
Pointwise Fourier Inversion:

a Wave Equation Approach

Mark A. Pinsky
1

Michael E. Taylor
2

Northwestern University University of North Carolina

Evanston IL 60208 Chapel Hill NC 27599

Contents

1. A general criterion for pointwise Fourier inversion

2. Pointwise Fourier inversion on R
n
(n = 3)

3. Fourier inversion on R
2

4. Fourier inversion on R
n
(general n)

5. Fourier inversion on spheres

6. Fourier inversion on complex projective space, and variants

7. Fourier inversion on hyperbolic space, and variants

8. Fourier inversion on strongly scattering manifolds

9. Hermite expansions and the Schr�odinger equation

10. Nonspherical Fourier inversion on R
n

11. Gibbs phenomena on manifolds

A. The Dirichlet kernel and the wave equation

B. The heat kernel and the wave kernel

C. Distributions oscillatory at the origin

1
Research partially supported by NSF grant

2
Research partially supported by NSF grant

Typeset by AMS-TEX

1



2

Introduction

Recently one of us [P2,P3] found a necessary and su�cient condition for the inversion of

the Fourier transform of a function f at a pre-assigned point, within the class of piecewise

smooth functions on Euclidean space. This allows one to construct elementary (spherically

symmetric) examples of divergent Fourier integrals in dimensions three and higher. The

same criterion extends without change to Fourier expansions on the sphere and on hyper-

bolic space, while partial extensions are available for multiple Fourier series on the torus

[PST] and for certain eigenfunction expansions for the Laplacian on bounded domains,

with the Dirichlet boundary condition.

Various examples considered in these papers gave a striking impression that there should

be a connection between the issue of convergence or divergence of Fourier inversion on the

one hand and focusing of waves on the other. However, the analytical techniques employed

did not provide a direct connection.

The purpose of this paper is to give a direct analysis of pointwise Fourier inversion in a

fashion that makes explicit use of the wave equation. In x1 we give a rather general result,
relating the convergence of SRf = �R(A)f at a point x to the behavior of the solution

u(t; x) to the wave equation

(0.1) (@2t � L)u = 0; u(0; x) = f(x); ut(0; x) = 0:

where L is a second order negative elliptic partial di�erential operator on a manifold M

(such as the Laplace operator �), A =

p
�L; and �R is the characteristic function of [0; R]:

It is noted that, when M = R and L = d2=dx2; the criterion reduces to the classical Dini

criterion for convergence.

In xx2-4, we work out the implications for Fourier inversion of functions on R
n; �rst for

n = 3; then for n = 2; then for general n; making use of the classical Poisson-Kirchho�

formula for the solution of the wave equation on R� R
n: This technique allows one to

retrieve various results of [P2,P3]. Furthermore, the hypotheses that f is piecewise smooth

and has compact support are here generalized to square integrability at in�nity and a Dini

condition at x: We also briey discuss alternatives to the Dini condition. The formula for

the solution to the wave equation naturally leads to expressions involving spherical means,

parallel to those derived by other means in [P2,P3]. Appreciating this fact leads to results

in Appendix A, which we will mention a little further on.

Section 5 deals with Fourier inversion for functions de�ned on spheres Sn: The general

set-up of x1 does not quite apply to this case, since the decay hypothesis (1.6) is violated.
However, we use the special behavior of the spectrum of the Laplace operator on Sn to

`compactify' harmonic analysis on spheres. We then implement the modi�ed version of

the approach of x1, making use of the exact fundamental solution to the wave equation

(0.1) on R� Sn; with L = ��
�
n�1
2

�2
: It is worth pointing out that, with this approach,

one avoids appeal to special function theory. In x6, we consider other compact rank one

symmetric spaces, such as complex projective space and quaternionic projective space.
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Section 7 considers Fourier inversion for functions de�ned on hyperbolic space Hn: We

use the exact fundamental solution of the shifted wave equation (0.1) on R� Hn; with

L = � +

�
n�1
2

�2
; obtaining results quite parallel to those for Euclidean space R

n: We

pass on to more general considerations, �rst mentioning other rank one symmetric spaces

of noncompact type. A special property of this class of spaces is that, given a function

f; and a point x; convergence SRf(x) ! f(x) is equivalent to SR�(x) ! �(x); where

� is the radial symmetrization of f about x: Here, we do not bring in explicit formulas

for the solution to wave equations. Instead, we make use of the Hadamard parametrix to

establish a result on convergence SRf(x) ! f(x) for radial functions on a more general

class of manifolds.

Section 8 provides the denouement. The use of the Hadamard parametrix is extended to

study Fourier inversion for non-radial functions, on various classes of manifolds. Also, other

results from microlocal analysis are brought to bear, in situations where the Hadamard

parametrix fails. It is in this section that the connection between convergence SRf(x) !
f(x) and focusing of waves appears most clearly. In this section we also discuss sharp

results on the rate of convergence of SRf(x) to f(x); for a signi�cant class of functions f;

consisting of classical conormal distributions. In addition, we consider a class of manifolds

with boundary, on which a Dirichlet or Neumann boundary condition is imposed for the

Laplace operator.

Section 9 contains some results on a di�erent but related question, pointwise convergence

of the expansion of a function on R
n
in terms of Hermite functions. As an analytical tool,

we use the unitary group generated by the Hermite operator, and analyze it via Mehler's

formula. It is interesting that, in this case, convergence of S0Mf(x) to f(x) is inuenced
by phenomena involving focusing, both at x and at �x:

Another related topic is considered in x10, namely nonradial Fourier inversion. We treat

this as a study of spectral projections for an operator �(D); given �(�) 2 C1(Rn n 0),
positive and homogeneous of degree one. We make use of the pseudodi�erential equation

ut�i�(D)u = 0; and obtain some results analogous to those in xx2-4, under the hypothesis
that the set f� : �(�) < 1g is symmetric and strongly convex.

In xx2-10 there are a number of results on pointwise convergence of SRf(x) at a point

x 2 �, a smooth surface across which f has a simple jump. Section 11 takes up the

natural question of analyzing the Gibbs phenomenon in such a context. We also analyze

a version of the Gibbs phenomenon when there is a boundary, and the Dirichlet boundary

condition is imposed, but f does not vanish on the boundary. Progressing wave expansions

for solutions to the wave equation provide an essential tool in these analyses.

At the end of the paper are three appendices. The �rst two provide derivations of the

classical Poisson-Kirchho� formula for the solution to the wave equation on R� Rn (for

n odd; the case n even is, as ever, amenable to the method of descent). In Appendix A,

we establish a recursion formula for the Dirichlet kernel, representing the operator SR;

and then derive the formula for the wave kernel, making use of the direct link between

these two, provided by the operator identity (1.3). The resulting argument seems to us

more direct than, for example, the derivation of the wave kernel on pp.683-686 of [CH],

which also makes use of the Dirichlet kernel. In Appendix B, a variant of this argument is

used to derive the wave kernel from the heat kernel, an object whose calculation involves
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a well-known manipulation of Gaussian integrals. Both of these methods strike us as

pedagogically useful. In addition, there is Appendix C, in which we study the Fourier

transform of some distributions which are oscillatory at the origin, which arise in the

analysis of x9. In some model cases, we relate the computations to some done in Appendix

A.

We end this introduction with a few general comments about this paper. First, we

deal with convergence of spectral projections applied to f; not with various summability

methods, such as Riesz means. There is a considerable literature on the behavior of Riesz

means, some of which touches on wave equation methods; see, e.g., [Sog1] and references

given there. Second, we deal with convergence SRf(x) ! f(x) at speci�ed points, not

with such matters as pointwise convergence on a large but unspeci�ed set. Third, while

we state a number of results in terms of functions f belonging to various Banach spaces

of functions, our emphasis is on results which are illustrated in interesting and non-trivial

fashions by quite `nice' functions. In particular, examples illustrating non-convergence, or

relatively slow convergence, use functions which have `simple' singularities, and are not at

all pathological.

To be sure, one person's pathological function might seem to someone else to be quite

natural. To give an example, functions of the form t� sin(1=t) arise in elementary analysis,

as counterexamples to various assertions, and have perhaps acquired a reputation for being

pathological. However, these functions are seen to arise quite naturally in the analysis of

Schr�odinger equations, and in this capacity they play a role in x9 in the study of pointwise

convergence of Hermite series. On the other hand, these functions are not brought to bear

as examples to illustrate convergence and divergence phenomena in this paper, though the

industrious reader will �nd it possible to bend them to that purpose.

Acknowledgments. We would like to record our thanks to Jean-Pierre Kahane and

Vladimir Borovikov for helpful conversations during the period of preparation of this work.

1. A general criterion for pointwise Fourier inversion

Let L be a second order elliptic di�erential operator on a Riemannian manifold M:

Assume �L is positive and self adjoint, such as perhaps �L = ��; and let A = (�L) 12 be

its positive square root. If ' is an even function of a real variable, we have

(1.1) '(A) =
1

2�

Z 1

�1
'̂(t) cos tA dt;

where '̂(t) =
R
'(�)e�i�t d� is the Fourier transform of ': If we take '(�) = �fj�j�Rg =

�R(�); then

(1.2) �̂R(t) =

Z R

�R
cos�t d� = 2

sinRt

t
;



5

so SR = �R(A) is given by

(1.3) SRf(x) =
1

�

Z 1

�1

sinRt

t
u(t; x) dt;

where u(t; x) = cos tA f(x): Note that u(t; x) solves the hyperbolic equation

(1.4) (@2t � L)u = 0; u(0; x) = f(x); ut(0; x) = 0:

For now we will make the following hypothesis, which will be veri�ed in many special cases:

(1.5)

Given x 2M; there exists T0 > 0; such thatZ 1

T0

t�1 ju(t; x)j dt <1:

In particular, the conclusion of (1.5) holds if, for some a > 0; C <1;

(1.6) jtj > T0 =) ju(t; x)j � Cjtj�a:

Basic results on hyperbolic equations imply that, for any �xed x 2M; u(�; x) 2 D0(R);
and together with (1.5) this implies that (1.3) is well de�ned pointwise.

