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TRACKING NONPERIODIC TRAJECTORIES WITH THE OVERTAKING CRITERION

1. Introduction

In this paper we study the optimal control problem of tracking a prescribed

nonperiodic trajectory on an infinite time interval. The plant is lienar time

invariant, and the cost is taken quadratic. It is typical in this situation
that all the cost expressions diverge as time increases to infinity. Therefore
we adopt the overtaking criterion, which enables to compare plans on [0,)
even though the costs yrow indefinitely.

In [1] Artstein and Leizarowitz studied the infinite horizon tracking of a

periodic trajectory, with the overtaking criterion. It is proved there that

there exists a unique overtaking solution for every initial condition, and it is
given in a linear closed loop form. The following considerations motivate the
generalization of these results. Consider the periodic trajectory which coin-
cides with the tracked trajectory on a large interval [0,T]. By the results of
[1] there exists a unique solution for tracking this trajectory. On the other
hand one does not expect the performance of tracking the original trajectory to
be much influenced by its values in the remote future, as long as small time
intervals are concerned. Moreover, if we keep enlarging the interval [0,T]
then the expressions describinyg the feedback law and the differential eyuation
for the optimal solutions indeed approach certain meaningful quantities. These
are in fact those obtained by formally using the optimal expressions for the
periodic case to the nonperiodic one.

In this paper we generalize some of the results of [1] to the nonperiodic
case. MWe prove the existence and uniqueness of an overtaking optimal solution

for every initial condition. We show that it is given by the same feedback law

as in the periodic case. However, our results are weaker than those of [1] in
two respects. First, we consider tracked trajectories which are uniformly con-

tinuous on [0,=) as well as bounded there. Second, the overtaking criterion



that we employ is somewhat weaker than the one used in [1].

One aspect which distinguishes the nonperiodic case from the periodic one
is the followiny. It would be desirable to know that two tracked trajectories
which differ only for very large times have respective solutions which are
nearly the same for comparatively small times. We show that indeed the over-
taking optimal solutions have this property. This is a valuable fact from the
application point of view. Suppose that the tracked trajectory is precisely
known only for a large time interval [0,T]. Then by the above mentioned pro-
perty we have an approximate solution based on the knowledge of [0,T], which
converges to the optimal solution as T grows to infinity. Moreover, if for
every to the exact tracked trajectory is known to the controller in the inter-
val [to,to + T], then our results enable him to produce a trajectory which
deviates from the optimal one by an arbitrarily small quantity, provided that T
is sufficiently large.

The paper is organized as follows. In the next section we display some
results concerning finite intervals tracking problems. In section 3 we
establish some boundedness properties of the optimal trajectories in finite
intervals. In section 4 we prove our main result namely, the existence and uni-
queness of the overtaking optimal solutions. We show that they are given by a
linear feedback law. In the Tlast section we show that if at the time t0 the
tracked trajectory is known only on the interval [to’to + T], then a solution
can be produced, which is arbitrarily close to the optimal one, uniformly in

[0,«). This, provided that T 1is sufficiently large.

2. Notations and preliminary results

The Euclidean n-dimensional space is R" with column vectors. A prime

over a vector or a matrix denotes transposition. Hence y'x 1is the scalar pro-



L .
duct of y and x, and |x| = (x'x) 2 s the norm. If Q 1is an n x n matrix
2 . . . .
then Ixly = x'Qx. A dot over a variable denotes differentiation with respect

to the time variable t.

We shall denote by L (Rk), 1 <p < =, the space of all measurable functions

p
$:[0,T] » RK  such that f5|¢(t)|pdt < o, This, without explicitly mentioning
the interval [0,T], and where it will be clear from the context what this

interval is. We shall use the notation Lm(Rk) in a similar manner.

The system under consideration is
(2.1) X = Ax + Bu

defined for x € R", u € R™ and constant matrices A and B with the

appropriate dimensions. Along with (2.1) a trajectory
(2.2) r: [0,o) » R"

is given. It is assumed throughout that T(e¢) is uniformly continuous and
bounded on [0,).

The admissible controls u(+) are measurable and integrable over finite
intervals. Given wu(+) and an initial condition x(0) = Xys the system (2.1)

has a unique solution, called the response to u(-). We denote it by
x(e) = x(-;u,xo).

