations are concerned. Next, we will describe a simpler global procedure to recover
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L2 from fR1; jL2j; jLjg; where one does not need to construct fT1; T2; Tg: This method

requires the construction of the intermediate function F de�ned as

(2.5) F (k) = 1�R1(k)L2(k); k 2 R:

Theorem 2.2 Under the conditions stated in Theorem 2.1, the quantity F de�ned in (2.5)

is uniquely determined in C+ in terms of fjR1j; jL2j; jLjg given for k 2 [0;+1):

PROOF: From (2.2) we see that

(2.6) F (k) =
T1(k)T2(k)

T (k)
:

Because of (1.4), we have F (�k) = F (k)� for real values of k: It is known that T1; T2;

and T do not have any zeros in C+ n f0g: Since V1 and V2 are assumed not to contain

any bound states, it follows that T1; T2; and T can be continued analytically from the

real axis to C+ and are continuous in C+: Hence, as seen from (2.6), F can be continued

analytically from the real axis to C+; and it is continuous in C+ and nonzero in C+ n f0g:

Moreover, we have

(2.7) F (k) = 1 +O(1=k2); k !1 in C+;

which is obtained by using (2.5) and the fact that V1 and V2 each have support in a half-

line. Hence, one can construct F in C+ by using only its magnitude jF j on the real axis

or simply on [0;+1) because of F (�k) = F (k)� for k 2 R: This recovery can be achieved

by solving a Riemann-Hilbert problem. From (2.4) and (2.6), we have

(2.8) F (k)F (�k) =
[1� jR1(k)j

2][1� jL2(k)j
2]

1� jL(k)j2
; k 2 R:

We can express F (k) explicitly as

(2.9)

F (k) = exp

�
1

2�i

Z
1

�1

dz

z � k � i0
log

�
[1� jR1(z)j

2][1� jL2(z)j
2]

1� jL(z)j2

��
; k 2 C+:
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One can also obtain F by solving the Riemann-Hilbert problem (2.8) using other meth-

ods such as Wiener-Hopf factorization or by solving a related singular integral equation

[Ga66,Mu46].

Having constructed F in terms of fjR1; jjL2j; jLjg as indicated in the above proof, one

can recover L2 by using

(2.10) L2(k) =
1� F (k)

R1(k)
;

which is obtained from (2.5). Thus the recovery of L2 is accomplished without constructing

fT1; T2; Tg:

As far as the recovery of L2 is concerned, the method implicit in Theorem 2.2 is better

than that in Theorem 2.1. In the former only one Hilbert transform is needed instead of two

needed in the latter. In the former method one does not need T1: Furthermore, although

T �1 and T2�1 decay as O(1=k) as k !1; as seen from (2.7), F �1 decays more rapidly,

and hence the numerical construction of the Hilbert transform may be more accurate in

the former method.

As a �nal remark we note that one can also obtain L2 by measuring one at a time

the re
ectivity of the combined potential with two known, nontrivial layers. This can be

seen as follows. Let V1 and ~V1 be two known potentials with support contained in (�1; a]

with scattering matrices S1 and ~S1; respectively; let �1 and ~�1 denote the corresponding

transition matrices, respectively. Let V (x) = V1(x) + V2(x) and ~V (x) = ~V1(x) + V2(x): As

in (2.1) we have

(2.11) �(k) = �1(k) �2(k); ~�(k) = ~�1(k) �2(k):

The (1; 1) entries of the matrices in (2.11) give us (2.2) and

(2.12)
1

~T (k)
=

1

~T1(k)T2(k)
�

~R1(k)

~T1(k)

L2(k)

T2(k)
:
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Eliminating T2(k) from (2.2) and (2.12), we obtain

L2(k) =
~T1(k)T (k) � T1(k) ~T (k)

R1(k) ~T1(k)T (k) � ~R1(k)T1(k) ~T (k)
:

Thus, one can construct L2 using fV1; ~V1; T; ~Tg: In case neither V nor ~V have any bound

states, we can conclude that V2 for x 2 R can be constructed using fV1; ~V1; jLj; j~Ljg for

k 2 [0;+1):

Next we illustrate the recovery of V2 in terms of fR1; jL2j; jLjg by the global method

outlined in this section.