Certainly SRf ! f in L2
(M) if f 2 L2

(M): We want to study when SRf(x) ! f(x)

for some given x: To study this, we will pick ' 2 C10 (R) such that '(0) = 1; and add

0 = '(t)f(x) � '(t)f(x) to u(t; x) in (1.3). Note that

(1.7)
1

�

Z 1

�1

sinRt

t
'(t)f(x) dt = SR'(0) � f(x);

where SR here acts on '; so we know that lim
R!1

SR'(0) = '(0) = 1: Now (1.3) yields

(1.8) SRf(x) = SR'(0) � f(x) +
1

�

Z 1

�1

u(t; x) � '(t)f(x)

t
sinRt dt:

We have then the following criterion for pointwise convergence of SRf(x):

Proposition 1.1. Let f 2 L2
(M) and �x x 2M: Then SRf(x)! f(x) as R!1; if and

only if

(1.9)

Z 1

�1

u(t; x) � '(t)f(x)

t
sinRt dt! 0 as R!1:

Applying the Riemann-Lebesgue Lemma, we have the following su�cient condition for

convergence:
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Corollary 1.2. Given x 2M; we have SRf(x) ! f(x); provided

(1.10)
u(t; x) � '(t)f(x)

t
2 L1

(R):

Note that, when M = R (with its standard metric) then the quantity in (1.10) is equal

to

(1.11)

1

2

f(x + t) + f(x � t) � 2'(t)f(x)

t
:

In such a case, the condition (1.10) is a classical condition (of Dini) guaranteeing conver-

gence SRf(x) ! f(x):

Note that, if (1.10) holds, then the hypothesis (1.5) must hold. Conversely, if (1.5)

holds, then we can localize the hypothesis (1.10).

The analysis above also has implications for uniform convergence of SRf; on a set

S � M: Clearly, SRf(x) ! f(x) uniformly for x 2 S if and only if (1.9) holds, uniformly

for x 2 S: Thus, in the spirit of Corollary 1.2, we have:

Corollary 1.3. Given S �M; we have SRf(x) ! f(x) uniformly for x 2 S; provided

(1.12)

nu(t; x) � '(t)f(x)

t
: x 2 S

o
is compact in L1

(R):

Proof. One need only note that, if K � L1
(R) is compact, then ĝ(t) ! 0 as jtj ! 1;

uniformly for g 2 K:
Let us also remark that, since SR'(0) tends to '(0) rapidly as R ! 1; the rate of

convergence of SRf(x) is controlled by the rate of convergence in (1.9). We will draw some

explicit conclusions from this observation in x8.
It is useful to de�ne SRf for some elements f that do not belong to L2

(M): We can

do the following. For s > 0; let Ds be the domain of the self adjoint operator As; with

the graph topology. Then, let D�s be the dual of Ds: Set D0 = L2
(M): We have natural

containments

(1.13) Ds � Dt; �1 < t < s <1:

Also, by elliptic regularity, for any s 2 R;

(1.14) f 2 Hs
(M); supp f compact =) f 2 Ds:

Furthermore, for any bounded '; we have

(1.15) '(A) : Ds �! Ds; 8 s 2 R:

For s � 0; this holds by the Spectral Theorem, and for s < 0 it holds by duality. Now it

follows that SRf is de�ned for any f 2 Ds; for any s 2 R; and SRf ! f in the topology

of Ds: By (1.14), we have

(1.16) L1
comp(M) � Ds; 8 s < �n

2
;



7

so SRf is well de�ned for any f 2 L1
(M) with compact support. As is known from the

work [F], (even for M = R
2
), we do not generally have SRf ! f in Lp norm, for all f 2

Lpcomp(M); for any p 6= 2: (The case M = R is an exception; then any p 2 (1;1) is okay.)

However, it is still meaningful to inquire about various types of convergence, including

pointwise convergence, particularly for integrable functions with `simple' singularities. We

will say more about this in x8.

2. Pointwise Fourier inversion on Rn (n = 3)

If f 2 L2
(R

n
); then

(2.1) SRf(x) = (2�)�n
Z

j�j�R

f̂(�)eix�� d�;

where f̂ (�) =
R
f(x)e�ix�� dx; is also given by

(2.2) SRf = �R(
p
��)f; � = @21 + � � � + @2n;

so we have the formulas (1.3) and (1.7), with u(t; x) solving the standard wave equation

(2.3) (@2t ��)u = 0; u(0; x) = f(x); ut(0; x) = 0:

The solution to (2.3) is given by

(2.4) u(t) = @tR(t)f;

where R(t) is the fundamental solution operator, for which there are explicit formulas. For

example, when n = 3;

(2.5) R(t)f(x) =
t

4�

Z
S2

f(x � t!) dS(!) = tfx
�
jtj
�
;

where fx; is de�ned by the last identity. Thus, the quantity in (1.9) is equal to

(2.6)

Z 1

�1

fx(jtj) � '(t)f(x)

t
sinRt dt+

Z 1

�1

�
@tfx(jtj)

�
sinRt dt:

In order to localize the analysis of the �rst term in (2.6), and also for use in subsequent

sections, we establish some general results on fx(t); de�ned for f 2 L2
(R

n
) by

(2.7) fx(t) =
1

An�1

Z
Sn�1

f(x + t!) dS(!);

where An�1 is the area of the unit sphere Sn�1 � R
n:
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Lemma 2.1. Let f 2 L2
(R

n
); x 2 Rn: Then fx(t) is well de�ned for a.e. t 2 R+; and

(2.8)

Z 1

0

tn�1jfx(t)j2 dt � A�1n�1kfk2L2 :

Also, for any T > 0;

(2.9)

Z 1

T

t�1jfx(t)j dt �
�
nTnAn�1

�� 1
2 kfkL2 :

Proof. That fx(t) is well de�ned for a.e. t 2 R+
follows from Fubini's theorem. Cauchy's

inequality implies

(2.10) jfx(t)j2 �
1

An�1

Z
Sn�1

jf(x + t!)j2 dS(!):

Then, by Fubini's theorem,

Z 1

0

tn�1jfx(t)j2 dt �
1

An�1

Z 1

0

Z
Sn�1

tn�1jf(x + t!)j2 dS(!) dt = A�1n�1kfk2L2 :

This gives (2.8). In particular, jfx(t)j <1 for a.e. t:

Again by Cauchy's inequality,

�Z 1

T

t�1jfx(t)j dt
�2

=

�Z 1

T

t
n�1
2 jfx(t)j t�

n+1
2 dt

�2

�
�Z 1

T

tn�1jfx(t)j2 dt
��Z 1

T

t�n�1 dt
�

� 1

nTn

Z 1

0

tn�1jfx(t)j2 dt:

Applying (2.8) to the last expression, we have (2.9).

It follows from Lemma 2.1 and the Riemann-Lebesgue Lemma that the �rst term in

(2.6) converges to 0 as R!1 as long as, for some T > 0; (so supp ' � [�T; T ]),

(2.11)

Z T

0

t�1
��fx(jtj) � f(x)

�� dt <1:

When (2.11) holds, we say fx satis�es the Dini condition at t = 0: A su�cient condition

for this to hold is that fx(jtj) is H�older continuous at t = 0, where by convention we take

fx(0) = f(x):

We thus have the following convergence result:
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Proposition 2.2. Let f 2 L2
(R

3
) and �x x 2 R3. Assume fx satis�es the Dini condition

(2.11) at 0: Then, as R!1;

(2.12) SRf(x) ! f(x) ()
Z 1

�1

�
@tfx(jtj)

�
sinRt dt! 0:

To take an explicit example, let x = 0 and let f(x) = �B1(x) be the characteristic

function of the unit ball in R
3; centered at 0: Then

(2.13) f0(jtj) = 1 if jtj < 1; 0 if jtj > 1;

so

(2.14) @tf0(jtj) = �(t+ 1)� �(t� 1);

and

(2.15)

Z 1

�1

�
@tf0(jtj)

�
sinRt dt = �2 sinR;

which oscillates as R!1; so SR�B1(0) does not converge to 1 as R!1: On the other

hand, with f(x) = �B1(x) on R
3; one sees that, whenever x 6= 0; fx(jtj) is Lipschitz. This

is true even for jxj = 1; provided we make the convention that

(2.16) jxj = 1 =) �B1(x) =
1

2

:

Then we have

(2.17) x 6= 0 =) SR�B1 (x)! �B1(x):

Let us pause to record a simple su�cient condition for SRf(x) ! f(x); as a corollary

of Proposition 2.2.

Corollary 2.3. Let f 2 L2
(R

3
) and �x x 2 R3: Then SRf(x) ! f(x) as R!1; provided

(2.18)

fx satis�es the Dini condition at 0;

@tfx(jtj) 2 L1
(R):

Proof. You can apply the Riemann-Lebesgue Lemma to the integral in (2.12).

We now discuss a family of examples more general than �B1 ; which was mentioned in

[P1] (and which attracted the interest of the second author). Suppose g 2 C1(B1); where

B1 = fx : jxj � 1g: Set

(2.19)

f(x) = g(x); jxj < 1;

1
2
g(x); jxj = 1;

0; jxj > 1:
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Then fx satis�es the conditions of Corollary 2.3 whenever x 6= 0: If x = 0; we have f0(t)

smooth on [0; 1); zero on (1;1); and f0(1) is half the mean value of g
��
S2
: Thus f0 is

Lipschitz near t = 1 if this mean value a is 0; and f0 jumps at t = 1 if a 6= 0; so

(2.20) @tf0(jtj) = @tg0(jtj) + a�(t + 1) � a�(t� 1):

Consequently, for such a function f;

(2.21) SRf(0) ! f(0)()
Z
S2
g(x) dS(x) = 0:

We now give another su�cient condition for SRf(x) ! f(x): First, we assume f is

H�older continuous and has compact support. Then Corollary 2.3 will apply provided

@tfx(jtj) 2 L1
(R):We use the estimate

(2.22) 4�

Z 1

0

j@tfx(t)j dt �
Z
R3

jrf(x � y)j � jyj�2 dy:

Hence we have:

Proposition 2.4. Let f 2 L2
(R

3
) and assume f 2 Cr(R3

) for some r > 0: Then SRf(x) !
f(x) as R!1; provided

(2.23)

Z
R3

jrf(y)j � jx � yj�2 dy � B(x) <1:

We then have a result on a.e. convergence.

Corollary 2.5. Let f 2 L2
(R

3
) and assume f 2 Cr(R3

) for some r > 0: If also

(2.24) rf 2 L1
(R

3
);

then SRf(x)! f(x) for almost all x 2 R3:

Proof. Note that

(2.25) jxj�2 2 Lq1(R3
) + Lq2(R3

);

whenever q1 <
3
2
< q2: Hence the hypothesis (2.24) implies that the convolution integral

in (2.23) belongs to Lq1(R3
) + Lq2(R3

); and hence is �nite a.e.

In fact, we can generalize the hypothesis (2.24) to

(2.26) rf 2 L1
(R

3
) + Lp(R3

); p 2 [1; 3);

since we then have Lp � Lqj � Lrj ; qj � rj <1; provided q2 is close enough to 3=2:

It is also convenient to phrase results in terms of �x; de�ned on R
3
by

(2.27) �x(y) =

Z
SO(3)

f(x + �y) d� = fx(jyj):

For example, we can replace Proposition 2.4 by:
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Proposition 2.6. Let f 2 L2
(R

3
); and �x x 2 R

3: Assume �x is H�older continuous at

the origin. Then SRf(x) ! f(x) as R!1; provided

(2.28)

Z
R3

jr�x(y)j � jyj�2 dy � B(x) <1:

We make some remarks about the role of the Dini condition (2.11) in the work above.

