ON LERAY’S SELF-SIMILAR SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS SATISFYING LOCAL ENERGY
ESTIMATES
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ABSTRACT. This paper proves that Leray’s self-similar solutions of the three-
dimensional Navier-Stokes equations must be trivial under very general as-
sumptions, for example, if they satisfy local energy estimates.

1. INTRODUCTION

In 1934 Leray [Le] raised the question of the existence of self-similar solutions of
the Navier-Stokes equations. For a long time, the self-similar solutions had appeared
to be a good candidate for constructing singular solutions of the Navier-Stokes
equations. Leray’s question was unanswered until 1995, when Necas, Ruzicka,
and Sverdk [NRS] showed, among other things, that the only self-similar solution
satisfying the global energy estimates is zero. Although they answered Leray’s
original problem, some important questions were left open. For example, can a self-
similar solution satisfying local energy estimates exist? The goal of this paper is to
show that the self-similar solutions must be zero under very general assumptions,
for example, if they satisfy the local energy estimates.

For the Navier-Stokes equations

ug —VvAu +u-Vu+Vp=20

: 3
(1.1) divu=0 in R® x (tl,tg)

with v > 0, Leray’s (backward) self-similar solutions are of the form

u(z,t) = A(t) U (A(t)x) . 1

; with A\(t) = —(——,
ple,t) = X(OP (D)) W= Va5
where a > 0, U(y) = (Uy,Us,Us)(y) and P(y) are defined in R3. One also requires
that certain natural energy norms of u be finite. (Otherwise there exist nontrivial
solutions. See Remark 5.4.) The Navier-Stokes equations for u give the system

—vAU+aU+a(y-V)U+ (U -V)U+VP =0
divU =0

(1.2)

(1.3) in R3
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for U. As suggested by Leray, a nonzero U would produce a solution u of (1.1)
with a singularity at (0,7). This would give a counterexample to the open ques-
tion whether a solution of (1.1) satisfying natural energy estimates can develop a
singularity.

In addition to looking for particular singular solutions, the study of self-similar
solutions seems to be important also from a more general point of view. It is related
to the scaling property of (1.1), the fact that if u (x,t) solves (1.1), then so do the
rescaled functions

up (z,t) :=ru(rz,r* t —T)+T)

for each r > 0. If (0,T) is a singular point, then the asymptotics of the singularity
is encoded in the behavior of u, as r — 0%. If u, converges to a limit u, the
limit @ must be self-similar, i.e. (@), = @ for all » > 0, which implies @ is of
the form (1.2). Of course, more complicated singularities may possibly exist. The
study of self-similar solutions has proved to be very useful in the investigations of
singularities of many equations with similar scaling properties, such as the harmonic
map heat flow, semilinear heat equations, and nonlinear Schrédinger equations, see
for example [Str], [GK], [KL]. It is hoped that the study of (1.3) can shed some
light on the regularity question for the Navier-Stokes equations.

The known regularity criteria for Navier-Stokes equations (such as [Se], [FJR],
[vW, p190], [Gi], [Str2], [Ta], [CF]) do not apply to self-similar singularities (unless
certain quantities are small). The main result of [NRS] is that the only weak
solution of (1.3) belonging to L* (R?) is U = 0. Also see [MNPS]. (They showed
the same conclusion under a stronger assumption, but without using results from
[CKN].) The L? integrability condition will hold if the corresponding solution u of
the Navier-Stokes equations satisfies the global energy estimates

1 ¢ 1 A
/ —|u(m,t)|2dx+// V|Vu(x,t)|2dmdt§/ L e, 1) 2do
R3 t1 RS R32

for allt € (t1,t2). On the other hand, if one only assumes the local energy estimates,

T
(1.4) ess sup / 1|u(.11:,t)|2d.1: +/ / v|Vu(z, t)|*dedt < oo
ta<t<T JB 2 ts JB

for some ball B and some t3 < T, one only gets estimates of some weighted norms
which do not imply U € L3. (See Section 4 for more details.) Therefore, [NRS]
left open the existence of self-similar singularities which satisfy the local energy
estimates. For example, a solution with the following decay was not excluded:

(1.5) Uy)=A (%) ﬁ +o <E1|> as y — 00,

where A : S? — R? is smooth. At the same time, this seems to be a very natural
candidate for a self-similar singularity: the function u given by (1.2); will satisfy the
local energy estimates, and u(z,t) = ur(z) ast - T, where ur(z) = A(z/|z|)/|z|
is homogeneous of degree —1. One might speculate that after the blow-up time T u
would become a forward (or de-focusing) self-similar solution, (the existence of such
solutions was studied in [GM], [CP]), providing a rather nice interior singularity.
In addition, as suggested in [CKN], the blowup rate of a singularity of u at (0,7)
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is (at least in “parabolic average”)

C
(1.6) lu(z,t)| > Wﬁ;

which is satisfied by a solution u given by (1.2) if U has the decay (1.5).
In this paper we exclude the possibility of such self-similar singularities. In fact,
we prove the following results.

Theorem 1. If a weak solution U of (1.3) belongs to L7 (R?), for some q € (3, 0],
then it must be constant (and hence identically zero if ¢ < ).

Theorem 2. Suppose u is a weak solution of (1.1) satisfying the local energy es-
timates (1.4) in the cylinder Q1(0,T) = B1(0) x (T'— 1,T). If u is of the form
(1.2)1, then u is identically zero.