Example 2.3 Let us use the following data:

(2.13) jL2(k)j
2 =

9

4k4 + 4k2 + 9
; jL(k)j2 =

4k2 + 289

16k6 + 20k4 + 8k2 + 289
;

(2.14) R1(k) =
2

2k2 + 3ik � 2
;

where R1 corresponds to

V1(x) =
4e�x

(2e�x � 1)2
�(�x);

with �(x) denoting the Heaviside function. We assume that V2 has no bound states. Using

fjR1j
2; jL2j

2; jLj2g; we �rst write (2.8) as

F (k)F (�k) =
k2(16k6 + 20k4 + 8k2 + 289)

(4k4 + 4k2 + 9)(4k4 + k2 + 4)
;

from which, through factorization, we get

F (k) =
k(4k3 + 14ik2 � 22k � 17i)

(2k2 + 3ik � 2)(2k2 + 4ik � 3)
:

Thus we construct L2 using (2.10) as

(2.15) L2(k) =
3

2k2 + 4ik � 3
;
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which corresponds to

(2.16) V2(x) =
24e2x

(3e2x � 1)2
�(x):

3. LOCAL TWO-LAYER METHOD

In this section we consider the construction of L2 at any one �xed k value in terms of

fR1(k); jL2(k)j; jL(k)jg at that k value.

Suppose we know the re
ectivity L at a particular k value but not for all k 2 R: Then

we can only obtain jT j at this particular k value but not T itself. In other words, the

analyticity of T in C+; its continuity in C+; its small-k and large-k asymptotics cannot

be used to construct the transmission coe�cient at a single point from knowledge of its

magnitude at that point.

It is known [HWAF95,HWSAF96] that there are in general two candidates for L2

corresponding to fR1; jL2j; jLjg at a particular k; and these two candidates can be ob-

tained as the intersection of two circles on the complex plane. By using a di�erent re-


ection coe�cient ~R1; one obtains L2 as the intersection of three circles in the plane

[HWAF95,HWSAF96].

In this section we study the construction of L2 by using the intersection of a circle

and one line in the plane. We analyze the two di�erent candidates for L2 constructed from

the intersection of a circle and a line, show how these two are related to each other, and

indicate how we can discard one of these in favor of the other.

Let us separate the real and imaginary parts of L2 and R1 :

(3.1) L2(k) = �(k) + i�(k); R1(k) = 
(k) + i�(k):

For simplicity, let us drop the arguments and simply write � instead of �(k); let us also
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use the same convention for �; 
; �: We have

(3.2) �2 + �2 = jL2j
2;

which represents a circle centered at the origin with radius jL2j in the (�; �)-plane. From

(2.3) we get

(3.3) 1�R1(k)L2(k) =
T1(k)T2(k)

T (k)
:

We would like to construct L2 at a particular k value by using fR1; jL2j; jLjg at this k

value. Equivalently, because of (2.6) we know fR1; jT1j; jT2j; jL2j; jT jg at a particular k

value and we are interested in constructing L2: Our data do not allow us to use (3.3), but

by taking the absolute value of both sides of (3.3) and using (2.6), we get the real part of

R1 L2 as

(3.4) Re fR1(k)L2(k)g = A(k);

where we have de�ned

(3.5) A(k) =
1

2

�
1 + jR1(k)j

2 jL2(k)j
2 �

[1� jR1(k)j
2][1� jL2(k)j

2]

1� jL(k)j2

�
:

We can write (3.4) as

(3.6) 
�� �� = A;

which is the equation of a line in the (�; �)-plane. The two points of intersection of the

circle (3.2) and the line (3.6) is given by

(3.7) � =
2
A+ � Z1=2

2jR1j2
; � =


��A

�
;

where the square-root function in (3.7) is double-valued and we have de�ned

(3.8) Z(k) = 4 jR1(k)j
2 jL2(k)j

2 � 4A(k)2:
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Theorem 3.1 The quantity Z de�ned in (3.8) is a nonnegative function of k on [0;+1):

We have Z(k0) = 0 at some positive k0 if and only if [R1(k0)L2(k0)] is real.