Its role was simply to guarantee that

(2.29) lim
R!1

Z 1

�1

sinRt

t
fx(jtj) dt = fx(0) = f(x):

As an alternative to requiring the Dini condition, one could more generally hypothesize

(2.29) (which might reasonably be called the inversion condition on fx at 0). Part of the

classical lore are some other conditions on a function on R that are su�cient to assure

such a result. In particular, the classical Dirichlet-Jordan test (cf. [Z]), put together

with Riemann's localization result, implies that, provided fx is in L1
(R; hti�1dt) and has

bounded variation on a neighborhood of the origin, then the limit on the left side of (2.29)

exists, and is equal to limt!0 fx(jtj): (We use a common notation: hti =
p
t2 + 1:)

As indicated in the Introduction, our primary goal in this paper is to demonstrate the

exibility of the wave equation approach to questions of pointwise Fourier inversion, rather

than to strive for maximally sharp convergence results in speci�c cases. However, we must

succumb to the temptation to use the observation of the previous paragraph, as it yields

a desirable sharpening of Corollary 2.3, with little additional e�ort.

In fact, the second part of the hypothesis (2.18), i.e., @tfx(jtj) 2 L1
(R); implies that

fx has bounded variation. Since we know that, for any f 2 L2
(R

3
); (2.9) holds, we see

that (2.29) holds, provided we replace the right side by limt!0 fx(jtj). Hence, we have the
following improvement of Corollary 2.3:

Proposition 2.7. Let f 2 L2
(R

3
) and �x x 2 R3: Provided

(2.30) @tfx(jtj) 2 L1
(R);

we have

(2.31) lim
R!1

SRf(x) = lim
t&0

1

V3t3

Z
jyj�t

f(x + y) dy;

in particular, the limits in (2.31) exist. If also x is a Lebesgue point of f; then SRf(x) !
f(x) as R!1:

Thus, in Proposition 2.4, we can omit the hypothesis that f 2 Cr(R3
); and deduce that

(2.31) holds wherever (2.23) holds. This allows us to improve Corollary 2.5:
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Proposition 2.8. The result of Corollary 2.5 still holds when one omits the hypothesis

f 2 Cr(R3
):

Proof. The hypothesis f 2 Cr(R3
) played no role in showing that (2.23) holds for a.e.

x 2 R3: Thus, for a.e. x 2 R3; (2.31) holds. Lebesgue's theorem implies that the right side

of (2.31) is equal a.e. to f(x):

3. Fourier inversion on R2

Here we consider the n = 2 case of (2.1)-(2.4). Thus, we have, in place of (2.5),

(3.1) R(t)f(x) =
t

2�

Z
D1

f(x � ty)
�
1� jyj2

�� 1
2 dy;

where D1 = fy 2 R2
: jyj < 1g: Thus

(3.2) R(t)f(x) = t

Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr;

where, as in (2.5), fx(jtj) is the radial symmetrization of f about x 2 R2; here given by

(3.3) fx(jtj) =
1

2�

Z
S1

f(x � t!) ds(!):

Thus, the solution to the wave equation (2.3) is

(3.4) u(t; x) =

Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr + t@t

�Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr

�
;

and this time, into (1.8) goes the quantity

(3.5)

u(t; x) � '(t)f(x)

t
=

R 1

0
fx(jtjr)(1 � r2)�

1
2 r dr � '(t)f(x)

t

+ @t

�Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr

�
:

Note that

(3.6) hx(jtj) =
Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr

is a weighted average of dilates of fx(jtj): Hence hx satis�es the Dini condition (2.11) if fx
does. Parallel to Proposition 2.1, we have:
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Proposition 3.1. Let f 2 L2
(R

2
) and �x x 2 R2. Assume fx satis�es the Dini condition

(2.11). Then, as R!1;

(3.7) SRf(x) ! f(x) ()
Z 1

�1
@t

�Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr

�
sinRt dt! 0:

In particular, the condition (3.7) is ful�lled, provided

(3.8) @t

�Z 1

0

fx(jtjr)(1 � r2)�
1
2 r dr

�
2 L1

(R):

Proof. Given the discussion above, the only point it remains to check is that, for any

T > 0;

(3.9)

Z 1

T

t�1jhx(t)j dt <1:

To see this, write

t�1jhx(t)j �
Z 1

0

(rt)�1 jfx(tr)j (1 � r2)�
1
2 r2 dr:

Hence

kt�1hxkL1([T;1)) �
Z 1

0

r�1kt�1fxkL1([rT;1))(1� r2)�
1
2 r2 dr:

If we apply (2.9), with T replaced by rT; we dominate this by

CT�1
�Z 1

0

(1 � r2)�
1
2 dr

�
kfkL2 ;

since n = 2 here, and this yields (3.9).

In this case, if we set f(x) = �D1(x); the characteristic function of the unit disk in R
2;

then the condition (3.8) is ful�lled for each x 2 R
2
(even x = 0), and so SR�D1(x) !

�D1(x) for each x 2 R2
(even for jxj = 1; if, as in (2.11), we set �D1(x) =

1
2
for x 2 @D1).

Rather than make an explicit analysis of (3.8) for f = �D1 ; we will establish a general

result.

To do this, we study the operator T; de�ned by

(3.10) Tg(t) =

Z 1

0

g(tr)(1 � r2)�
1
2 r dr:

In our application of course g(t) = fx(t); t � 0: Thus, we want to estimate @tTg:We begin

with the following simple estimate.
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Lemma 3.2. Given p 2 (1;1); we have (with C = Cp)

(3.11) k@tTgkLp([1
2
;1]) � CkgkL1([0;1]) + CkKgkLp([ 1

4
;2]);

where

(3.12) Kg(t) = @t� � g(t);

with

�(t) = t�
1
2 for t > 0; 0 for t < 0:

Proof. This follows from the fact that the integral kernel of T has the behavior of a

pseudodi�erential operator of order �1
2
; away from t = 0:

We want to estimate @tTg(t) for t 2 [
1
2
�; �]: We use the dilation group

(3.13) D�g(r) = g(�r);

and the relations

(3.14)

TD� = D�T; @tTD� = �D�@tT;

KD� = �
1
2D�K; kD�gkLp = ��1=pkgkLp :

Thus, we have

(3.15)

k@tTgkL1([ 12�;�]) = �kD�@tTgkL1([ 12 ;1]) = k@tT (D�g)kL1([ 12 ;1])
� CkD�gkL1([0;1]) + CkKD�gkLp([ 14 ;2])
= C��1kgkL1([0;�]) + C�

1
2� 1

p kKgkLp([ 1
4�;2�])

:

Let us take p 2 (1;1); � = 2
�k; and then sum. Thus

(3.16)

k@tTgkL1([0;1]) � C
X
k�0

2
kkgkL1([0;2�k])

+ C
X
k�0

2
�k( 12� 1

p
)kKgkLp([2�k�2;2�k+1]):

The �rst term on the right side of (3.16) is not well behaved, but we can improve matters

by considering

(3.17) (t) = g(0)'(t);

with ' 2 C10 (R); '(t) = 1 for jtj � 1: Then

(3.18) T(t) = g(0) for 0 � t � 1; @tT(t) = 0 for 0 � t � 1;
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and hence, if we replace g by g �  in (3.16),

(3.19)

k@tTgkL1([0;1]) � Cjg(0)j+ C
X
k�0

2
kkg � g(0)kL1([0;2�k])

+ C
X
k�0

2
�k( 1

2� 1
p
)kKgkLp([2�k�2;2�k+1]):

Note that

(3.20)

X
k�0

2
kkg � g(0)kL1([0;2�k]) �

t�1�g � g(0)
�
L1([0;1])

:

We also need to estimate @tTg on [1;1): The following works when g has support in

[0; 1
2
]:

Lemma 3.3. If supp g � [0; 1
2
]; then

(3.21) k@tTgkL1([1;1)) � CkgkL1:

Proof. If supp g � [0; 1
2
] and t � 1; we have

@tTg(t) = �1

t

Z 1
2

0

g(tr)r'(r) dr;

where

r'(r) = @r
�
(1� r2)�

1
2 r2

�
; ' 2 C1

�
[0; 1

2
]

�
:

Hence, with Dr as in (3.13)

k@tTgkL1([1;1)) �
Z 1

2

0

kDrgkL1(R+ )rj'(r)j dr

=

Z 1
2

0

j'(r)j dr � kgkL1(R+ );

which implies the lemma.

Combining this with (3.19)-(3.20), we have an estimate on k@tTgkL1(R+ ) when g has

support in [0; 1
2
]: Using (3.14) again, we can estimate this quantity for g with support in

[0; �]; for any � 2 (0;1): This yields the following result.

Proposition 3.4. Let f 2 L2
(R

2
) have compact support. Fix x 2 R2. Then SRf(x) !

f(x) as R!1; provided the following two properties hold:

(3.22) t�1
�
fx(jtj)� '(t)f(x)

�
2 L1

(R);
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and, for some p > 1;

(3.23)

X
k�0

2
�k(1

2
� 1

p
)kKfxkLp([2�k�1A;2�kA]) <1;

where A is large enough that supp f � BA=2(x):

Note that the exponent of 2 in (3.23) is positive for p < 2 and negative for p > 2: In

particular, (3.23) holds provided

(3.24) Kfx 2 Lp([0; A]); p > 2:

Hence we have:

Corollary 3.5. Let f 2 L2
(R

2
) have support in BA=2(x) and assume fx satis�es the Dini

condition (2.11). Then SRf(x) ! f(x) as R ! 1; provided that, for some p > 1; q >

2; C 2 (0; A); we have

(3.25) fx 2 H
1
2 ;p
�
[�A;A]

�
; fx

��
[�C;C] 2 H

1
2 ;q
�
[�C;C]

�
:

Proof. Write f as a sum of two terms, one vanishing near x and the other supported in

BC=2(x); in such a fashion that Proposition 3.4 applies to each term.

To apply this to f = �D1 ; note that f0 = �[�1;1] in this case, and

(3.26) �[�1;1] 2 H
1
2 ;p(R); 8 p 2 [1; 2):

Let us also make note of a connection between the n = 2 and n = 3 cases of pointwise

Fourier inversion, following a suggestion made to one of us by C.D.Hill. Pick  2 S(R)
such that  (0) = 1 and supp

^ � [�1; 1]; and set

(3.27) F (x) = f(x0) (x3); x = (x0; x3) = (x1; x2; x3):

Proposition 3.6. Assume f 2 L1
(R

2
); and �x x0 2 R2: Then, as R!1;

(3.28) SRf(x
0
)! f(x0)() SRF (x

0; 0)! F (x0; 0):

Proof. Without loss of generality, we consider the case x0 = 0: Then

(3.29) SRf(0) = SRF (0) +

Z
O(R)

bF (�) d�;

where

(3.30) O(R) = f� 2 R3
: j�j � R; j�0j � R; j�3j � 1g:



17

Note that

(3.31) Vol O(R) � C0 <1;

with C0 independent of R; so the integral in (3.29) is bounded in absolute value by

(3.32) C0 sup

O(R)

j bF (�)j � C0 sup

j�j�R
j bF (�)j:

By the Riemann-Lebesgue lemma, this goes to 0 as R ! 1; since F 2 L1
(R

3
): This

completes the proof.