We refer the reader to Section 2 for the definitions of weak solutions. A particular
corollary of these results is that a weak solution U of (1.3) with the decay (1.5)
must be zero.

Let us explain the main idea of the proof. We recall from [NRS] that the smooth
function

M) = 5GP + PW) +ay-U()
satisfies
(1.7 ~VATI(y) + (U(y) + ay) - VII(y) = ~v|Q)* <0,

where Q = curl U. (Hence II satisfies the maximal principle.) One of the crucial
steps in [NRS] was to show

(1.8) II(y)=0(1) as y — oo.
They achieved this by showing
Uly)=0(yl™®), Py =0(yI"?)  asy—oo
under the assumption U € L3 (R?). Using their method in the case U € L? (R?),
3 < g <9, one only gets weaker estimates
(1.9) U@)=0(yl™"), Py)=0(ly|**) asy — 0o

for arbitrary small o > 0, from which (1.8) does not follow. This seems to be a
serious obstacle for generalizing the method used in [NRS] to ¢ > 3.
Our key observation is that (1.9) and, in fact, even a much weaker condition

(1.10) Uy)=o(ly), Pu)=0(yl") asy-—oo

for some finite N (no matter how large), is sufficient to imply II is constant. Heuris-
tically, for the differential equation

(1.11) Av(y) =y - Vu(y),
the right hand side is a “magnifying force”, (cf. 1-D case: v" = xv'). Therefore,

a solution should either be constant, or grow unboundedly. In addition, in R3, a
radial solution v (y) = ¢ (r), r = |y|, satisfies

(1.12) &) =c- rizexp (é) ,
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which suggests that a nonconstant solution IT blows up at the same rate as ¢. This
also suggests that we can find suitable comparison functions with very fast growth.
Based on this observation, we will prove a Liouville type lemma which implies IT is
constant under the assumption (1.10) in Section 5. In the other part of this paper,
we establish the estimates (1.10).

It should be emphasized that Theorem 2 is purely local in the sense that we do
not impose any boundary condition on u. This is related to one special aspect of our
analysis. In the study of Navier-Stokes equations, the pressure is usually considered
as a “global” term and can be difficult to deal with. See for example [CKN], [SvW],
[Str2], [LL], [HW]. When there is no boundary assumption on w, in general one can
not obtain a “desired” estimate of p for every weak solution u. In our analysis, we
overcome this difficulty by making use of the self-similarity: the local estimate of p
corresponds to a global estimate of P, which we obtain by applying certain results
on singular integrals on the space BMO and on some weighted spaces with the
weights in the class A,. In particular, we are able to show that every self-similar
weak solution u in Theorem 2 is a “suitable weak solution” in the sense of [CKN],
and then apply the partial regularity result in [CKN] to obtain (1.10).

Our plan for this paper is as follows. In Section 2 we recall the definitions and
prove some results about the pressure. In Section 3 we prove the growth estimates
(1.10) for Theorem 1, using the representation formula for Stokes system and certain
results from harmonic analysis. In Section 4 we prove the estimates (1.10) for
Theorem 2, using A, weights and a variant of Proposition 2 from [CKN]. In Section
5 we prove the Liouville type lemma and conclude Theorem 1 and Theorem 2. To
understand quickly the main idea, the reader may just assume (1.10) and go directly
to Section 5.

2. PRELIMINARIES

This section establishes notational conventions and some definitions. First we
discuss the notation. We use @, to denote the parabolic cylinders

Qr(z,T) = B, (z) x (T —r*,T).

We will also use the summation convention. We write w; ; = 0ju; = gT“;, and use
the letters C' and ¢ to denote generic constants which may change from line to line.

As far as the definitions of solutions of the Navier-Stokes equations (1.1) are con-
cerned, we refer the reader to [CKN] for the concept of Leray-Hopf weak solutions,
([Le], [Ho]), and the concept of suitable weak solutions, ([Schl], [CKN]). Also see
[CFo], [Te], [vW]. We recall that the main ingredients of the definition of suitable
weak solutions in parabolic cylinders @), are:

(i) the equation (1.1), interpreted in the sense of distributions,

(ii) the local energy estimates (1.4),

(iii) the assumption that the pressure p belong to L%/4(Q,), and

(iv) the generalized energy inequality, (see [CKN] p.779).
When we consider Leray-Hopf weak solutions, only (i), (ii) and an energy inequality
(instead of (iv)) are required. Among the above conditions, (iv) is satisfied by any
smooth solution of (1.1). Also, (ili) can be derived from (i), (ii), and (iv) if we
impose a 0-boundary condition on u. See [SvW], [LL]. However, in general (iii) is
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not a result of (i), (ii), and (iv), as can be seen from the following example. We use
Serrin’s idea ([Se], p.187) and consider the vector field u defined by

1

u(z,t) = (T —1)° (1,0,0), 0<s<3.

u is a Leray-Hopf weak solution in Q1(0,7") (with non-homogeneous boundary

condition). (In fact, u is a Leray-Hopf weak solution in By (0) x (T'—1,T + 1) if we
extend u to B1(0) x (T, T + 1) by zero.) However, since

p(z,t) =s (T —t)* " 21 + const.,

p does not belong to L>/4(Q1) and hence (u, p) is not a suitable weak solution in
1. We remark that, in Theorem 2, we do not require the weak solution u to be a
Leray-Hopf weak solution. Our only requirements (apart from self-similarity) are
(i) and (ii): the Navier-Stokes equations and the local energy estimates.