PROOF: Using the triangle inequality in (3.3) we get

(3.9) 1� jR1j jL2j �

����T1 T2T

���� � 1 + jR1j jL2j;

and hence

����T1 T2T

����
2

� [1� jR1j jL2j]
2 � 0; [1 + jR1j jL2j]

2 �

����T1 T2T

����
2

� 0:

Let us write (3.8) in the factored form as

(3.10) Z = [2 jR1j jL2j � 2A] [2 jR1j jL2j+ 2A] :

Using (3.5) in (3.10), after some simpli�cation, we get

(3.11) Z =

"����T1 T2T

����
2

� [1� jR1j jL2j]
2

#"
[1 + jR1j jL2j]

2 �

����T1 T2T

����
2
#
;

or equivalently Z = B1B2B3B4; where we have de�ned

(3.12) B1 =

����T1 T2T

����� 1 + jR1j jL2j; B2 =

����T1 T2T

����+ 1� jR1j jL2j;

(3.13) B3 = �

����T1 T2T

����+ 1 + jR1j jL2j; B4 =

����T1 T2T

����+ 1 + jR1j jL2j:

Using (3.9) in (3.12) and (3.13) we obtain

0 � B1 � 2 jR1j jL2j; 2[1� jR1j jL2j] � B2 � 2;

0 � B3 � 2 jR1j jL2j; 2 � B4 � 2 [1 + jR1j jL2j];

and hence Z is a nonnegative function of k; and the only zeros of Z in (0;+1) come fromB1

or B3; note that B2 and B4 are strictly positive in (0;+1): From (3.3), (3.12), and (3.13)
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we see that B1B3 = 0 at some positive k value if and only if j1�R1 L2j = 1� jR1 L2j at

that k value. Thus, Z(k0) = 0 at some positive k0 if and only if Im fR1(k0)L2(k0)g = 0:

Since Z is a nonnegative function of k; the double-valued function Z1=2 is also real

valued. Thus, L2 is determined pointwise by (3.7) up to the uncertainty in the sign of

Z1=2: If we can decide what branch of the square-root function in (3.7) leads to L2; we can

uniquely construct L2 at a given k value by using fR1; jL2j; jLjg at this k value. Later in

the section we will show which branch of Z1=2 gives us the \correct" L2:

Theorem 3.2 The two �(k) + i�(k) formed from the two values given in (3.7) are equal

to L2(k) and R1(k)
� L2(k)

�=R1(k); respectively. Consequently, if these two (�; �) values

in (3.7) are used in (2.5), we obtain 1�R1(k)L2(k) and 1�R1(k)
� L2(k)

�; respectively.

PROOF: From (2.5), (3.4), and (3.5) it is clear that at each particular k value, the real

part of F is determined pointwise by fjR1j; jL2j; jLjg :

(3.14) Re fF (k)g =
1

2

�
1� jR1(k)j

2 jL2(k)j
2 +

[1� jR1(k)j
2][1� jL2(k)j

2]

1� jL(k)j2

�
:

Now let us show that the double-valued pair (�; �) given in (3.7) determine the imaginary

part of F up to a sign factor. Using (3.1) in (2.5) we get

(3.15) Im fF (k)g = ���� 
�:

If the two (�; �) values given in (3.7) are used in (3.15), using 
2 + �2 = jR1(k)j
2; we can

simplify (3.15) to

(3.16) [Im fF (k)g]
2
=

1

4
Z:

Hence the two L2 values obtained by using (3.7) at a particular k value determine F up

to a sign in its imaginary part. In other words, one branch of the square-root function

leads to F that can be extended analytically to C+; and the other branch leads to the
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complex conjugate of that function. When used on the right-hand side of (2.5), the former

gives us L2(k) that is associated with V2; and the latter gives us R1(k)
� L2(k)

�=R1(k);

which cannot be extended analytically to C+ and hence cannot correspond to a potential

without bound states and with support on a right half-line.