One could re-derive Proposition 3.4 as a consequence of Proposition 3.6, though we will

not do this. We will use Proposition 3.6 and the results of x2 to establish the following

result of [Bo]:

Proposition 3.7. Let f 2 L2
(R

2
); and �x x0 2 R2: If x0 is a Lebesgue point of f and fx0

has bounded variation on R; then SRf(x
0
)! f(x0) as R!1:

Proof. If you set F (x0; x3) = f(x0) (x3) as in (3.27), then the hypotheses imply that

F (x0;0) has bounded variation. Also, one readily veri�es that @tF (x0;0)(jtj) is better than
L1

on Rn 0; and it cannot have an atom at 0; so in fact @tF (x0;0) 2 L1
(R): By Proposition

2.7, it follows that SRF (x
0; 0)! F (x0; 0); so Proposition 3.6 implies SRf(x

0
)! f(x0):

4. Fourier inversion on Rn (general n)

We extend results of xx2-3 by using the formula for cos t
p
�� on functions on R

n: First,

we consider the case n = 2k + 1; odd. Then

(4.1) cos t
p
�� f(x) = Ckt

�
1

t

@

@t

�k�
t2k�1fx(jtj)

�
;

with Ck = 1=(2k�1)!!; where (2k�1)!! = 3 �5 � � � (2k�1):We can use the Leibniz formula

to apply

�
1
t
@
@t

�k
to the product of t2k�1 and fx(jtj); obtaining

(4.2) cos t
p
�� f(x) = fx(jtj) +

kX
j=1

kjt
2j
�
1

t

@

@t

�j
fx(jtj):

Thus, the quantity (1.8) is equal to

(4.3)

Z 1

�1

fx(jtj) � '(t)f(x)

t
sinRt dt

+

kX
j=1

kj

Z 1

�1
t2j�1

n�
1

t

@

@t

�j
fx(jtj)

o
sinRt dt:

Compare (2.6), which treats the case k = 1 (n = 3): Extending Proposition 2.1, we have
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Proposition 4.1. Let f 2 L2
(R

2k+1
) and �x x 2 R

2k+1. Assume fx satis�es the Dini

condition (2.11). Then, as R!1;

(4.4) SRf(x) ! f(x) ()
kX
j=1

kj

Z 1

�1
t2j�1

n�
1

t

@

@t

�j
fx(jtj)

o
sinRt dt! 0:

We can rewrite the quantity in (4.4), using

(4.5) t2j�1
�
1

t

@

@t

�j
=

jX
`=1

�j`t
`�1@`t

for certain constants �j`: Hence

(4.6)

kX
j=1

kjt
2j�1

�
1

t

@

@t

�j
=

kX
j=1

jX
`=1

kj�j`t
`�1@`t

=

kX
`=1

�k`t
`�1@`t :

Thus, under the hypotheses of Proposition 4.1,

(4.7) SRf(x) ! f(x) ()
kX
`=1

�k`

Z 1

�1
t`�1

�
@`tfx(jtj)

�
sinRt dt! 0:

We have the following extension of Corollary 2.2

Corollary 4.2. Let f 2 L2
(R

2k+1
) and �x x 2 R2k+1: Then SRf(x) ! f(x) as R !1;

provided

(4.8) fx(jtj) satis�es the Dini condition (2:11)

and

(4.9) t`�1@`t fx(jtj) 2 L1
(R); 1 � ` � k:

We can also produce an extension of Proposition 2.4, using the following estimate,

extending (2.22):

(4.10) A2k

Z 1

0

j@`tfx(t)jt`�1 dt �
Z

R2k+1

jr`f(x � y)j � jyj`�2k�1 dy:

Hence we have:
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Proposition 4.3. Let f 2 L2
(R

2k+1
) and assume f 2 Cr(R2k+1

) for some r > 0: Then

SRf(x) ! f(x) as R!1; provided

(4.11)

X
j�j=`

Z
R2k+1

jD�f(x � y)j � jyj`�2k�1 dy � B(x) <1; 1 � ` � k:

Of course, we can also symmetrize about x; as in (2.27), and produce an extension of

Proposition 2.6. Thus, if we set

(4.12) �x(y) =

Z
SO(n)

f(x + �y) d� = fx(jyj);

for f de�ned on R
n
(here, n = 2k + 1), we replace (4.11) by

(4.13)

X
j�j=`

Z
R2k+1

jD�
�x(y)j � jyj`�2k�1 dy � B(x) <1; 1 � ` � k:

Next, we consider n = 2k; even. Then

(4.14) cos t
p
�� f(x) = ~Ckt

�
1

t

@

@t

�k�
t2k�1

Z 1

0

fx(rjtj)(1 � r2)�
1
2 r2k�1 dr

�
:

When k = 1; this becomes equivalent to (3.4), with ~C1 = 1: Let us set

(4.15) Tkg(t) =
1

�k

Z 1

0

g(rt)(1 � r2)�
1
2 r2k�1 dr;

where �k =
R 1

0
(1� r2)�

1
2 r2k�1 dr: Then T1 = T; given by (3.9). Parallel to (4.2), we have

(4.16)

cos t
p
�� f(x) = Tkfx(jtj) +

kX
j=1

~kjt
2j
�
1

t

@

@t

�j
Tkfx(jtj)

= Tkfx(jtj) +
kX
`=1

~�k`t
`
�
@`tTkfx(jtj)

�
;

the latter identity parallel to (4.6). In this case, the quantity (1.8) is equal to

(4.17)

Z 1

�1

Tkfx(jtj) � '(t)f(x)

t
sinRt dt

+

kX
`=1

~�k`

Z 1

�1
t`�1

�
@`tTkfx(jtj)

�
sinRt dt:

Note that Tkfx(jtj) is a weighted average of dilates of fx(jtj). Parallel to Proposition 4.1,

we have:
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Proposition 4.4. Let f 2 L2
(R

2k
) have compact support. Fix x 2 R2k and assume fx

satis�es the Dini condition (2.11). Then, as R!1;

(4.18) SRf(x)! f(x) ()
kX
`=1

~�k`

Z 1

�1
t`�1

�
@`tTkfx(jtj)

�
sinRt dt! 0:

Proof. As in the proof of Proposition 3.1, it remains only to show that, for T > 0;

(4.19)

Z 1

T

t�1jTkfx(t)j dt <1;

and, as in that argument, this can be established using the estimate (2.9).

Note that the condition (4.18) is ful�lled, provided

(4.20) t`�1@`tTkfx 2 L1
(R); 1 � ` � k:

An equivalent condition is

(4.21) @t(t@t)
jTkfx 2 L1

(R); 0 � j � k � 1:

Since t@t commutes with Tk; another equivalent condition is:

(4.22) @tTk(t@t)
jfx 2 L1

(R); 0 � j � k � 1:

Now the analysis (3.10)-(3.20) of T = T1 extends with essentially no change to each Tk:

Thus we have the following extension of Corollary 3.5.

Proposition 4.5. Let f 2 L2
(R

2k
) have support in BA=2(x); and assume fx satis�es

the Dini condition (2.11). Then SRf(x) ! f(x) as R ! 1; provided that, for some

a > 1; b > 2; C 2 (0; A); we have

(4.23) (t@t)
jfx 2 H

1
2 ;a
�
[�A;A]

�
\H 1

2 ;b
�
[�C;C]

�
; 0 � j � k � 1:

5. Fourier inversion on spheres

Let Sn be the unit sphere in R
n+1; with its standard metric and Laplace operator �:

It is convenient to replace the use of

p
�� by that of

(5.1) A =

r
��+

�n� 1

2

�2
:

Then

(5.2) Spec A =

nn� 1

2

+ � : � = 0; 1; 2; 3; : : :
o
;
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so, if n = 2k + 1 is odd,

(5.3) u(t) = (cos tA)f =) u(t+ 2�; x) = u(t; x):

We will consider the case n = 2k; even, below.

Now, it is convenient to replace (1.1) by

(5.4) '(A) =
1

2�

Z
S1

'̂(t) cos tA dt;

for an even function ' :Z! C ; where, now

(5.5) '̂(t) =

1X
k=�1

'(k)e�ikt;

and we identify S1
with R=(2�Z). In particular, with '(k) = �N (k) = �fjkj�Ng; we have

(5.6) �̂N (t) = DN (t) =
sin(N +

1
2
)t

sin
1
2
t

;

and hence, for SNf = �N (A)f;

(5.7) SNf(x) =
1

2�

Z
S1

sin(N +
1
2
)t

sin
1
2
t

u(t; x) dt:

Parallel to our passage from (1.3) to (1.7), we add 0 = f(x) � f(x) to u(t; x) in (3.7), this

time obtaining

(5.8) SNf(x) = f(x) +
1

2�

Z
S1

sin(N +
1
2
)t

sin
1
2
t

�
u(t; x) � f(x)

�
dt:

Thus we have the following criterion for convergence SNf(x) ! f(x):

Proposition 5.1. Let f 2 L2
(Sn); n = 2k + 1; and �x x 2 Sn: Then, as N !1;

(5.9) SNf(x)! f(x) ()
Z
S1

sin(N +
1
2
)t

sin
1
2
t

�
u(t; x) � f(x)

�
dt! 0:

Again using the Riemann-Lebesgue Lemma, we have the following su�cient condition

for convergence:
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Corollary 5.2. Given x 2 Sn; n = 2k + 1; we have SNf(x) ! f(x) provided

(5.10) u(�; x) 2 L1
(S1

)

and

(5.11)

u(t; x) � f(x)

t
2 L1

(��; �):

Now, there are formulas for u(t; x) = (cos tA)f(x) similar to those for Euclidean space.

We have

(5.12) (cos tA)f(x) = Ck(sin t)
�

1

sin t

@

@t

�k�
sin

2k�1 t fx(jtj)
�
;

with Ck = 1=(2k � 1)!!; where (2k � 1)!! = 3 � 5 � � � (2k � 1): A derivation can be found in

Chapter 4 of [T2].