A function U is called a weak solution of (1.3) if U = (Uy,Us,Us) € Wlf)’f (R?),
div U =0, and

/ WVU -V +[aU +a(y-V)U + (U -V)U] - p)dz = 0
R3

for all ¢ = (p1,92,¢3) € CX(R3), div ¢ = 0. By standard regularity theory
of stationary Navier-Stokes equations, every weak solution U of (1.3) is actually
smooth, (see for example [Ga II], [GiM], [La], [Te]).

Regarding the pressure, in the definition of a weak solution U, we do not require
the specification of the pressure function. On the other hand, given a weak solution
U, one can always locally define P such that (U, P) solves (1.3) in bounded regions.
(For example, we can apply the results for Stokes system from [Ga I] p.180, with
the body force f = aU +a(y-V)U + (U -V)U.) In any given connected region
P is unique up to a constant. Therefore we can define a pressure Pg in each ball
Bg (0) and make them agree with each other by specifying [, Pr =0 (or a fixed
constant). In this way we can define P globally. Since U is smooth, P is also
smooth.

Another way to define P is by considering its equation. One takes the divergence
of (1.3) and formally deduces

(2.1) —AP =" 8,0;(UiU;).
If 2 < g < o0, one can define
(2.2) P =>" RiR;(U:U),

(cf. [NRS]), where R;, j = 1,2,3, are the classical Riesz transforms, (see for
example [St]). We will show that P is smooth and differs from P by a constant.
We can also define P by (2.2) for the case ¢ = oo. In that case, P s to be understood
as a BMO function and is defined by duality, see [JN], [FS], [St2, p.156]. We are

interested in P since we can get a global control of P which will give us the desired
local control of P. For clarification, we formulate the following lemma.

Lemma 2.1. Let a weak solution U of (1.3) belong to L? (R?), 2 < ¢ < oo. Let
P be defined by (2.2). Then P solves (2.1) in distributional sense, and hence is
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smooth. Moreover, we have

(2.3) 1Pl < CIUI 2 <q<oo,

(2.4) |Pllo < CIU|% if ¢ = .

Finally, if P is defined as earlier in this section, then P — P is constant if
2 < q < o0, and affine if ¢ = oo.

Proof. To show P is a distributional solution of (2.1), one has to show
(2.5) - [ Pae=- [ RE,WU)Ae = [ViU0050

for all p € C° (R?). We recall that R;R; are self-adjoint in L?(R?), (this can be
checked easily by Fourier transform, cf. [St] p.58), and we have

RiRjA(p = —8,6,-90

(see [St] p.59). Therefore, for the case 2 < g < oo, (2.5) can be established for
U € C% C L. One then extends this result to general U € LY by approximation.
For the case ¢ = oo, we first observe that all integrals in (2.5) converge absolutely
since ¢ has compact support and P e BMO C Ly, for all r < co. We next observe

Ay is in the Hardy space H!(R?) (since Ap € C*° and has mean value zero) and,
since P is defined by duality, (see [St2] p.156), we get

—/ﬁAcp: —/Uin (RiRjAcp) = /Uinaiajcp.

This shows that P is a distributional solution of (2.1).

We remark that, by definition and the fact that Ay € CS° with mean value zero,
R;R;Ap remains the same independently of whether Ay is considered as an L?
function or as an H' function. B

Since U is smooth and P solves (2.1) in distributional sense, P is also smooth by
Weyl’s lemma. The estimate (2.3) now follows from [CZ]. (2.4) is due to Spanne,
Peetre, and Stein, (see [St2, p.191] for references). See also [St], [St2].

Finally, we show the last assertion by modifying the argument of [NRS], Lemma
3.1. Let

(2.6) F=-vAU+aU+a(y-V)U+ (U-V)U + VP.

We know F = VP — VP, hence AF = 0 in R3 since both P and P solve (2.1).
Therefore F' is analytic. We now claim that we have D*F (0) = 0 for each « in
the case 2 < ¢ < 00, and for each a with |a| > 1 in the case ¢ = co. (Clearly this
is enough to conclude that F is 0 (respectively, constant) by its analyticity.) To
prove the claim, we note that, since AD*F' = 0, for every radial function ¢ € C%°
with [ ¢ =1, we have

DF(0) = (-1)" | F(y) &1 (D) (ey) dy
R3
([St, p.275]). We claim that, as € — 0, all terms obtained by substituting (2.6) into
the above integral converge to zero. Since the proof is similar to that in [NRS],
we will only give an illustration and show how to deal with the terms involving
(y-V)U and VP in the case ¢ = co.
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For the term involving (y - V) U,
[ vt 00g) @)
R3

= ‘—63”“' /Rg 3U (D%y) (ey) dy — e+1°] /Rs Uey; (0;D%¢) (ey) dy‘

IA

3+l U oo ( 10 @y + [ len; 0,07 () dy)
3 H|U | (/R |(D%) (z)|e*3dz+/m |2j (8;D%p) (z)le?’dz)

Therefore this term goes to zero if |a] > 1. (If ¢ < co, we use Holder inequality in
the third line and get the same conclusion for all a.)
Next we consider the term involving VP ,

VPEH (DY) (ey) dy = =141+ [ P (divDp) (ey) dy.
R3 R3
We notice that (divD%yp) (ey) has mean value zero and compact support. Therefore
it belongs to the Hardy space H'(R?) and

| (divD*¢) (ey) ll32 = €*[| (divD¥¢) (y) [l
By the BMO-H! pairing we have

VP (D) (ey) dy| < | Pllsao - €| (divD*9) () [l

R3
Hence this term goes to zero for each a.