As seen from (2.5), since 0 � jR1 L2j < 1 on (0;+1); it follows that Re fF (k)g > 0

on (0;+1) and the graph of the curve k 7! F on (0;+1) is continuous and con�ned to

the right-half of the complex plane and converges to 1 + 0i: as k ! +1:

A potential is generic if its re
ectivity at k = 0 is equal to one; otherwise, the potential

is exceptional [CS89]. If V1 and V2 are free of bound states and they are both generic, then

the curve representing F on the complex plane approaches 0 as k ! 0+ along the negative

imaginary axis [AKV97]. Using Theorem 3.2, we can thus conclude that the \correct" L2

value causes Im fF (k)g to approach zero through negative values as k ! 0 + : We will

not deal with the case when at least one of V1 and V2 is exceptional because in that case,

the sign of Im fF (k)g cannot be determined easily unless we have more information about

V2: Moreover, a small perturbation of an exceptional potential may change the number

of bound states and in this paper we avoid potentials with bound states. For further

information we refer the reader to [AKV97] and the references therein.

Let us analyze the zeros of Z on (0;+1) more closely. As we have seen in Theorem 3.1,

Z(k0) = 0 for some k0 2 (0;+1) if and only if Im fF (k0)g = 0: Since F (k) is continuous

at k0; the tangent line to the graph of k 7! F must change continuously at k0; and hence

we can determine if Im fF (k)g changes sign at k0 by analyzing the graph of k 7! j
p
Z(k)j

near k0: For example, if k0 corresponds to an odd-order zero of j
p
Z(k)j then the sign of

Im fF (k)g must change at k0; and if k0 has even order then the sign of Im fF (k)g must

not change at k0: Let us de�ne
p
Z(k) as the single-valued branch of [Z(k)]1=2 whose

argument changes continuously and such that
p
Z(k) remains nonnegative as k ! 0 + :
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Let 0 < k1 < k2 < k3 < � � � be the ordered zeros of Z given in (3.11). Then
p
Z(k) and

j
p
Z(k)j coincide in [0; k1]; they either di�er by a sign in [k1; k2] or they coincide, and in

the former case
p
Z(k) can be determined from j

p
Z(k)j by looking at the graph of the

latter near k1: By continuing in this manner, we can obtain
p
Z(k) from j

p
Z(k)j in each

of the remaining intervals [km; km+1] for m � 2: Let Fn(k) denote the quantity whose real

part coincides with (3.14) and whose imaginary part is de�ned as

(3.17) Im fFn(k)g =

8><
>:
�
1

2

p
Z(k); k 2 [0; kn];

�
1

2
j
p
Z(k)j; k 2 [kn;+1);

where kn is the n-th positive zero of Z: The set of kn values is either �nite or countably

many. The quantity Fn(k) becomes a better approximation to F (k) as n increases. By

using Fn instead of F; we can recover L2 approximately. Then V2 can be obtained approx-

imately from the resulting L2 by one of the numerical algorithms available. In Section 4

we illustrate the recovery of V2 from Fn by using the algorithm of [Sa93].

In the absence of bound states, if V and V1 are both generic, then V2 must also be

generic [AKV96]. With the help of (3.11), (3.16), and (2.5), we can summarize our �ndings

as follows.

Theorem 3.3 Let V 2 L11(R) be a generic potential, and let V1 and V2 be its fragments

without bound states and contained on the left and right half-lines, respectively. If V1 is

also generic, then F de�ned in (2.5) is uniquely determined in terms of fjR1j; jL2j; jLjg in

such a way that Re fF (k)g is given by (3.14) and Im fF (k)g is given by

(3.18) Im fF (k)g = �
1

2

p
Z(k);

where Z is the quantity given in (3.11). Moreover, the unique L2 can be recovered from

fR1; jL2j; jLjg by using (3.14) and (3.18) in (2.10).