However, the dependence on u(-) and Xs will be suppressed when no confusion

may arise. A response to an admissible control will sometimes be called a solu-

tion of (2.1) or a solution.
The cost of using the control u(+) with the response x(+) over the

interval [tl’t2] is given by

t
(2.3) c (u) = jz Cix(t) - F(t)"é + uu(t)né]dt

,t
1°-2 t1



where R is a yiven positive definite symmetric matrix, and Q 1is a positive

semidefinite symmetric matrix. The following is assumed throughout.

A Standing Hypothesis. The pair (A,B) 1is controllable and the pair (A,Q) is

observable.

Typically, unless T(+) has a very special form, <o T(u) in (2.3) will
b
diverye to infinity as T grows indefinitely, for every choice of wu(-).
Therefore we wish to apply an optimality criterion which is capable of comparing

costs which tend to infinity. Such is the overtaking criterion, originated in

the economic literature, see Gale [3], von-Weizsacker [5].

Definition. Let Xo be a fixed initial condition. A control ul(-)

overtakes the control u,(.) if for every e > 0 there is a time tys

depending on €, such that

Co,e(Up) < ey tluy) + e

for all t > to’ The control u*(+) is overtaking optimal if it overtakes any

other admissible control.

A Remark. Note that the definition is different from the one in [1], where the

e does not appear in the definition and the inequality.

We shall display now some auxiliary results, needed in the sequel, about
tracking a trajectory (<) on the finite interval [0,T]. For y and z
fixed in RK consider the problem

T
(2.4) minimize é Cix(t) - y(t)ug + nu(t)ug]dt
subject to x(0) =y, x(T) = z. The minimization is performed over all

admissible controls and responses on [0,T] which satisfy (2.1). We denote the



infimal value of problem (2.4) by v(y,z,y). In particular, if the «vy(+) is
given by y(t) = 0 for all 0 <t < T then we denote the infimal value by
v(y,z,0).

Let B denote the closed unit ball in Lm(Rk) and consider the minimiza-

tion problem (2.4) for trajectories «y(+) 1in B.

Lemma 2.1. There is a constant Ao > 0 and a constant ro > 0 such that

(2.5) v(y,z,v) > A (ly|® + 121%)

2

for all y(+) in B and for all |y|® + |z|®> Fo

Proof: It is well known (see e.g. Lee and Markus [4] page 217) that the minimum
in problem (2.4) for y = 0 1is attained, and clearly the minimal value

v(y,z,0) 1is convex and continuous on R™ x R". Therefore
(2.6) My = min{v(y,z,0): lyl2 + |z|2 = 1}

is a positive number (recall that (A,Q) is observable). Let |y|2 + |z]|% = r?

be such that r > 0, and let +y(+) belong to B. It is easy to see that
2 e 13 . 2 2 =

(2.7) v(y,z,y) > r 1nf{v(y0,zo,% oo lygl® t |z0| 1}.

We claim that if r 1is sufficiently large then

. Y 1

(808) V(.Y()’ZU’F ) > ?’ H

2 2 _
or forall yeB, |y |°+ 1z, = 1.

Otherwise there is a sequence r, . » = with ]ykl2 + |zk|2 =1, controls uy(*)

with responses x (+) in [0,T] and v, (+)€ B satisfying
(2.9) i Cn X n2 + 1 u2 dt < 1
. J T =7 Mgt i TRAdE < g wy

It can be assumed that {uk}:;l converges weakly in LZ(Rm), say to “0(')’ and



then {xk(-)};;l converges uniformly on [0,T] to xy(+), the response to

Y| © . : .
u,(+). Also { Xk (*)},_, converyes weakly in L (Rn) to zero and all this
0 " k=1 2

implies, in view of (2.9), that

T 2 2 1
é [uxo(t)uQ + uuo(t)uR]dt <3 Hgs hence

1
V(yoszuyo) < ?’ UO
where Yo = xO(O) and zy = xO(T), which contradicts (2.6). Then (2.8) must

- . 1 .
hold if r > r, for some constant ry. Choosing Ay = 7 ¥y, the assertion

(2.5) follows from (2.7). 1

Let us denote by By, the closed ball of radius M > 0 about the origin in

Proposition 2.2. For every fixed vy € BM the problem (2.4) has a unique solu-

tion. The function v(y,z,y) 1is strictly convex on R"™ x R". There are

constants A > 0 and r > 0 such that

(2.10) v(y,z,v) > ALly|? + |2|2]

2

|2 + |z|? > r2.

for all vy € BM and all |y

Proof. The first two claims are standard (see e.y. Lee and Markus [4] and

Artstein and Leizarowitz [1]). The last assertion follows from Lemma 2.1.