In particular, when n = 3 (k = 1), we have

(5.13)

n = 3 =) (cos tA)f(x) = @t
�
sin t fx(jtj)

�
= (cos t)fx(jtj) + (sin t)@tfx(jtj):

Thus, for f 2 L2
(S3

); the integral in (5.9) is equal to

(5.14)

Z
S1

sin(N +
1
2
)t

sin
1
2
t

�
(cos t)fx(jtj) � f(x)

�
dt

+

Z
S1

sin(N +
1
2
)t

sin t

sin
1
2
t
@tfx(jtj) dt:

In order to obtain a result parallel to Proposition 2.2, we want to dispose of the �rst

integral in (5.14). The Dini hypothesis controls (sin
1
2
t)�1

�
(cos t)fx(jtj)� f(x)

�
for t close

to zero. We also need to control this quantity for t close to �: Note that, for f de�ned on

Sn; if x 2 Sn; with antipodal point x; we have

(5.15)

Z �

���
jfx(t)j dt �

Z
B�(x)

jf(y)j dist(x; y)1�n dS(y);

where B�(x) = fy 2 Sn : dist(x; y) � �g: We have the following:

Proposition 5.3. Let f 2 L2
(S3

); and �x x 2 S3: Assume fx has the Dini property

(2.11). Also assume

(5.16)

Z
S3

jf(y)j dist(x; y)�2 dS(y) <1;
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where x is the point antipodal to x: Then, as N !1;

(5.17) SNf(x)! f(x) ()
Z
S1

sin(N +
1
2
)t

sin t

sin
1
2
t
@tfx(jtj) dt! 0:

In particular, (5.17) holds, provided

(5.18)

@tfx(jtj) 2 L1
�
[�3

4
�; 3

4
�]
�
;

jt� �j � @tfx(jtj) 2 L1
�
[
1
2
�; 3

2
�]
�
:

Let us consider some examples. Take S3
= fx 2 R4

: jxj = 1g: Given a 2 (�1; 1); set

(5.19)

fa(x) = 1 if x4 > a;

1
2

if x4 = a;

0 if x4 < a:

Then SNf(x) ! f(x) for each x 2 S3 except the two poles, where x4 = �1: The analysis
of this family of examples is very similar to the analysis of f = �B1 in x2.

To illustrate that the set of points of convergence need not always be invariant under

the antipodal map, consider the following. Take p = (0; 0; 0; 1) 2 S3; and let f be the

restriction to S3
of a function of x4; having the property that

(5.20) fp(t) = t�
1
2 ; 0 � t � �:

Then, as N !1;

(5.21) SNf(x) ! f(x)() x 6= p:

Note that, for general n;

(5.22)

Z
B�(x)

dist(x; y)q(1�n) dS(y) �
Z �

0

sq(1�n)+n�1 ds;

which is �nite if and only if q(1 � n) + n > 0; i.e., q < n=(n � 1): Thus (5.15) is �nite

provided

(5.23) f 2 Lp
�
B�(x)

�
; p > n:

We can obtain a formula analogous analogous to (5.14) for more general n = 2k+1; as

follows. As in (4.2), we can use the Leibniz formula to apply

�
1

sin t
@
@t

�k
to the product of

sin
2k�1 t and fx(jtj); obtaining

(5.24) cos t
p
�� = k0(t)f x(jtj) +

kX
j=1

kj(t)(sin
2j t)

�
1

sin t

@

@t

�j
fx(jtj);
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where this time, kj(t) are polynomials in cos t; and k0(0) = 1: Here, for f 2 L2
(S2k+1

);

the integral in (5.9) is equal to

(5.25)

Z
S1

sin(N +
1
2
)t

sin
1
2
t

�
k0(t)fx(jtj)� f(x)

�
dt

+

kX
j=1

Z
S1

sin(N +
1
2
)t

sin
1
2
t

kj(t)(sin
2j t)

�
1

sin t

@

@t

�j
fx(jtj) dt:

Making use of this, one can obtain results analogous to those for functions on R
2k+1

in x4.
We will forego the details.

When n = 2k is even, we must replace (5.3) by

(5.26) u(t) = (cos tA)f =) u(t+ 4�; x) = u(t; x);

so, instead of (5.4), we use

(5.27) '(A) =
1

4�

Z
eS

'̂(t) cos tA dt;

for an even function ' :
1
2
Z! C ; where eS = R=(4�Z) and

(5.28) '̂(t) =

1X
k=�1

'(k=2)e�ikt=2:

In particular, with '(k=2) = �N (k=2) = �fjkj�Ng; we have

(5.29) �̂N (t) =

NX
k=�N

e�ikt=2 = DN (t=2) =
sin

1
2
(N +

1
2
)t

sin
1
4
t

;

and hence, for SNf = �N (A)f; f 2 L2
(S2k

);

(5.30) SNf(x) =
1

4�

Z
eS

sin
1
2
(N +

1
2
)t

sin
1
4
t

u(t; x) dt:

Using this, one can obtain results analogous to those for functions on R
2k

in xx3-4. Again,
we omit the details.

Further results on Fourier inversion on spheres can be found in sections 8 and 11.

6. Fourier inversion on complex projective space, and variants
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The complex projective space Pn(C ) can be de�ned as the quotient of S
2n+1

(viewed as a

submanifold of C
n
) by the group of complex numbers of modulus 1, acting multiplicatively.

As such it acquires a Riemannian structure from S2n+1
and a canonical Laplacian. The

eigenvalues of the negative Laplacian of this compact Riemannian manifold have been

computed as

(6.1) �k = 4k(n+ k) = (2k + n)2 � n2:

See [BGM], pp.172-173; see also the material below.

We consider the operator

(6.2) A =

p
��+ n2

Then

(6.3) Spec (A) = f2k + n; k = 0; 1; 2; : : : g:

Thus, as in (5.4), we write

(6.4) '(A) =
1

2�

Z
S1

'̂(t) cos tA dt;

for an even function ' :Z! C ; with '̂(t) as in (5.5). In particular, with '(k) = �N (k) =

�fjkj�Ng; we have SNf = �N (A)f given by

(6.5) SNf(x) = f(x) +
1

2�

Z
S1

sin(N +
1
2
)t

sin
1
2
t

�
u(t; x) � f(x)

�
dt;

with u(t; x) = (cos tA)f(x); solving

(6.6) utt � (�� n2)u = 0; u(0; x) = f(x); ut(0; x) = 0:

Again, (5.9) gives a criterion for convergence SNf(x) ! f(x); and we have the following

result, parallel to Corollary 5.2:

Proposition 6.1. Let f 2 L2
(Pn(C )) and �x x 2 Pn(C ). Then as N ! 1 we have

SNf(x) ! f(x) provided that

(6.7) t! u(t; x) 2 L1
(S1

);

and

(6.8) t! u(t; x) � f(x)

t
2 L1

(��; �):

There are a number of ways to analyze the solution to the wave equation (6.6) in this

case. One way is by `descent' from the wave equation on R�S2n+1: Before discussing this

approach, we mention a direct link between Fourier inversion on Pn(C ) and on S2n+1:
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Proposition 6.2. Let � : S2n+1 ! Pn(C ) be the standard projection. Let f 2 L2
(Pn(C ))

and �x x 2 Pn(C ): Suppose x = �(y); y 2 S2n+1: Set

(6.9) g = f � � 2 L2
(S2n+1

):

Then, as N !1;

(6.10) SNf(x)! f(x) () SNg(y)! g(y):

We can put Proposition 6.2 in the following more general context. Consider � : P !M;

a principal G-bundle, whereM is a compact Riemannian manifold and G is a compact Lie

group. Assume P has a G-invariant Riemannian metric such that, if y 2 P; then Hy ; the

subspace of TyP orthogonal to the �ber through y; is mapped isometrically onto TxM by

D�; where x = �(y): Thus Hy is the horizontal space of a connection on P: In the context

of Proposition 6.2, S2n+1 ! Pn(C ) is a principal S
1
-bundle, with this structure.

Now both P andM have Laplace-Beltrami operators, �P and �M ; determined by their

Riemannian metrics. Also, ��f(y) = f
�
�(y)

�
gives an isomorphism of L2

(M) onto the lin-

ear subspace of L2
(P ) consisting of functions invariant under the action of G: Furthermore,

we have the relation

(6.11) '(�P )�
�f = ��'(�M )f:

In particular,

(6.12) �R(
p
��P )�

�f(y) = �R(
p
��M )f(x); y = �(x);

and hence, as R!1;

(6.13) �R(
p
��P )�

�f(y)! ��f(y) () �R(
p
��M)f(x) ! f(x);

a result that contains (6.10).

Generally, P is a more complicated space thanM; and hence (6.13) might not provide a

useful reduction of the problem of pointwise Fourier inversion onM: Of course, Proposition

6.2 treats a case where P is simpler than M:

Note that, as a consequence of (6.11), we have

(6.14) Spec �M � Spec �P :

Hence, when M = Pn(C ); the result that every eigenvalue of ��M has the form (6.1) is a

consequence of the results on the spectrum of � on spheres given in x5. Also, we can use

(6.11) with '(�M ) = cos t
p
��M + n2 to analyze the wave equation (6.6) on R� Pn(C ):

A similar analysis works on quaternionic projective space Pn(H ): We can take the unit

sphere S4n+3
in H

n+1 � R
4n+4; and divide by the action of the group of unit quaternions,

a group isomorphic to SU(2); to obtain S4n+3 ! Pn(H ); a principal SU(2)-bundle. Thus

we have analogues of Propositions 6.1-6.2 for Pn(H ):
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7. Fourier inversion on hyperbolic space, and variants

Let Hn
be n-dimensional hyperbolic space, a simply connected, complete Riemannian

manifold with sectional curvature �1: If � is the Laplace operator on Hn; then, parallel

to (5.1), it is convenient to use

(7.1) A =

r
���

�n� 1

2

�2
:

It is known [P4] that Spec (��) = [
1
4
(n� 1)

2;1); hence A in (5.1) is the positive square

root of a positive self adjoint operator. The considerations of x1 apply here, and we also

have explicit formulas for cos tA f(x) = u(t; x):

If n = 2k + 1 is odd, we have, parallel to (5.12),

(7.2) cos tA f(x) = Ck(sinh t)
�

1

sinh t

@

@t

�k�
sinh

2k�1t fx(jtj)
�
:

One can also �nd a derivation of this formula in Chapter 4 of [T2].