We have shown that F' is some constant vector ¢ (¢ = 0 if ¢ < c0). Hence
\% (13 - P) = ¢. Therefore (f’ - P) (y) = (f’ - P) (0) + ¢-y. The proof is
complete. i

Since adding a constant to P does not have any effect, we can assume P = Pin
the case 2 < ¢ < co. We remark that, in Section 4, we will again define P by (2.2),
for the case when U is in certain weighted LP space involving A,-weights.

3. GROWTH ESTIMATES: THEOREM 1

In this section we establish the growth estimates for Theorem 1. We first derive
a local gradient estimate for U. Then we use a bootstrap argument to obtain the
polynomial growth of the pressure at infinity. Finally we use the Green’s represen-
tation formula for Stokes system to improve the growth estimate of U. We remark
that obtaining the local estimate of VU requires certain weak local control of U and
P. We obtain this weak control of P by considering P given by (2.2). The global
control of U gives us a (weak) global control of P, which we then use to obtain a
local control of P and P. It is also possible to obtain local estimates of P in terms
of local norms of U. We will discuss related estimates of the Stokes system in a
forthcoming paper [ST].

In this section, we will work on balls B = B, (yo) with center yo € R? and radius
p < 10.
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3.1. Gradient estimate. In this subsection we prove

Lemma 3.1. Let U be a weak solution of (1.3). If U € L9, 3 < q < oo, then
IVUlz,:00) + 10,1000 = 0 (I0]2) as lyo| — oo

Proof. We define P by (2.2). For a given center yo, let ¢ be a cut off function
with compact support in Bs (y0), ¢ = 1 in By (o), |V¢| + |VZ¢| < 20. We take
the dot product of (1.3) with ¢U and then integrate. Since U is smooth and
—U- AU = |VU|? — LAU?, we get

/ vé|VU |*dy

2 2
= /[A%—aU2—(ay+U)-VU7—VP-U] pdy

- /”TWM—/aU2¢+/U72(ay+U)-V¢+/3aU;¢+/PU-V¢-

Hence
(3.1) / v|VU|Pdy < C/ [U? + |yo|U? + U] + |PU|] .
Bl B2

Since [|U||3,B, and [|P|[3/2,B, tend to zero as yo goes to infinity, (we recall P is
defined by (2.2)), we conclude that

IVU 2.5, = o (Jyol*/2)
By Sobolev imbedding, we get
1Vl < VUl + 10, = o (fs0]'72)
|
Remark 3.1. If U € L™, and ||P||1, 5, (yo) = O (Jyo|™) at infinity for some N > 1,
then by (3.1) we have
VU300 = O (190l™?) s lyo| = oc.

3.2. Bootstrap. By iterating the Sobolev imbedding theorem and the interior L?
estimates for Stokes system, we will derive the polynomial growth of U and P in
this subsection. We first recall the interior L? estimates for Stokes system, (see [Ga
I] p.208). If (v,7) is a solution of the Stokes system

vAv -V = f
dive = 0
in Byg, then
(3.2)
IV20llr,x + IVallr5. < C(If]
for r € (1,00), where C = C (v,r, R). Our situation is
vAU - VP = F, divU=0
F(lyy = aU+a(y-V)U+ (U-V)U.

r,Bag T ”U||1,T‘,B2R*BR + ||7T| T,BzR*BR)
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For the case 3 < ¢ < oo, we have
I1Flls/2,, < CUIUll2,B: + lyollIVUll2,8, + IUl6,5, - IVUI|2,5,)

= o0 (|y0|3/2)
by Lemma 3.1. The interior estimate (3.2) then gives
IV2Ulls /2,8, + IV Plls 2,5, = 0 (1ol */2)

by Lemma 3.1 and the fact ||P||3/2,5, = o(1).
Now, using the Sobolev imbedding theorem, we get

IVU o542 + I1Plls, 3,y = o (|uol*/2) ,

and hence
(3.3) WUllrB,,, =0 <|y0|3/2) for any r < oo.
We now go back to F' and get
IFll2,8,. < C (U282 + 90llIVUll2,5,/5 + IUll6,5.,. - IVUl3,5,,,)

= 0(lyol?)-
By the interior estimate and the imbedding again:
IV2Ull2,B,s + IVPll2,B,,s = o(lvol?)
”VU||6,B1/4 + ||P||6,B1/4 = 0 (|y0|2)

osc (U,Bija) = o(|yol*)-
By bootstrap again, we get
osc (P,Byjg) =0 (lyol*) -
These give

(3-4) U @)l =0(%l®), P o) |=o(yl)-

Next we consider the case ¢ = oo, which requires more care. Lemma 2.1 tells us
that P defined by (2.2) is in the BMO space. Hence by [IN], [FS], we have (also
see [St2], p.141, 144)

| 1P @) = Paywl (14147 dy < ClPlao, - and

||P - PB1(yo)||2,B1(yo) < C||P||BM07

where 1331 (yo) denotes ‘Bl—l‘ J B1 (y0) Igdy. In particular we get

||13||2,Bl(yo) =0 (|y0|4) .