L

Proposition 2.3.

(1) A control wuy(+) 1is the optimal control of (2.4) and x,(+) is its

response if and only if

u 1'y,(t)

o(t)_= R”



where Xo(*)s yo(+) solve the system

).( Ax + BR'lB‘y
(2.11)

y = Qx - Ay - Qy

(i1) For every y,Z € R" there is a unique y(-) such that x(-) and
y(+) solve (2.11) with the boundary constraints x(0) =y, x(T) = Z.
Proof: This result is standard too (see e.g. Lee and Markus [4] and Artstein

and Leizarowitz [1]). |

Let K be the positive definite solution of the Riccati equation

(2.12) KA - A'K + KBR™}B'K - Q = 0.
We denote
(2.13) F=A-BR1IB'K

and it is well known that F s stable whenever (A,B) 1is controllable and

(A,Q) is observable (see Athens and Falb [2] page 773).

Proposition 2.4.

(i) . If x(+) and y(-) satisfy (2.11) then the function g(+) which is
defined by

(2.14) g(t) = y(t) + Kx(t)
verifies the equation

(2.15) y(t) = -F'g(t) - Qvy(t).



(ii) If g(+) satisfies (2.15) and x(+) 1is a solution of

(2.16) x(t) = Fx(t) + BR™1g g(t)

then x(+) and y(-) verify equations (2.11), where y(+) is

defined by

y(t) = g(t) - Kx(t).

Proof: The proof is by a straiyghtforward computation, using (2.12).

L

Given a bounded uniformly continuous tracked trajectory T: [0,=) » R we

define

(2.17) g(t) = ? e(s-t)F'qr(s)ds, t » 0.
t

Let x*(+) be a solution of (2.16) with this g(+). (Notice that both g(-)
and x*(+) are bounded on [0,»).) The response x*(e) 1is the candidate to be
the overtaking optimal solution, and (2.16) with (2.17) define the linear feed-
back rule. We conclude this section with a rather mild optimality property of

x*():

Theorem 2.5: For every 0 < tl < t2 < o, x*(*) restricted to the interval

[tl,tzj is the solution of the problem

(2.18) minimize ¢ (u), subject to
t1sty

X(tl) = x*(tl), x(ty) = x*(tz)

where x(+) 1is the response to u(+) 1in [tl,tz].



Proof: The function g(+) 1in (2.17) is a solution of equation (2.15), while
x*(+) solves (2.16). By Proposition 2.4 (ii), x*(+) and y¥(+) verify (2.11)

where

y*(t) = g(t) - Kx*(t).

Then by Proposition 2.3 x*(+) is the optimal solution to the problem (2.18).

LI

3. Boundedness properties of responses

In this section we shall prove that we can restrict our attention only to
responses x(+) which are contained in a fixed ball in R (once the initial
value x0 is fixed). We consider the optimization problem (2.4) with the end
points y,z in a fixed bounded set. We shall show that the corresponding func-
tion g(+) defined in (2.14) have a uniform bound, for all the possible choices
of y,z and v(-) e,BM.

For a fixed T > 0 we divide the [0,«) interval into segments

n

Ik = [kT,(k + 1)T], k > 0, and given a tracked trajectory TI: [0,) > R" we
define T : [0,T] » R" by

(3.1) I (t) = r(t + kT).
For every k we consider the minimization problem (2.4) with y(e) = Fk<')'
We denote

Villysz) = v(y,z,T}).

By the uniform boundedness of {Fk(-)};;o and by Proposition 2.2 there are

A>0 and r > 0 such that

(3.2) Ve(y,2) > ALly|? + |z[%] for all |y|® + |z|2 > r2.



-10-

We consider now a discrete version of the tracking problem. For any
sequence ¢ = (yo,yl,...) of states in R" we associate the sequence of costs

m-1
(3'3) Cm(O) = >‘ Vk(yksyk+l), m = 132’000

with the interpretation: ¢,(o) is the optimal cost of tracking T(+) on
[0,mT] with the constraints x(kT) = Y for k =0,1,...,m.

We denote by B(0,p) the closed ball of radius p about the origin in R™.