Next we illustrate the recovery of L2 from fR1; jL2j; jLjg by using the method pre-

sented in this section.
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Example 3.4 Let us use the same scattering data as in (2.13) and (2.14). From (3.14) we

get

(3.19) Re fF (k)g =
k2 (16k6 + 20k4 + 32k2 + 157)

(4k4 + 4k2 + 9)(4k4 + k2 + 4)
;

and using (3.5) and (3.8) we obtain

Z(k) =
144k2(14k2 � 17)2

(4k4 + 4k2 + 9)2(4k4 + k2 + 4)2
:

Hence Z(k) has one positive zero and we have

(3.20)
p
Z(k) =

12k(17� 14k2)

(4k4 + 4k2 + 9)(4k4 + k2 + 4)
;

using (3.18), (3.19), and (3.20), we get

(3.21) F (k) =
k(16k7 + 20k5 + 32k3 + 157k + 84ik2 � 102i)

(4k4 + 4k2 + 9)(4k4 + k2 + 4)
:

Using (2.14) and (3.21) in (2.10), after simpli�cation, we get

L2(k) =
3

2k2 + 4ik � 3
;

which agrees with (2.15) and corresponds to the potential in (2.16).

4. NUMERICAL EXAMPLE

In this section we give an example of numerical solution of the inverse scattering

problem, based on the ideas of Section 3. The potential fragments V1 and V2 are displayed

in Figure 1. The direct scattering data fR1; jL2j; jLjg were generated at k = :025j with

j = 1; � � � ; 2000 using a method based on numerical solution of the Schr�odinger equation

(1.1).
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Known potential V
1
  

Unknown potential V
2

From (2.4) and the given data we clearly know jT j; jT2j; and jT1j; thus we can im-

mediately compute the functions Z in (3.11) and Re fF (k)g in (3.14). Next we need to

compute Im fF (k)g in (3.17) which requires that we �nd fkng; the positive zeros of Z(k):

Due to the �nite sampling rate, errors in data and in discretization, it is likely that no

actual zeros will be found; so what is really meant here is that these locations must be

estimated as best we can from the available values of Z(k): The easiest way to do this is

to examine a plot and/or listing of logZ(k) in which the approximate zeros of Z(k) will

appear as highly localized cusps, or relative minima. In Figure 2 we show the graph of

logZ(k) for our example. This is the one step in the reconstruction procedure which is not

completely automatic, and may indeed be di�cult to carry out accurately if data are not

very accurate or sparsely sampled. We remark however, that it is less crucial to correctly

identify the zeros kn at higher k values, as indicated below.
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Z(k), used to estimate location of sign changes of Im(F)

Once the above steps have been carried out, we then have an approximation for F (k);

and using (2.10) we get the full complex re
ection coe�cient L2: We can now use one

of the known methods of solving the standard inverse scattering problem to recover the

potential V2: Here we have used the method of [Sa93].
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Figure 3 shows the (highly inaccurate) potential which we get if we do not take

into account the sign changes of Im fF (k)g: By this we mean that F (k) and subsequently

L2(k) are computed using only Im fF (k)g = �
1

2
j
p
Z(k)j for all k: In Figure 4 we show the

potential obtained if we correct the sign of Im fF (k)g only on the �rst interval (k1; k2) (i.e.

(0:6; 3:425) in this example) on which there is a sign change. Note that the approximation

of V2 is considerably improved by this one correction. Finally in Figure 5 we show the

computed potential when the sign of Im fF (k)g is chosen as described above for all k in

the data set 0 < k < 50:
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We remark �nally that in principle it is possible to compute the function F (k) directly

from the Hilbert transform formula (2.9), and this may even seem preferable since it is
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completely unambiguous, requiring no determination of sign changes, as was needed in the

method just discussed. Nevertheless the use of (2.9) will in general lead to a considerably

less accurate reconstruction because of errors which arise in computing the Hilbert trans-

form of the sampled function in the integrand of (2.9), which are then ampli�ed by use of

the formula (2.10) for L2:
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