Since P — P is affine, we conclude the same growth control for 1P ll2, B; (yo)-
Remark 3.1 then gives us

”VU”?,Bl(yo) =0 (|y0|2) .
We now repeat the previous bootstrap argument and end up with

1P (y0)| = O (lyol™)
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for some N > 0.
We summarize our discussion in the following

Lemma 3.2. Let U be a weak solution of (1.8) and P be defined as in Section 2.
IfU € L1 (RS), 3 < g < o0, then
(3.5) |P (y0)| = O (|Z/0|N) as Yo —

for some N < oo.

3.3. Representation formula. In this subsection we use Green’s representation
formula for Stokes system to get a growth control of U. For simplicity we will
assume v = 1. For the Stokes system

Av—-Vp = f
dive = 0

in a ball B = B, (y) in R?, we have the following representation formula, (see
[Ca], [Va] and [Ga I] p.234) :

v () = / Gij (v:2) fi (2) dz - / 0i (2) [Ta (G 5) (0, 2)] 1 (2) dos
B 0B
ply) = —/Bgz'(yaz)fi(z)dz—Q/ v; (2)n; (2) do, + const.,

8B
where T;; denote the stress tensor
T (w,m) = =67 + (i + wy;)
and G; = (G1j,G2j,G3j), G;j and g; are the Green’s tensors ([Ga I] p.226-227)
which satisfy, for each fixed z € B,
divy G; (y,2) = 0

G; (4,2)|yeon = O
Moreover, we have G;; (y,2) = Gj; (2,y), and the estimates
(3.6) Gij (,2)] < aly—z"
3.7 IVyGij (4, 2) | +|V.Gij (5, 2) | + 195 (5, 2) | < ealy — 272
for y,z € B (see [Ca] p.335-336). In addition, we can choose ¢; uniformly for

pe (i 10].
By the above estimates we have, for each fixed y € B, (and we restrict p €
[75-10]);
(3-8) Gi; (, ) l=By < c2(s)  fors <3,
(3.9)  [IV:Gij (y,") | < e3(s)  fors<3/2,
where ¢2(s) and c3(s) are independent of y € B.
Now we can prove

Lemma 3.3. Let U be a weak solution of (1.3). If U € L (R?), 3 < ¢ < 0o, one
has

o) + 1195 (v, ) |z (B)

Uy) =o(lyl) as y — oo.
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Proof. We define P by (2.2). For every ball B = B, (yo), p € [3/4,1], by the

representation formula,

Ui = [ Gyaalidz+ [ Gy (@ +0)- VU ) d:

~ /. Ui (2) [Tu (Gy, 95) (y,2)| i (2) do..

Let
L

/ Gi; (y,2) alisdz,
B

I

- / Ui (2) [T (Gj,95) (9, 2)] mi (2) dor,
8B
then
U; (y) = / Gij (y,2) (az+U)-VUdz + I + I»
B

. 0
= lim —
=0t JB\B.(y) 0z

+/ Gij (y,z) (azl + Ul) U;nido,
oB

(Gij (y, 2) (az + Up)]) Uidz

— lim Gij (y, 2) (az; + Up) Uynydo, + I + L.
e—0Tt 8B.(y)

The first limit equals I3 + I + 3I; where

0
I; = —Gii (y,2) azU;dz,
3 /; azl 7 (y ) 1

0
I4 = L 3_251GU (y,z) UlUidZ.
Let us call the middle term I5,

Iy = Gi; (y, 2) (az + Up) Uinydo ...
oB

The second limit is zero by (3.6). Hence
U; W)y=4h + L+ Is+ Iy + I5.
If we restrict that [y — yo| < 1/2 and 3/4 < p < 1, we have

CCl/ |U|d0’z,
oB

401/ alyol[U] + [U2do.
oB

|12

IA

|15

IA

Furthermore, since ¢ > 3, (hence ¢' < 3/2), we have
11| dacz (¢') [|U|lq, B,
PEY acs (¢') |U|lg,5 - 1yol
by Holder inequality and (3.8), (3.9).

<
<

Finally we deal with I, which requires more care. If ¢ > 6, I, is 0 (1) by Holder
inequality. In the case ¢ € (3,6], if we use Holder inequality, we will only get
Iy = o(|yo|*™7) for any small ¢ > 0, (the detail is left to the interested reader).
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Let us use the following weighted inequality in R™, which is due to Leray and Hardy.
For any f € C*° (R™),1 <r < mn, and any y € R", we have
f(z) r

n <
|z_y|||’r,R = —r

(3.10) [ 19 fllr -

(See [Ga I] p.59 for a proof and the references, also see [La] p.16 for the case r = 2.)
Now we set r = 2 and choose a smooth cut-off function ¢ with compact support in
By (y), ¢ =11in By (y), |V¢| < 1. We substitute f = ¢U into (3.10) and get

U(z
1 ) < CIVU )+ OV = 0 (0]2)

by Lemma 3.1. Hence
U (2)

Ba(y) 12 —yl?

|| < C dz = o (|yo|") -
We conclude that, for |y — yo| < 1/2 and p € [3/4,1],
0 <o (wl') +C [ alulV]+ U do-.