Lemma 3.1. Let the initial value be Xq e Given an L > 0 there is a

number b > 0 with the property: If ¢ = {yo,yl,yz,...} is a sequence in R",
Yo = Xg» and o s not contained in B(0,b), then there is a sequence

o = {z9,24,25,...}, 2 = Xy, such that ¢' is contained in B(0,b) and
(3.4) cm(o ) < cm(o) - L
for every m > my» for some mg .

Proof: The sequence {vk(.,.)};;l is uniformly bounded on compact sets in

R" x R". In particular the number 8 which is defined by
B = sup vk(0,0)
k

is finite. Let a be such that a > |x0| and if (y,z) ¢ B(0,a) x B(0,a)
then Vily,z) > g+ 1, for all k > 1. Such an a exists by (3.2). If

o= {yo,yl,yz,...} is such that for some k0 yk.’i B(0,a) for all k > ko,

then o' = {x(,0,0,...3 will satisfy (3.4), for every L. Assume then that o

keeps returning to B(0,a). Let a be defined by

a = sup { max uk(y,z)}.
k y,zeB(0,a)

Given an L then if N > 2a +L and {yk’yk+1""’yk+N} is such .that
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€ B(0,a) but
Yo Yy € B

(3.5) Ye+i £ B(0,a)  for 1 <i <N-1

then

k+M-1

jgk Vi(¥js¥541) > M(B + 1) > [2a + MB] + L

for every 2a+ L <M < N. It follows from this inequality that every such

finite sequence {yk’yk+1""’yk+N} with N > 2a + L can be replaced by

{yk,O,...,O,yk+N} and thus lowering the costs for all times k + M, M > 2o + L.

Let b >a be such that if (y,z) & B(0,b) x B(0,b) then
Vi(ysz) > 2a + (2a + L) « B + L.

Then if {yk’yk+1"°”yk+N} is such that YooYy € B(0,a) and Y+i ¢ B8(0,b)
for some 1 <i <N -1, and N < 2o + L, then

k+N-1
jgk Vil¥js¥541) > 20+ (2a + L) « B+ L > (20 + NB) + L.
Thus the finite sequence {yk,...,yk+N} can be replaced by {yk,O,...,O,yk+N}
and thus lowering the cost of all times M > k + N by at least L. Now, given
o= {yo,yl,yz,...} we replace every finite sequence {yk,...,yk+N} of length
N > 2 which satisfies Y oY € B(0,a) and (3.5) and Yk+i ﬂrB(U,b) for some
1 <1 <N-1 by the finite sequence {yk,O,...,O,yk+N}. Call the sequence

thus obtained o'. The above discussion implies that o' satisfies (3.4).

]

There is a correspondence between solutions of (2.1) and sequences in R".
To a solution x(+) we associate the sequence {x(kT)}:;O, while to a sequence

{Xk};;o we assocsiate the solution x(¢) which coincides on the interval

Ik = [kT,(k + 1)T] with the solution of the problem
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(k+1
(3.6) minimize [
kT

T
) Cix(t) - r(t)ug + uu(t)ué]dt

subject to x(kT) = Xy s x((k + 1)T) = xeq1-

Let a be as in lemma 3.1 and as before let o be given by

a=sup [ max uk(y,z)].
k y,zeB(0,a)
Let in Lemma 3.1 L = a and let b be as asserted in this Lemma. There is a
number c¢' such that if x(e) solves problem (3.6) with y,z €B(0,a) then
x(t) € B(0,c') for kT <t < (k + 1)T. Also, there is a number d' such that
if x(+) solves problem (3.6) with y,z € B(0,b) then x(t) € B(0,d') for
kT <t <(k +1)T. Let ¢ >c' and d > d'. We claim the following:

Theorem 3.2. Let ¢ and d be as above. If x(+) 1is a response to u(+) on
[0,») such that x(T) ﬁ B(0,d) for some <t > 0 then there is a response

XO(-) to uy(+) such that x,(t) € B(0,d) for all t >0 and ug(+) over-
takes wu(-).

Proof: Let x(+) be a solution of (2.1) and consider the sequence
o= {X(kT)}:;O corresponding to it. If it is not contained in B(0,b), then by

]

Lemma 3.1 there is a sequence o¢' «contained in B(0,b) such that

cm(o') < cm(o) - o for large m. If x'(+) corresponds to o' and is a
response to u'(e), then u'(-) overtakes u(+). The reason for this is: If
kKT <t < (k +1)T and x(+) is not equal to x'(+) at both times kT and

(k + 1)T, then x'(kT) and x'((k + 1)T) are in B(0,a), therefore

CO,t(u') < cu,kT(u') + a = ck(o') + a < ck(o) < CO,t(u)

whenever k 1is sufficiently large.