In particular, when n = 3 (k = 1); we have

(7.3)

cos tA f(x) = @t
�
sinh t fx(jtj)

�
= (cosh t)fx(jtj) + (sinh t)@tfx(jtj):

Parallel to Lemma 2.1, we have

Lemma 7.1. Let f 2 L2
(Hn

). Then

Z 1

1

sinh
n�1 t jfx(t)j2 dt <1;

Z 1

1

cosh

n�1
2 t

t
jfx(t)j dt <1:

Proof. In terms of geodesic polar coordinates (t; !) with respect to x 2 Hn
, the condition

f 2 L2
(Hn

) is written

R1
0

R
Sn�1

jf(expx(t!))j2 sinhn�1 t dt d! < 1. Applying Cauchy-

Schwarz as before we have

jfx(t)j2 �
1

An�1

Z
Sn�1

jf(expx(t!))j2 d!;

Z 1

1

jfx(t)j2 sinhn�1 t dt �
1

An�1

Z 1

1

Z
Sn�1

jf(expx(t!))j2 sinhn�1 t dt d! <1:

which gives the �rst estimate. To get the second, again use Cauchy-Schwarz:

�Z 1

1

cosh

n�1
2 t

t
jfx(t)j dt

�2
=

�Z 1

1

coth

n�1
2 t

t
sinh

n�1
2 tjfx(t)j dt

�2

�
�Z 1

1

coth
n�1 t
t2

dt
��Z 1

1

sinh
n�1 tjfx(t)j2 dt

�
<1:

Thus, parallel to Proposition 2.2, we have:
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Proposition 7.2. Let f 2 L2
(H3

). Fix x 2 H3 and assume fx satis�es the Dini condition

(2.11). Then, as R!1;

(7.4) SRf(x)! f(x) ()
Z 1

�1

sinh t

t

�
@tfx(jtj)

�
sinRt dt! 0:

In particular, if fx(t) has compact support in t for given x; we have an obvious analogue

of Corollary 2.2:

Corollary 7.3. Let f 2 L2
(H3

) have compact support. Fix x 2 H3: Then SRf(x)! f(x)

as R!1; provided fx(jtj) satis�es the Dini condition (2.11) and is absolutely continuous

on R:

Note the similarity of the conditions (7.4) and (2.12), the latter arising in the analysis

of functions on R
3: In fact (granted the hypothesis of compact support), the conditions

(2.12) and (7.4) are equivalent. To see this, note that the factor t�1 sinh t is a smooth

nonvanishing function. Furthermore, if @tfx(jtj) 2 E 0(R); this factor (or its inverse) can
be cut o�. Thus, the equivalence of these conditions follows from the k = 1 case of:

Lemma 7.4. Given ' 2 C10 (R
k
);  2 E 0(Rk); we have,

(7.5)  ̂(�)! 0 as j�j ! 1 =) (' )̂ (�)! 0 as j�j ! 1:

Proof. This is immediate from the identity

(7.6) (' )̂ (�) =

Z
'̂(�) ̂(� � �) d�;

plus the facts that, under our hypotheses, '̂ 2 S(Rk) and ^ 2 L1(R
k
):

Rather than explicitly recording the parallels with results in previous sections for Fourier

inversion of functions on Hn
for other values of n; we will move on to more general con-

siderations.

Hyperbolic space Hn
is a rank one symmetric space. Generally, a Riemannian manifold

M is a rank one symmetric space precisely when, for any x 2M; the groupGx of isometries

ofM �xing x acts transitively on the unit sphere in TxM: IfM is such a space, f 2 L2
(M);

and x 2M; we can form

(7.7) �(y) =

Z
Gx

f(g � y) dg:

Choosing a constant K � sup spec �; set SR = �R(A); A =

p
��+K: Since the action

of Gx on L2
(M) commutes with functions of the Laplace operator, we have, as R!1;

(7.8) SRf(x) ! f(x) () SR�(x)! �(x):
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Other examples of rank one symmetric spaces of noncompact type include complex hyper-

bolic spaces and quaternionic hyperbolic spaces:

Hn(C ) = U(n; 1)=U(n) � U(1); Hn(H ) = Sp(n; 1)=Sp(n)� Sp(1);

which are `duals' of the spaces Pn(C ) and Pn(H ) discussed in x6. There is also a 16-

dimensional hyperbolic Cayley space. See [Hel].

In fact, we will take the following more general setting for our next proposition. Let M

be a complete, connected, n-dimensional Riemannian manifold, and let x be a point in M:

Assume that the exponential map Expx : TxM !M is a di�eomorphism of TxM onto M:

This holds for the symmetric spaces mentioned above, which all have negative sectional

curvature. Let A =

p
��+K; for some constant K � sup spec �; and SR = �R(A):

Proposition 7.5. LetM satisfy the hypotheses of the previous paragraph. Let f 2 L2
(M)

be a radial function, i.e., of the form

(7.9) f(y) = '(r); r = dist(x; y):

Assume there exists T0 < 1 such that the decay property (1.6) holds, with u(t; x) =

cos tA f(x): Then SRf(x)! f(x); provided ' has the following two properties. First,

(7.10) ' 2 H
1
2 (n�1);p
loc (R n 0);

with p = 1 if n is odd and some p > 1 if n is even. Second, dilates '�(r) = '(2�r) satisfy,

for � � 0;

(7.11)

X
��0

n'� � '(0)

H

1
2
(n�1);p

([ 14 ;1])
+

'� � '(0)

L1([0;1])

o
<1:

Proof. We study the map

(7.12)

' 7!  ;

 (t) = cos tA f(x):

We want to show that, under the hypotheses of the proposition,

(7.13)

Z T0

�T0
t�1

�
 (t) �  (0)

�
sinRt dt! 0

as R!1: Note that, by �nite propagation speed,  
��
[��;� ] depends only on '

��
[0;� ]

: Also,

the general parametrix construction for the hyperbolic operator @2t � (��K) implies that,

for any " > 0;

(7.14) ' 7!  
��
[�T0;T0]n[�";"]
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is a pseudodi�erential operator of order
1
2
(n � 1): If n is odd, it is a sum of a di�erential

operator of order
1
2
(n � 1) and a pseudodi�erential operator of order �1: See x8 for a

description of the parametrix and other implications of this nature.

Now the hypotheses on f imply that  2 Lp
�
[�T0; T0] n [�"; "]

�
: Furthermore, if we

dilate a small neighborhood of x; we obtain an estimate

(7.15)

t�1� �  (0)
�
L1([2���1;2�� ])

� Ck � �  (0)kL1([12 ;1])
� Ck'� � '(0)k

H
1
2
(n�1);p

([ 14 ;1])
+ k'� � '(0)kL1([0;1]):

Thus, under the hypotheses of the proposition, we actually have

(7.16)

Z T0

0

t�1 j (t) �  (0)j dt <1;

and the proposition is proved.

When n = 2k + 1 is odd, we have, in (7.11),

(7.17)

k'� � '(0)kHk;1([14 ;1])
= k'� � '(0)kL1([ 14 ;1]) +

kX
j=1

k@jr'�kL1([ 14 ;1])

= 2
�k'� '(0)kL1([2���2;2�� ]) +

kX
j=1

2
��j�k@jr'kL1([2���2;2�� ]):

Thus:

Proposition 7.6. When n = 2k + 1 is odd, the condition (7.11) is equivalent to

(7.18)

r�1�'� '(0)
�
L1([0;1])

+

kX
j=1

krj�1@jr'kL1([0;1]) <1:

Note the agreement of this condition with (4.8)-(4.9), in the analysis of functions on

R
2k+1:

8. Fourier inversion on strongly scattering manifolds

Let us assume, as in x7, that M is a complete, connected, n-dimensional Riemannian

manifold, x is a point in M; and Expx : TxM ! M is a di�eomorphism of TxM onto M:

(Later in this section, we will drop this last assumption.) Let A =

p
��+K; for some

constant K � sup spec �; and set SR = �R(A):
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Proposition 8.1. Let M satisfy the hypotheses of the previous paragraph. Let f 2
L2
(M): Assume there exists T0 < 1 such that the decay property (1.6) holds, with

u(t; x) = cos tA f(x): Take C1 functions Vj(x; y) (to be described below), for j =

0; : : : ; [n=2]; and set

(8.1) 'j(r) = AvgSr(x) Vj(x; y)f(y); Sr(x) = fy 2M : dist(x; y) = rg;

the average with respect to spherical measure, in exponential coordinates. Assume that

(8.2) 'j 2 H
1
2 (n�1)�j;p
loc (R n 0);

with p = 1 if n is odd, and some p > 1 if n is even. Furthermore, assume dilates 'j�(r) =

'j(2
�r) satisfy

(8.3)

X
��0

n'j� � 'j(0)

H

1
2
(n�1)�j;p

([ 1
4 ;1])

+

'j� � 'j(0)

L1([0;1])

o
<1:

Then SRf(x) ! f(x); as R!1:

Note that this result extends Proposition 7.5, in that f is not required to be radial. The

functions 'j are to some degree replacements for the process of taking radial symmetriza-

tion.

Proof. We make use of the Hadamard parametrix. As described in Proposition 17.4.3 of

[Ho], we have

(8.4) A�1 sin tA f(x) =

NX
j=1

Z
f(y)Uj (x; y)Ej

�
t;dist(x; y)

�
dy +RN ;

the `integration' being a pairing of distributions, in the exponential coordinate system.

Here, Uj are C
1

functions, and

(8.5) Ej(t; x) = cjn�
j� 1

2 (n�1)
+

�
t2 � jxj2

�
;

where �a+ is a family of distributions on R; given by

(8.6) �a+ = �(1 + a)�1xa+;

for Re a > �1; and by analytic continuation for all a 2 C : We have

(8.7) @x�
a
+ = �a�1+ ; ��k+ = �(k�1):

In (8.4), RN has arbitrarily high regularity, if N is taken su�ciently large.
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Now cos tA f(x) is obtained by taking the t-derivative of (8.4). Hence, given f 2 L2
(M);

we can write, mod L2
loc(R);

(8.8) cos tA f(x) =

[n=2]X
j=0

Bj'j(t);

where 'j are as in (8.1) and Bj are linear operators with the following properties. First, for

any � > 0; Bj'j
��
[��;� ] depends only on 'j

��
[��;� ]: Second, for any " > 0; Bj'j

��
[�T0;T0]n[�";"]

is given by the action of a pseudodi�erential operator of order
1
2
(n� 1)� j: If n is odd, it

is the sum of a di�erential operator of order
1
2
(n� 1)� j and a pseudodi�erential operator

of order �1:
From here, the argument that hypotheses (8.2)-(8.3) imply SRf(x) ! f(x) is exactly

as in the proof of Proposition 7.5.

Results a�rming cases in which the decay hypothesis (1.6) is satis�ed belong to scat-

tering theory. Typically they require of M that there be no trapped rays, i.e., no trapped

geodesics. For example, results and methods of [Mor] imply that, if one has a compactly

supported perturbation of the at metric on R
n; having no trapped rays, then there is

such decay, provided f has compact support. A variant of such arguments can be used

to show that, if M is obtained from hyperbolic space Hn by perturbing the metric over

a compact region, in such a fashion that there are no trapped rays, then such a property

holds. Related variants of this argument are given in [MjT]. This is not an exhaustive ac-

count of cases for which such decay holds (see in particular the comments below regarding

domains with boundary), and indeed the question of when one has such decay deserves

further study.

We now consider a more general class of Riemannian manifolds. We continue to assume

M is complete, connected, and n-dimensional. We also assume that, if f 2 L2
(M) has

compact support, then the decay hypothesis (1.6) holds. As before, A =

p
��+K; with

K � sup spec �: However, we do not assume that Expx : TxM !M is a di�eomorphism.