Now we integrate this inequality with respect to p from 3/4 to 1 and get

U (y)|

IA

o(|yo|1) +C alyo||U| + |U|*dz

B1—Bgz/4
o (lyol") -

Remark 3.2. (i) We did not use the full power of the representation formula. It
is enough to assume y = yo in our estimates. (ii) When ¢ = 3, one can only show
73] = o (lyo|'+7) for any small o > 0. This is the main difficulty we will encounter
if we try to use the same method to do the case ¢ = 3. (iii) Our analysis begins
from the estimate of ||VU]||2,5,, which is based on the control of ||U||s,5,. Hence to
deal with the case ¢ < 3 would seem to require a different idea. (iv) For 3 < ¢ < oo,
as one easily sees, we can weaken the assumption U € L7 (R?) to

1Ullg,Ba(5) + 1Pllg/2,B2(5) =0 as |y — oo.

3.4. Another approach for 3 < ¢ < 9. In the case 3 < ¢ < 9, one can apply the
same argument of [NRS] to show

(3.11) TG =0(l™), 1P@)I=0 ()

for arbitrary small ¢ > 0. The argument is as follows. We consider parabolic
cylinders Q1 (zo,T) for |zg| large enough. We will show that the integral

/ luf® + |2 dedt
Q1($07T)



SELF-SIMILAR SOLUTIONS OF NAVIER-STOKES EQUATIONS 13

goes to zero as |xg| goes to infinity. This can be done by Holder inequality, (we
recall A = A (t) = (2a(T — £))~"/?):

T
/ lu|®dzdt = / dt/ U (Az) |* (\*dz)
Ql(wo,T) T-1 Bl(wo)
T
[ af  wwrd
T-1 By (Azo)
T :

/ dt (/ U (9) |‘1dy> o (W)
T-1 B (Azo)

T
— / N () dt -0 (1)

T-1
= o(1) if3<g<9.

QW

IN

Similar estimate holds for

/ |p|>/2dadt.
Q1(z0,T)

Hence by [NRS], Proposition 2.1, u is bounded in Q3 (2o, T) for |zo| bigger than
some 19, which is independent of the direction. Therefore, by [Se], [Oh], V¥u are
uniformly bounded for |z| € [ro — 2,m0 + 1], t € (T — 1,T), for each k = 0,1,2...
In terms of U, we get the first part of (3.11). We also need to obtain decay estimates
for P, which is slightly more difficult than the proof of a corresponding statement
in [NRS]. Nevertheless, it is possible to prove the second part of (3.11) by using the
integral form of R;R; in R?,

A7 2|5

Rl ) = lim [ Jy = 2)dz = 365 1w),

e—0+
with K(2) = ziz; — §0;|2|* (cf. [St] p.73, p.58) and f = U;Uj;, and by estimating
the above integral directly. Since we have proved Lemma 3.2 (which is enough for
the proof of Theorem 1), We leave the details to the interested reader.
Another way to get (3.11) is the following. One replaces Q1 (xo,T) by Q1 (0,T)
in the previous computation and gets

/ [ul® + |p|*/2dzdt < oo
1(0,
if 3 < ¢ < 9. This integral may not be small, hence we cannot use [NRS], Propo-
sition 2.1 (which uses [CKN], Proposition 2) to show u is bounded in Q1/2(0,T).
Nonetheless, the proof of the same proposition shows that (u,p) is a suitable weak
solution in Q374 (0,T'), and therefore we can apply the results from Section 4.

We remark that, in a recent paper by G. Tian and Z. Xin [TX], they prove the
boundedness of suitable weak solutions u in Qg/2 (0,T) under the condition

(3.12) supr 3 // |u (z,t) |*dzdt < €3,
r<R o (@,T)

where €5 is an absolute constant. If we could apply the previous computation, we
would conclude the same estimates (3.11) for 2 < ¢ < co. However, [TX] assumes
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the local energy estimates (1.4) for u in Qg which, in our case, is not a consequence
of either (3.12) or the assumption U € L4 (R?).

4. GROWTH ESTIMATES: THEOREM 2

In this section we establish the growth estimates for Theorem 2, that is, under
the assumption of the local energy estimates (1.4) for u. By [CKN] p.781, (1.4)
implies [|u||10/3,0, < 00. One easily calculates that

luCO) e = AU,y )

(4.1) / [u| ™ dadt /R3 |U|® - A; min (|y|_%,)\0_%) dy,

/ |Vu|?dzdt

1

/3 VU - Az min (Jy] 4, A7) dy,
R

where Ao = (2a) /2, A; and A, are some explicit constants. Hence all the right
hand sides are finite. An immediate consequence is U € Wllof . Since u is a weak
solution of (1.1) by assumption, U is a weak solution of (1.3). Hence U and u are
both smooth. In particular, v is a “Leray-Hopf weak solution” and it differs from

a “suitable weak solution” only by lacking the estimate
(4.2) p€ L (Q1(0,7)).

From (4.1) one also has

VU .54 00) + U107, 1000y = 0 (J90]*/2) -

If one assumes suitable control of || P52 g, (or certain weaker norm), one can follow
the bootstrap argument in Subsection 3.2 to obtain certain polynomial growth
control of U and P. Unfortunately, the growth control of U cannot be improved by
using Green’s representation formula because of the term I3 in Subsection 3.3, (cf.
Remark 3.2 (ii)).

Instead, we will show that w is a suitable weak solution, and apply the partial
regularity result from [CKN] to get the growth estimates of U. To show u is a
suitable weak solution we have to “find” a pressure p satistying (4.2). We will do
this by using some weighted estimates involving A,-weights. (See for example [St2],
Chapter 5.) Since U is smooth, the condition (4.1)2 < co implies

(4.3) /ﬁwwamw@<m
R3

where
w (y) = [y| /.