Now suppose that o 1is contained in B(0,b). There are two cases:
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(i) First possibility: There is a to such that x(t) € B(0,d) for all

t > ty, but x(t) € B(0,d) for some 0 < 7 < ty- Then for all intervals

I, = [kT,(k + 1)T] such that kT < ty we replace x(+) in I, by the optimal
solution to problem (3.6) with the boundary values equal to those of x(+). We
thus obtain a solution Xo(+) corresponding to up(+), and wuy(+) overtakes

u(+). Clearly xo(t) € B(0,d) for all t > 0.

(ii) Second possiblity: There are arbitrarily large times t such that

x( 1) g'B(O,d) holds. Let xU(-) correspond to {x(kT)}:;O and be a response
to uo(-). We clajm that there is an € > 0, independent of k, such that if
x(t) @ B(0,d) with kT < 1< (k + 1)T then

(k+1)T 2 2
(3.7) [ Lix(t) - r(t)uQ + u(t)igldt > v (x(kT),x(k + 1)T)) + e.
kT

This is implied by the following consideration. The number d' has the pro-
perty that a solution x(+) of (3.6) with y,z ¢ B(0,b) satisfies

x(t) e B(0,d') for kT <t < (k + 1)T. Let «y(+) be in the L_(R") closure
of the set {rk(-): k » 0} (recall (3.1)). Then if £(+) solves problem
(2.4) with y,z € B(0,b) it follows that £(t) € B(U,d') for 0 <t < T.
This, combined with the uniqueness of solutions to problem (2.4) and the fact
that d > d', implies (3.7). It follows from (3.7) that uo(-) overtakes

u(s), thus the proof of the Theorem is complete. [:1

As a result of Theorem 3.2 we shall consider only responses which are con-
tained in B(0,d), which we shall denote henceforth by o. Once we have proved
the existence of an overtaking optimal solution among these responses, it will

be an overtaking optimal solution amonyg all the admissible solutions, as implied

by Theorem 3.2.
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Proposition 3.3. Let x(+) be a solution to problem (3.6) such that x(t) € o

for all kT <t < (k +1)T. Let y(-) in [kT,(k + 1)T] be the unigue func-
tion guaranteed in Proposition 2.3. Then there is a constant H, independent

of k, such that
ly(t)| <H for all kT <t < (k + 1)T.

Proof: If the assertion of the Proposition is false then there is a sequence of

pairs (xk(-),yk(-)) such that

X (t) = Ax, + BR7IB'y,
(3'8) .
)’k(t) = Qxy - AI.Yk - QFk

for 0 <t < T, where r(+) 1is as in (3.1), and

A = max |yk(t)| + o 3as Kk > o,
0<t<T

We define
21 1
H(E) = 52 %), a(6) = 3o % (6)
then we get by (3.8)

-1,
(3.9) o = Ay + BRTB'g,

(3.10) = -A'¢ + [Qy - %,( Qrl.

g
=
I

By (3.10) {6 (t)} converges uniformly in [0,T] to ¢(t) where ¢(+) is a

function which verifies
(3.11) o(t) = -A'g(t),

and sup [o(t)] = 1 .



-15-

Since wk(t) >0 uniformly on [0,T], it follows from (3.9) that also @k(t)
converges uniformly on [0,T] to zero. Thus we obtain that B'¢(t) = 0 for
0 <t <T which, combined with (3.11), contradicts the controllability of

(A,B). This concludes the proof. [:I

We shall need the following result:
Theorem 3.4. Let x(+) be the solution of the problem (2.4) with

(3.12) T<t, -t

9 1<2T and x(t)e o for all t

1 <t < t2.

Let y(+) be related to x(+) as in (2.11), and g(+) defined by (2.14).

Then there is a constant P which does not depend on x(-), tl and t, such

that

ly(t)l, lg(t)| <P

for all t1 <t < t2.

Proof: The bound on |y(t)| follows from the assumed bound on |x(t)| and

from Proposition 3.3. The assertion concerning the boundedness of |g(t)|

follows then from (2.14) and the boundedness of |x(t)| and |y(t)].