As a consequence, we allow situations where the formation of caustics can lead to the

breakdown of the Hadamard parametrix (8.4).

Rather than extend Proposition 8.1, we will analyze convergence of SRf(x) for a special

class of functions f: We will assume f 2 L1
(M) has compact support, and that f is a

classical conormal distribution, with singularity along a smooth hypersurface � �M: We

will say f 2 I00 (M;�) if f is piecewise smooth with a simple jump across �: We say

f 2 I�(M;�) if f has compact support and f = Ag; for some g 2 I00 (M;�); A 2 OPS�:

Then I�(M;�) � L1
(M) for � < 1; and more generally, if 1 � p <1; I�(M;�) � Lp(M)

for � < 1=p: This notation is a variant of that used in [Ho]; in particular, we have a

di�erent de�nition of the `order' �.

For small jtj; u(t; �) = cos tA f is a sum of elements of I�(M;�t) and I
�
(M;��t); where

��t are the hypersurfaces obtained from � via ow along geodesics normal to �: For larger

jtj; the surfaces ��t might develop singularities. The union of the singularities forms the

caustic set C �M:

Assume x =2 �; so the quantity (1.10) is well behaved for jtj close to zero. If also x =2 C;
then u(�; x) belongs to I�(R;Tx); where Tx � R consists of a �nite set of points. Hence, as
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long as � < 1; SRf(x) ! f(x) as R! 1: A little further on, we will discuss the rate of

convergence.

If x belongs to the caustic set C; then u(�; x) can be a more singular distribution in

D0(R): If C is a `simple caustic,' in the sense of [Dui1], p.186, then, associated to any x 2 C
is an order �(x); generally of the form

(8.9) �(x) =
1

2

� 1

�(x)
;

with �(x) 2Z+; and we have

(8.10) u(�; x) 2 I�+�(x)(R;Tx);

again for some �nite subset Tx � R: To give some examples, if x is a fold point on C; then
�(x) = 1=6; while if x is a cusp point on C; then �(x) = 1=4: A further discussion of the

simple caustics can be found in [Dui1,Dui2]; see also [AVG] and [GS]. In addition, there

are unstable caustics which have fairly simple behavior, in particular, the perfect focus

caustic, which is produced by the function f = �B1 studied in x2, for example. If n = dim

M; and C = fxg is a perfect focus caustic, then �(x) = 1
2
(n� 1); which is larger than the

numbers in (8.9). There exist smooth perturbations of unstable caustics with more exotic

behavior, and examples for which u(�; x) does not belong to any space I�+�(R;Tx); in fact

the singular support could have accumulation points. We will not dwell on these cases.

Let us record a convergence result, which follows from (8.10).

Proposition 8.2. Under the hypotheses above, assume x =2 � and that either x =2 C (then

take �(x) = 0) or that x 2 C is a caustic point of order �(x): Then, as R!1; SRf(x) !
f(x) for all f 2 I�(M;�); if and only if

(8.11) �+ �(x) < 1:

We remark that, for most f 2 I�(M;�); the principal symbol (in the sense of [Ho])

of u(�; x) will be nonvanishing, so that u(�; x) will not belong to I�+�(x)�"(R;Tx) for any
" > 0: However, for some f; the principal symbol might vanish, and we will have u(�; x) 2
I�+�(x)�1(M;�): This phenomenon arises in the study of the function (2.19); in that case,

the principal symbol is proportional to the mean value of g on the unit sphere jxj = 1:

In Proposition 8.2, we can also allow x 2 �; in some cases. All we need is that

t�1
�
u(t; x) � f(x)

�
be integrable for t in some neighborhood of the origin. For exam-

ple, if f 2 I�(M;�) and � < 0, then the analysis works. Also, if f 2 I00 (M;�); i.e., f has

a simple jump across �; it follows that u(t; x) is a sum of two terms with simple jumps

across the characteristic hypersurfaces through � described above, for small jtj; and one

has the desired integrability near t = 0; as long as f(x) is equal to the mean of the limits

of f(y) as y ! x from each side of �: See x11 for a more detailed discussion of convergence

on and around �; in this case.

We now discuss the rate of convergence of SRf(x) to f(x): For this, we strengthen

the decay hypothesis (1.6). There are results on exponential decay of u(t; x) and all its

derivatives, as jtj ! 1; for various classes of manifolds M with no trapped rays, when
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n = dim M is odd. When n is even, there are results on algebraic decay. Both sorts of

results imply the following: for some B 2 C10 (R);

(8.12)

�
1�B(t)

�
u(t; x) has rapidly decreasing t-Fourier transform.

Under such an hypothesis, the study of the rate of convergence of SRf(x) to f(x); which

has been reduced to the study of the rate of decay of (1.9), is localized. We have the

following.

Proposition 8.3. Under the hypotheses of Proposition 8.2, and the hypothesis (8.12),

given f 2 I�(M;�); x 2M n �; of order �(x); if � + �(x) < 1; we have

(8.13) jSRf(x) � f(x)j � CR�a; a = 1� �� �(x):

Proof. It is elementary that, if v 2 E 0(R); then

(8.14) v 2 I1�b(R;Tx) =) jv̂(R)j � CR�b;

and this gives (8.13).

We illustrate Proposition 8.3 with some examples, exhibiting varieties of caustic points

that arise in simple situations.

First, consider � � R
2; an ellipse, given by

(8.15)

�x1
a1

�2
+

�x2
a2

�2
= 1;

The caustic set C is constructed by travelling from a point y 2 @
 inward along the normal

to @
 at y; a distance equal to the radius of curvature of @
 at y: As y runs over @
; this

locus sweeps out C: If 0 < a1 < a2; this is a curve which is smooth except at 4 cusps. Each

point in the smooth part C0 of C is a caustic point of order 1=6; and each cusp is a caustic

point of order 1=4:

Now, suppose 
 is the compact region bounded by �; g 2 C1(
); and let f 2 L2
(R

2
)

be equal to g in 
 and to 0 on R
2 n 
: If x 2 R2 n (@
 [ C); then

(8.16) f(x) = SRf(x) +O(R�1):

Here, a = 1� 0� 0 in (8.13). If x 2 C0 (and x =2 @
), then

(8.17) f(x) = SRf(x) +O(R�5=6):

Here, a = 1� 0� 1
6
in (8.13). If x is a cusp of C, then

(8.18) f(x) = SRf(x) +O(R�3=4):

Here, a = 1� 0� 1
4
in (8.13). For general g; these remainder estimates are sharp. In fact,

the hypothesis of (8.14) implies that v̂(R) � C0R
�b; and C0 is nonzero unless actually

v 2 I�b(R;Tx); in which case v̂(R) � C1R
�b�1:
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If a1 = a2 in (8.15), then 
 is a disk, and C consists of one point, the center of the disk,

a caustic point of order 1=2: Then, if x is the center, we have

(8.19) f(x) = SRf(x) +O(R�1=2):

Here, a = 1� 0� 1
2
in (8.13). For other x 2 
; of course we have the behavior (8.16).

Next, consider � � R
3; an ellipsoid, given by

(8.20)

�x1
a1

�2
+

�x2
a2

�2
+

�x3
a3

�2
= 1:

If 0 < a1 < a2 < a3; then the caustic set C consists entirely of fold points, where �(x) = 1=6;

and cusp points, where �(x) = 1=4: Suppose 0 < a1 = a2 < a3; in which case � is an

ellipsoid of revolution (but not a sphere). Then C also contains three points of unstable

type, at which �(x) = 1=2: All three points are on the axis of revolution, and one of them

is the origin.

Here is another family of examples. Let � � R
n
be given by

(8.21) jxj2 + ajx� ej2k = 1;

where we have chosen a > 0; k 2 Z+; and e is a unit vector in R
n: We will not analyze

the entire caustic set C for such a surface, but take a look at the origin, which belongs to

C; as long as k � 2; since � is tangent to the unit sphere at e; with order of contact 2k:

The origin is a caustic point of unstable type, but one directly sees that

(8.22) �(0) = 1
2
(n� 1)� 1

2k
(n� 1) =

1
2
(n� 1)(1 � 1

k
):

If f is the characteristic function of the set bounded by � (and 0 =2 �), then SRf(0)! f(0)

if n = 3; for any k: If n = 4; we have SRf(0) ! f(0) if k = 2 (in which case �(0) = 3=4),

but not if k � 3: If n � 5; then SRf(0) does not converge if k � 2:

We now give a brief discussion of a class of domains with boundary. Let K be a

compact subset of R
n
with smooth boundary. We consider the Laplace operator � on


 = R
n nK; with either Dirichlet or Neumann boundary conditions on @K: We will draw

some conclusions about the pointwise convergence of SRf(x) = �R(
p
��)f(x); as R!1:

Assume that f 2 L2
(
) has compact support, and that the region 
 = R

n nK has no

trapped rays. Here a ray which hits @K reects by the rule that angle of incidence equals

angle of reection. Then, fundamental results in scattering theory, including particularly

[MRS], [Ral], and [Mel], imply that the condition (1.6) holds for u(t; x) = cos t
p
�� f(x):

In fact, it holds locally uniformly in x; and, if n is odd, one actually has local exponential

decay. Thus, results of x1 imply the following.

Proposition 8.4. Assume f 2 L2
(
) has support in a compact set S � 
: Fix x 2 
:

Assume that, for any ray (t) lying over a point in S at t = 0; (t) is disjoint from x

whenever jtj � T0 (where T0 <1). Then SRf(x)! f(x) as R!1; if and only if

(8.23)

Z T0

�T0
t�1

�
u(t; x) � f(x)

�
sinRt dt! 0; as R!1:
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In particular, such convergence holds provided

(8.24) t�1
�
u(t; x) � f(x)

�
2 L1

�
[�T0; T0]

�
:

Note that, under the hypotheses made above, the `integrand' in (8.23) is a sum of a

distribution in E 0
�
(�T0; T0)

�
and a function in C1

�
[�T0; T0]

�
:

We next examine convergence of SRf(x) when f 2 C1(
); with compact support.

If f vanishes on a neighborhood of @
; then f 2 D(�k
) for all k; and then uniform

convergence SRf ! f follows from the Sobolev imbedding theorem. However, in general,

an element f 2 C1(
) does not belong toD(�); unless the appropriate boundary condition
is satis�ed. To examine cos t

p
�� f(x) = u(t; x); we do the following. Extend f to an

element of C10 (R
n
); and let u0(t; x) solve the free space wave equation, with Cauchy data

u0(0; x) = f(x); @tu
0
(0; x) = 0: Then

(8.25) u(t; x) = u0(t; x) � v(t; x);

where v(t; x) is constructed as follows. If we use the Dirichlet boundary condition on @
;

then solve the outgoing problem

(8.26)

(@2t ��)w = 0; w(t; x) = u0(t; x) for t � 0; x 2 @
;
w(t; x) = 0 for t < 0;

and set

(8.27) v(t; x) = w(t; x) + w(�t; x):

If we use the Neumann boundary condition, then solve the outgoing problem

(8.28)

(@2t ��)w = 0; @�w(t; x) = @�u
0
(t; x) for t � 0; x 2 @
;

w(t; x) = 0 for t < 0;

and again use (8.27).