It is well known (and easily verified) that w (y) is an As/3 weight in R3, that is,

the quantity
1 1 a2/
F(yo,r) := (E/Bw(y)dy) : (E/Bw(y)_ / dy)
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is uniformly bounded for all balls B = B,(y). Using the results in [St2] p.204-211,

we see that the operator R;R; used in (2.2) to define P is continuous on L5/* (R?),
the space of all functions f for which the norm

3/5
lhasss = ([ 17570 ) )

is finite. Therefore, given U satisfying (4.3), we can set P = > R,R; (U;U;) and
we have

1Pllus/s < C D NIUiljllw,s/3-

Now, following the proof of Lemma 2.1, we want to show that P differs from P
only by a constant. We first claim that P solves (2.1) in distributional sense. This
can be proved in the same way as in Lemma 2.1. The weight w does not cause any
new difficulty since the test-function ¢ used in the proof has a compact support.
By Weyl’s lemma, P is smooth. Next we have to verify that, for the function F(y)
defined in Lemma 2.1, D*F(0) = 0 for all a. We consider the term involving y- VU
as an example. The computations for other terms are essentially the same.

‘ [ nue (%) @) dy‘

- ‘—e”'“ / 3U (D) (ey) dy — €+ / Ueyj<6jD“so)<ey)dy‘
R3 R3

Jco

10
< covel ([ ortugay)
R3
10/7 10/7 7/10
(L oot + s @0%0) ) 2| a)
10 10 7/10
< e ([0 @IF +1as 0,0%) ¥ 10z )
R3

— C€3+|a\ . 6_13/5.

Therefore, as € goes to zero, this term goes to zero. This shows P together with U
solve Leray’s equation (1.3).

Now we can define p by (1.2)s. Clearly p together with u solve (1.1) and p €
L5/3(Q,) since P € L%® (R?). We summarize the above discussion in the following

Lemma 4.1. Let u be a weak solution of (1.1) in Q1 satisfying the local energy
estimates (1.4). If u is of the form (1.2);, then u is smooth, and we can find a
smooth function p € L5/ (Q1) of the form (1.2)s such that (u,p) is a suitable weak
solution of (2.1) in Q.

We remark that, by construction, the L5/3-norm of p is bounded by the local en-
ergy of u. More generally, by using similar arguments one can also bound ||p||, /2,q,
by ||ull? o, if one assumes u € L"(Q;) for r € (2,6). (One uses the A, /, weight
lyl="/2.)

We will use the following lemma, which is a variant of the Proposition 2 of [CKN].
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Lemma 4.2. Let (u,p) be a suitable weak solution of (1.1). There is an absolute
constant €4 > 0 such that, if

lim sup r_l/ |Vul? < e,
Qr(z,t)

r—0t

then u is essentially bounded in Q,, (z,t) for some ry > 0.

This lemma differs from Proposition 2 of [CKN] by replacing Q% (x,t) by @ (z,t).
(We recall that Q; (z,t) = Q, (z,t + %rz).) It assumes the information only at
times previous to ¢, and gets control only at times previous to ¢. Since the original
proof of [CKN], Proposition 2 and the accompanying lemmas goes through without
change, we omit the details and refer the reader to [CKN]. Similar to the proof of
Theorem B in [CKN], page 807, this lemma implies that the singular set at the top
of the parabolic cylinder also has one-dimensional Hausdorff measure zero.

With this lemma, we can prove

Corollary 4.3. Let (u,p) be a suitable weak solution of the Navier-Stokes equations
(1.1) in Q1 (0,T), and assume u is of the form (1.2);. Then U (y) = O (|Jy|™") .

Remark. Heuristically, if the corollary was not true, there would be a direction
along which |y||U(y)| is not bounded. By the self-similarity u would be singular
at all points on that direction (at time T'), hence we have a segment consisting
of singular points. We know from [CKN] that this would be impossible if they
were interior points. Using Lemma 4.2, we conclude that the top of the parabolic
cylinder cannot contain a singular segment either.

Proof. We may assume 7' = 0. If the corollary was not true, one could find y; € R?,
lyx| = oo, and

U (y&) | - lyk| > k.

Let us denote y/|y| by . The set {gr} has an accumulation point z, on the
unit sphere {|y| = 1}. We may assume that g — z, by considering a subsequence.
We claim that u is not bounded in any @, (cx«,0) for o € (0,1) and r € (0,1/2).

To see this, let us fix o and 7, and let A\g = X (—r?) = \/Lﬁr_l, (we recall that

A(t) = (—2at)71/2). For k large enough, we have |y;| > oAo and |ogr — ox.| < r.
Let t be the time which satisfies A (tx) - 0 = |yk|- One checks easily that A (tx) =
o~ yk| > Ao and hence t;, € (—r2,0). Therefore the point (o7, t) is contained in
Q@ (6x4,0). On the other hand,

u (o, te) | = A () - [U (A (&) 0gk) | = 0 ywl - [U (ya) | > 0 k.