4. The main result: overtaking optimality of x™(+)

Proposition 4.1. Let x, be fixed. Let g(+) be given by (2.17) and x*(+)

be the solution in [U,») of (2.16) with x(0) = Xy. Let x(*) be a response
to the control u(+). Then there is a constant up, which does not depend on

u(+), such that

(4.1) Co,T(u*) < ¢y plu) + u

for all T > TO’ for some T, > 0, and where x*(+) 1is the response to u*(-).
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Proof: By Theorem 3.2 we can assume that x*(t), x(t)€ o for all t > O,

where the ball © depends only on the initial value Xy We denote by

Vt (y,z) the minimal value for the minimization problem
0 t0+1
2
minimize [ [ix(t) - I‘(t)iQ + lu(t)lgldt
to
subject to x(tp) =y, x(tg + 1) = z.

Define

(4.2) uo= sup{vtu(y,z); ty >0, y€ 0,z € 0}

and it follows from the boundedness of T(+) that p < «. We claim that u 1in

(4.2) satisfies (4.1) for all T > 1. 1If not then
CO,T(U) < CO,T(U*) - u, which implies

(4.3) Co,7-1(u) < co p(u*) - w

for some T > 1. By (4.2) and the assumption x(T - 1), x*(T) € © we have
Voo (x(T = 1),x*(T)) < w.

This, combined with (4.3) yields

(4.4) CO,T-l(u) + v (X(T = 1),x*(T)) < CO,T(U*)'

~

The left hand side of (4.4) is CU,T(J) where u 1is a control with a response

X(+) which satisfies x(0) = X, and X(T) = x*(T). The inequality (4.4) thus

contradicts Theorem 2.5, concluding the proof of the Proposition. [:I
The following Theorem asserts that not only can we consider only responses

x(+) which remain in © for all times, but we can consider only such responses

x(+) which satisfy
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(4.5) Ix(t) = x*(t)| 0 as t » o.

Theorem 4.2. Let x™(.) satisfy (2.16) with g(+) as in (2.17). Let x(+)
be a response to u(+) and suppose it does not verify (4.5). Then

1im [c0 7(u) - <o T(u*)] = o,

T“)m H] bl

To the proof of Theorem 4.2 we shall need the following two Lemmas.

Lemma 4.3. Given an e > 0 there exist constants & > 0 and v > 0 such that

if x;(+), 1 = 1,2, are solutions of the minimizing problems

Loty 2 2
minimize [ [ix(t) - ()05 + nu(t)isldt
ty-6 Q R

subject to x;(ty - 8) = yi, x5(ty + v) = z;

j i i =1,2 where Yj»Z; € 0 and

t0 > §, then

|x1(t0) - Xz(to)l < e

*

In particular, if x*™(.) 1is as in Theorem 4.2, then |xl(tU) - X (t0)| < e.

Proof: By Proposition 2.4 the solutions xi(-) are given by

. Y0 (ty - t)F 3
(4.6) X;(tg) = e xi(tg - 8) + [ e BR™*B'g. (t)dt
i‘vt0 i‘t0 i
t0'6
where 91(') is some solution of (2.15). If & 1is large enough then the first

term in (4.6) can be estimated as follows

&F 1
.Y1'|

le <ge forall y, €o0,

using the stability of F. We fix such a &, and consider the restriction of

9;(+) to [t0 - 6,t0] when we take v to be very large. We claim the

following:
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(4.7) max |91(t) - gz(t)l >0 as v+
T -68<t<$
0
and this, uniformly in tO' This is a consequence of the fact that both g,(-)

and 92(-) solve equation (2.15), hence their difference ¢ = yg; - 99 solves

the equation
g =-F'g

in [t; - 8ty + vl. By Theorem 3.4 there is a bound on |[g(ty + V)|, which
does not depend on tO’ and thus (4.7) follows from the stability of F'. This
implies that

Yo (ty - tF

| f e BRB' (4, (t) - g,(t))dt]| < 5 ¢
t ls 1 2 Z
0
if v is sufficiently large. In view of the bound on IeSFyi|, this concludes

the proof of the Lemma. (]

Lemma 4.4. Let €, § and v be as in Lemma 4.3 and let a > €. Then there
is a B > 0 such that if X(+) 1is a response to u(+) in [tU - 8,ty + vl

with x(t, - &), ;(t0 +v) € 0 and if x*(+) 1is the optimal solution of

U

minimize ¢ (u)
tU-G,t0+v

subject to x(to - 8) = ;(to - 8), x(tg + v) = ;(to + v) and if
[x(tg) - x*(ty)| > o,
then

~ *
Ct s, +vlU) > Cto-a,tu+v(“ ) + 8

U U

where x*(+) 1is the response of u*(-).
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Proof: Assume that the assertion is false. Then there is a sequence

{Xk(-)}:;1 of responses to controls {uk(o)}E;1 in [0,8 + v], such that
(4.8) IXk(s) - x:(5)| > a and

*
(4.9) CU,6+v(uk) - CU,6+v(uk) >0 as k > e

where the costs in the last expression are of tracking a trajectory yk(-) in
(0,86 + v], xk(-) and x:(.) have the same boundary values, and x:(o) is the
optimal solution.

Since {uk(-)}::1 is bounded in LZ(Rm) we can assume that

(4.10) uk(.) > uo(-) as k » o weakly in L2(Rm)

and

(4.11) X (*) »xg(*) as k » =, uniformly in [0,8 + v],
where

X0(+) is the response to ug(-). Since the {yg(+)}g=] are restricstions

to intevals of length v + & of the function T(+), which is uniformly con-

tinuous and bounded on [0,«), we can assume that also
(4.12) yk(t) > yo(t) as k » o, uniformly in [0,8 + v].
[t follows from (4.10), (4.11) and (4.12) that

(4.13) < lim inf ¢

K +e0

o, s+ullo) 0, s+ulli)

Now let wv(y,z,y) be the minimal value of problem (2.4) with T = o + v,
Let y and z vary in o and vy take values in a ball BM about the origin
in C[0,8 + v], the space of the continuous functions from [0,6 + v] to RI

endowed with the Lm(R") norm. Then the function

(4.14) (ysz,v) > viy,z,v)
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is continuous in y(-), uniformly in y,z € 0, and it is continuous in (y,z)

for every fixed vy in BM. Therefore it is jointly continuous in (y,z,Y).

Similar to (4.10) and (4.11) we have
(4.15) ”E(') > “8(°) as k » =, weakly in L2(Rm)
(4.16) Xz(t) > xa(t) as k » o, uniformly in [0,8 + v],

where XB(-) is the response to ua(o) in [0,8 + v]. From the continuity of

the function in (4.14), together with (4.12), (4.15) and (4.16) we get that

* N *
o, s+vl¥p ) = ;31 co, s+vllk )

This equality, combined with (4.9) and (4.13) yields

_ *
€0, s+vlUp) = g, seulug’)

while from (4.8), (4.11) and (4.16) we have

max  |x,(8) - xg(ﬁ)l > a
O<t<s+v
which contradicts the uniqueness of the optimal solutions. [:[

Proof of Theorem 4.2: Under the assumptions of the Theorem there is an € > 0

and a sequence of times t, + = such that
*
and the intervals
Ik = [tk - G’tk + \)]

are mutually disjoint, where & and v are as in Lemma 4.3. In each interval

Ik we replace x(+) by the optimal tracking solution in I, which satisfies
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the same boundary conditions as x(+) in Ik. Call the solution thus obtained
y(+), and let it be the response to the control w(e). Then it follows from

Lemma 4.4 that

(4.17) _]rim [CO,T(U) - CU,T(W)] = o,

In view of Proposition 4.1 this implies that

Him Leg p(u) - co p(u™)] = =

+00

which is the assertion of the Theorem. [:1
The following Theorem is our main result:

Theorem 4.5. Let the initial condition x, be fixed, and T(+) is uniformly
continuous and bounded on [0,»). Let x*(+) satisfy (2.16) with g(+) as in

(2.17). Then x*(-) is the unique overtaking optimal solution.

Proof: We first prove the uniqueness. If x*(-) is an overtaking optimal
solution then it must verify (2.16) on [0,») with a bounded function g(-),

which satisfies (2.15) on [0,®). But then g(+) 1is given by

) t '
g(t) = e"tF [g(0) - é eSF'Qr(s)ds]

and since F' s stable, there is only one choice of ¢(0) for which g()

becomes bounded, namely

g(0) = eSF'Qr(s)ds.

c—38

This proves the unigueness.

Let ZU be the collection of continuous functions

v: [0,1] » R"
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such that there is some t0 > 0 so that
y(t) = I‘(t0 +t) for 0 <t < 1.