This shows the claim, that is, all points on the segment {(cz.,0) : o € (0,1)} are
singular. This is a contradiction to the fact that the singular set at the top of the
parabolic cylinder has one-dimensional Hausdorff measure zero. This contradiction
shows our corollary. i

To finish the proof of Theorem 2, we have several possibilities. The first way
is to observe that, since U is smooth, U € L (R?) for ¢ > 3 by Lemma 4.1 and
Corollary 4.3. Therefore Theorem 2 follows from Theorem 1. The second way is to
prove

(4.4) P@)=o(y")  asy - oo
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for some N < oo. (Corollary 4.3 and (4.4), together with Lemma 5.1 in next
section, will prove Theorem 2 without using Theorem 1.) To prove (4.4), one can
use Lemma 4.1 and follow the proof of Subsections 3.1 and 3.2, as sketched at
the beginning of this section. Alternatively, since Corollary 4.3 implies that u is
uniformly bounded in {z : § < |z| < 1} x (—1,0), the same argument of Subsection
3.4 gives the second part of (3.11).

5. THE LIOUVILLE-TYPE LEMMA AND THE MAIN THEOREMS
In this last section we prove the key Liouville type lemma and the main theorems.
Lemma 5.1. Let I1: R® - R, and U : R® — R3 be smooth, and satisfy
(5.1) —vAIl(y) + (U(y) + ay) - VII(y) <0
in R3. If for some constant b € (0,a) we have |U (y)| < bly| for |y| sufficiently

large, and
lyl -,
mwl=o [ e ds)  aslyl oo,

where ¢ = (a — b) /v, then II is constant.

Proof. Let M(r) = maxj,—, I (y). M(r) is non-decreasing in r by maximal prin-
ciple. Let

-1 r
o)=Lt [ ooty
cr

(It solves (1.12) up to a constant factor.) It is easy to see that the function v(y) =
& (|y|) is a super solution for |y| bigger than some ro, i.e.,

—vAv(y) + (U(y) + ay) - Vu(y) >0 for |y| > ro.
Let

Ve (y) = M(ro) +€-[6(ly]) = ¢ (r0)] for e > 0.

Then 1. are all super solutions for |y| > ro. It is clear that ¢, (y) > II(y) for
ly| = 7o and for |y| near oo by the growth of II. By comparison principle we have

I (y) < M(ro) +e-[¢(lyl) — o (ro)]  for [y| > ro.

Now letting € go to zero, we get II (y) < M(rq) for all |y| > ro, and hence max1I is
attended at some y, |y| = ro. By the strong maximal principle IT must be constant.
(Notice that our coefficients are bounded in bounded regions.) 1

Remark 5.1. Tt is reasonable to expect that (U + ay) - VII acts as a “magnifying
force”, since we are looking for blow-up solutions of the Navier-Stokes equations,
(cf. [GK] equation (3.2) and [Gi2]). It is known that for Navier-Stokes equations
there exist forward self-similar solutions which are defined on R? x (0,00) and are
singular at (0,0), (see [GM], [CP]). Its corresponding stationary problem behaves
like Av(y) = —y - Vu(y) at infinity, which does not blow up at infinity.
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Remark 5.2. One can easily extend this lemma to R™, n > 2. In that case, the
comparison function ¢ takes the form

¢(r):/ sl=mees’/2g,

Now we prove Theorem 1 and Theorem 2.
Proof of Theorem 1 and Theorem 2. Lemmas 3.2 and 3.3, respectively Corollary
4.3 and the estimate (4.4), give us the growth estimates

U =o(ly), Ty) =0 (lyI") as |yl - o0

under either Theorem 1 or Theorem 2, for some N < oc. Lemma 5.1 then implies
that IT is constant. Therefore VII is zero, i.e.,

(5.2) U;Uji + Pi +aU; +ay;U;; =0  for each i.
Besides (5.2), if we consider (1.7), we get |Q(y)|? = 0, that is
o;U; = 0,;U; for all i, j.
Comparing (5.2) with the equations (1.3) of U
—vAU; + U;U; j + P+ aU; + ay;U; ; =0 for each ¢,
we get
—vAU; =0 for each i.

Since U € L7 (R?) in Theorem 1 and U — 0 at infinity in Theorem 2, the usual Li-
ouville theorem implies U; are 0, (or constant if U € L°). The proof is complete. I

Remark 5.8. By Lemma 5.1, it is sufficient to have |U(y)| < b|y| for some b < a
and for |y| > ro, (and P (y) = O (Jy|") for some N > 0), for the triviality of U.
The corresponding condition for u (given by (1.2)1) is

blz|
) < ———
w0 < 5o

It is interesting to compare it with (1.6).

for |z| > (T — t)%ro.

Remark 5.4. To conclude that a solution of (1.3) is zero, certain assumptions
on the growth of U are necessary, as can be seen from the following example. Let
® be an arbitrary harmonic function on R®. Let U = V® and P = —1|UJ* —
ay - U, (i.e. II = 0). Then (U, P) solves Leray’s equations (1.3). This gives us
certain heuristic reason for considering the quantity II. The fact that the quantity
%|u|2 + p satisfies a maximal principle for the stationary Navier-Stokes equations
is well-known (see e.g. [Se2, p.261], [GW]), and has played an important role in
recent results ([FR1,2], [Str3]) regarding the regularity of solutions of the stationary
Navier-Stokes equations in higher dimensions.

Remark 5.5. Scheffer [Sch2] raised the question of the existence of nontrivial
solutions of Leray’s equation with a “speed-reducing” force g:

—vAU +aU +ay - VU+U-VU+VP =g, divU=0
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for some U, g with U - g < 0. By using the methods in this paper we can obtain
some partial results on Scheffer’s question, but the general case seems to remain
open.
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