Consider Z0 as a subset of C([0,1]), the space of continuous functions from
(0,1 to R", with the L_(R") norm. Let Z be the closure of Z; in
C(L0,1]), then Z 1ds compact since T(+) 1is uniformly continuous and bounded

on [0,»). We define the function
m: 0 x 0 xZ»R!

such that m(y,z,y) 1is the minimal cost for problem (2.4) with T = 1. Arguing
as in the proof of the continuity of v(.,.,.) in (4.14) it follows that
m(«,¢5.) 1s continuous, and by the compactness of its domain it is uniformly

continuous. Therefore, given an ¢ > 0 there is a & > 0 such that

(4.18) Im(ylazl,Y) - m(yz,zz,Y)I < e

for all Iyl - yzl, |Zl - 22| <3, y1:y2321922 €0, YyEL.
Let x(<) be a response to u(e+) in [0,«). If |x(t) - x*(t)| does not

tend to zero as t ygrows to infinity, then u*(.) overtakes wu(e+) by Theorem

4.2, If |x(t) - x*(t)| >0 as t » =, then there is a ty such that
(4.19) Ix(t) - x*(t)| < § for t > ty
Let t > ty, and y(+) be given by

y(s) = T(t +s) for 0 <s <1. Using (4.18) and (4.19) we estimate as

follows:

CO’t+1(U) > CO,t(u) + m(x(t)’x(t " 1)’Y) N
> o)+ nlx()x (& + 1)) - ¢ >

> CO,t+1(u*) - €
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with the last inequality following from the optimality of x*(-) on finite

intervals. This concludes the proof of the Theorem. [:]

5. A case of limited knowledge about the tracked trajectory

In this section we consider the following situation: At every time t the
controller knows what are the values of the tracked trajectory in the interval
(t,t + T], but not for larger times. Another information available is that

r(+) 1is bounded with a known bound
(5.1) Ir(t)| <g for all t > 0,

and is uniformly continuous on [0,=).

Let Pl(-) and rz(-) both satisfy (5.1) and suppose that they coincide
on the [0,T] interval. Inspecting the expressions for the overtaking optimal
solutions we see that for a fixed initial value Xy and for a fixed interval
[0,7] we obtain

max |x*(t) -x5(t)] »0 as T s
1 2
O<t<t

and this uniformly for pairs (Pl(-),rz(-)) which satisfy (5.1). This suggests

the following claim:

Theorem 5.1: Let the initial condition X0 be fixed and the tracked trajectory
be uniformly continuous and bounded on [0,~). Assume that at every t > 0 it
is known in the interval [0,t + T], T > 0 fixed. Let x¥(-) be the over-

taking optimal solution. Given an ¢ > 0 there is a T > 0 and a response

Xr(+) to a control wug(-) such that

sup  [x*(t) - xp(t)] < e
O<t<=
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and the value u;(t) 1is a function of the values of T(-) in the interval
(0,t + T].
Proof: We define
(5.2) Cogp(t) = [ eTF gr(s)ds
and let X7(+) be the solution of (2.1) with the feedback control

ur(t) = R7B'[oq(t) - Kx(t)1.
Then x;(+) satisfies the equation
(5.3) Xp = Fxp + BRI, xp(0) = x,.

It follows from the boundedness of gr(+) and g(+) and the stability of F

that there is a bound b such that

(5.4) IX*(t) ], Ix7(t)] <b

for all t >0 and T > 0.

Let 1> 0 be such that
(5.5) IeFtyI <.% €
whenever |y| <b and t > t. Denote
xp(t) = x"(t) - x(t)
then by (2.16) and (5.3)

M1 = F(axp) + BR7IB' (g - g1), axq(0) = 0

and  Axp(t) is given as follows:
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Ot

(5.6) Mxy(t) =

t
e axp(t - 17 + [ e{t)Fr"18g(s)
t-t

By (2.17) and (5.2) we have
g(t) - gr(t) = e [ eSFlar(t + T+ s)ds
and therefore
l9(t) - gr(t)| »0 as T » =

uniformly in t. Thus we can find a T so large that

| tEr e(t-s)FBR'lB'[g(S) - g7(s)1ds <‘§

whenever t > 1, and also

t
| | e(t‘S)FBR'lﬁ'[g(S) - 97(s)lds| < 5
0

whenever 0 <t < .

elt-S)FbR-18"[4(s) - gp(s)1ds  if 0 <t <<

- gT(s)]ds if t>T.

Then in (5.6) the integral terms in both cases of definition are less than

1

2
(5.4) and (5.5). This concludes the proof of the Theorem.

1

e 1in absolute value. The term IeTF[AxF(t - 1)]] is less than - € Dby

[
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