Note that the boundary data in (8.26) and (8.28) have simple jumps across ft = 0g:
No glancing rays are involved in the local parametrix constructions for (8.26) and (8.28),

which can be done by methods given in Chapter 9 of [T1]. Let us make the hypothesis that

rays going into 
; normal to @
; never again hit @
: It follows that, for a neighborhood

O of @
 in 
; we have

(8.29) u
��
R�O � I0(R�O;�);

for the Dirichlet problem, and

(8.30) u
��
R�O 2 I�1(R�O;�);

for the Neumann problem. Here, � is the union of of the two characteristic surfaces for

@2t ��; passing through f(0; x) : x 2 @
g: Under the ray hypothesis made above, it follows

that the nature of the singularities of u in all of R � 
 is determined from (8.29) (or

from (8.30)), by the same rules as in the free space case. Thus, the argument yielding

Proposition 8.3 also works to give:
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Proposition 8.5. Let 
 = R
n n K; where K is compact and @K is smooth. Assume


 has no trapped rays, and assume rays into 
 normal to @
 never again hit @
: Take

f 2 C1(
), with compact support. Let C � 
 denote the caustic set derived from @
:

Given the Dirichlet boundary condition on �; then SRf(x) ! f(x) whenever x 2 
nC;
and whenever x 2 C has order �(x) < 1: In that case,

(8.31) jSRf(x) � f(x)j � CR�(1��(x)):

Given the Neumann boundary condition, then SRf(x) ! f(x) whenever x 2 
 n C; and
whenever x 2 C has order �(x) < 2: In that case,

(8.32) jSRf(x) � f(x)j � CR�(2��(x)):

If we allowed rays into 
; normal to @
; to return to @
; but insisted that those that

did so, hit @
 either transversally or with simple tangency, staying in 
; then the results

and methods of [MeT] should allow a fairly precise extension of Proposition 8.5 to this

more general situation. We will not pursue this here.

We consider another phenomenon regarding the behavior of SRf for f de�ned on 
 =

R
n n K; that has no analogue in the case of complete Riemannian manifolds without

boundary. Assume f 2 L2
(
) has support in a compact subset S of 
: Then the wave

front set WF (f) is a subset of T �
 lying over S: We say a compact set T � 
 belongs

to the shadow region of f if no rays join any point of WF (f) to a point lying over T:

A sequence of results on propagation of singularities, culminating in [MeS], implies that

cos t
p
��f is smooth on R�T;whenever T belongs to the shadow region. Using Corollary

1.3, we have:

Proposition 8.6. Under the hypotheses of Proposition 8.4, assume f 2 L2
(
) is sup-

ported in a compact set S � 
; and assume T � 
 is a compact set, in the shadow region

of f: Then, as R!1;

(8.33) SRf ! f uniformly on T:

Furthermore, the convergence is rapid in R; i.e., SRf � f = O(R�N ) on T; for each N:

If K does not have smooth boundary, the phenomenon of di�raction by edges, corners,

etc., could a�ect the behavior of SRf(x) for x in the shadow region. Rather than enter

into a general study, we con�ne attention to a special case.

Let L � R
2
be a line segment; say

L = f(x; 0) : �1 � x � 1g;

and set 
 = R
2 n L: Let p be a point on the negative y-axis, say p = (0;�q): Let � be

the circle of radius a centered at p; assume a < q; so � lies in the lower half plane. If

f 2 I�(
;�); the shadow region S for f is the open region bounded to the left by the ray

from p through (�1; 0); to the right by the ray from p through (1; 0); and from below by L:

Now, the theory of di�raction by a slit, due to [Som], and extended in a number of works,
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including [Fr] and [CT], shows that, in R�S, cos t
p
�� f belongs to I��

1
2 (R�S;F);where

F is R� S intersected with the union of four light cones, with vertices at (�r0; (�1; 0));
where r0 =

p
1 + q2 � a: We thus see that, for such f 2 I�(
;�);

(8.34) � <
3

2

; x 2 S =) SRf(x)! f(x);

and, under these hypotheses,

(8.35) jSRf(x) � f(x)j � CR�(
3
2��):

We end this section with a comment on some results similar to those above, for a class

of manifolds far from being strongly scattering, namely the spheres, with their standard

metrics. Combining the techniques of x5 with those of this section, we have the following

analogue of Proposition 8.3, for Fourier analysis on spheres.

Proposition 8.7. Let � be a smooth hypersurface in Sn: Given f 2 I�(Sn;�); x 2 Snn�;
of order �(x); if �+ �(x) < 1; then

(8.36) jSNf(x) � f(x)j � CR�a; a = 1� �� �(x):

In connection with this result, we mention the paper [Dar]. There one �nds an exami-

nation of rotationally invariant f 2 I�(S2;�); when � is a circle of constant latitude and

0 < � < 1: Convergence is examined when x is a pole (so �(x) = 1
2
), and the results for

this case are in agreement with Proposition 8.7.

9. Hermite expansions and the Schr�odinger equation

In this section we extend the previous discussions to study the partial sums of the

multidimensional Hermite expansion. The treatment is somewhat parallel to that of the

spherical harmonics. A Hermite expansion is written

(9.1) f(x) �
X

k1;::: ;kn

ak1:::knHk1(x1) � � �Hkn(xn)

where Hk(x); k = 0; 1; 2; : : : is the Hermite polynomial, solution of
1
2
y00 � xy0 + ky = 0,

normalized so that

R1
�1Hk(x)

2e�x
2

dx =

p
�2kk!. We adhere to the notations of Szeg�o

[Sz].

The associated Schr�odinger equation is written

(9.2) i
@u

@t
= Lu =

1

2

nX
j=1

@2u

@x2j
�

nX
j=1

xj
@u

@xj
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If f(x1; : : : ; xn) has an L
2
-convergent Hermite expansion as above, then

(9.3) u(t; x) �
X

k1;::: ;kn

ak1:::knHk1 (x1) � � �Hkn(xn)e
i(k1+���+kn)t:

This is clearly 2�-periodic in time, so that we can recover the coe�cients by Fourier-series:

(9.4)
1

2�

Z 2�

0

u(t; x)e�iptdx =
X

k1+���+kn=p
ak1:::knHk1(x1) � � �Hkn(xn)

and the partial sum of the Hermite series

(9.5)

SMf(x) =
X

0�k1+���+kn�M
ak1:::knHk1(x1) � � �Hkn (xn)

=

1

2�

MX
p=0

Z 2�

0

u(t; x)e�ipt dt

=
1

2�

Z 2�

0

u(t; x)e�iMt=2 sin(M + 1)t=2

sin(t=2)
dt

Since �L is positive semide�nite, we can instead sum over�M � p �M in (9.5), obtaining

(9.6) SMf(x) =
1

2�

Z �

��

sin(M +
1
2
)t

sin
1
2
t

u(t; x) dt:

As before, we can use the Rieman-Lebesgue Lemma to deduce a su�cient condition for

pointwise convergence of (9.1).

Proposition 9.1. Suppose that f 2 L2
(R

n; e�jxj
2

dx), and u(t; x) is the associated solution

of the Schr�odinger equation i ut = Lu: Then the partial sum of the Hermite series is

represented by the integral on the last line of (9.5). If furthermore t! u(t; x) is integrable

and

(9.7)

Z 2�

0

���u(t; x) � f(x)

t

��� dt <1;

then limM!1 SMf(x) = f(x):

As we will see below, (9.7) actually fails in many simple cases where pointwise conver-

gence holds, and it is not as pertinent as was its analogue in previous sections.

We note that a study of eigenfunction expansions for L is equivalent to a study of

eigenfunction expansions for the quantum harmonic oscillator:

(9.8) H = ��+ jxj2;
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which is self adjoint on L2
(R

n
): In fact, we have a unitary operator:

(9.9) M : L2
(R

n; e�jxj
2

dx)! L2
(R

n
); Mf(x) = e�jxj

2=2f(x);

and a calculation gives

(9.10) (H � n)Mf = �2MLf:

Thus, a study of (9.6) is equivalent to

(9.11) S0Mf(x) = �2M (H � n)f(x) =
1

2�

Z �

��

sin(M +
1
2
)t

sin
1
2
t

ei(H�n)t=2f(x) dt:

Now Mehler's formula for e�tH , plus analytic continuation, implies

(9.12) eitH=2f(x) =

Z
�(t; x; y)f(y) dy;

where

(9.13)

�(t; x; y) = (�2�i sin t)� n
2 e�i[

1
2 (cos t)(jxj2+jyj2)�x�y]=(sin t)

= (�2�i sin t)� n
2 e�

1
2 i[(cot t)jx�yj2��(t)x�y];

where

(9.14) �(t) = 2

1� cos t

sin t
= 2 tan

t

2

:

Proofs can be found in [Leb], x4.11, or Chapter 1 of [T2].
The behavior of (9.13) is simplest at x = 0 :

(9.15) eitH=2f(0) = (�2�i sin t)�n
2

Z
f(y)e�i(cot t)jyj

2=2 dy:

If we set s = tan t; we can write

(9.16)

eitH=2f(0) = (cos t)�
n
2 (�2�is)� n

2

Z
f(y)e�ijyj

2=2s dy

= (cos t)�
n
2 e�is�=2f(0):

It is convenient to use (9.16) for t close to 0 or to ��; while (9.15) is more convenient for

t close to �1
2
�:

In terms of the radial symmetrization f0; we have

(9.17)

e�is�=2f(0) = (�2�i s)� n
2

Z 1

0

f0(r) e
�ir2=2s rn�1 dr

=
1
2
(�2�i s)� n

2

Z 1

0

f0(
p
�) e�i�=2s �

n
2�1 d�:

We look at the asymptotic behavior of this quantity as s! 0:
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Lemma 9.2. Assume that f has compact support and vanishes near 0: Assume that

f0 2 I�(R+; fag); with a > 0: Then

(9.18) e�is�=2f(0) = 	(s)e�ib=s;

where b = a2=2; and

(9.19) 	 2 I n
2+��1(R; f0g);

having the behavior

(9.20) 	(s) � a�0 s
�n

2��+1
+ a�1 s

� n
2��+2

+ � � � ; �s& 0:

Proof. The last integral in (9.17) is a multiple of ŵ(�); with � = 1=2s: Here, w(� ) =

f0(
p
�)�

n
2�1 has compact support in (0;1); and a simple singularity, at � = a2; and

(9.20) follows from the asymptotic behavior of ŵ(�); as � ! �1:

The behavior (9.20) clearly implies (9.19) when � + n
2
� 1 < 1: For the general case,

write f = �
kg + h; with k large and g; h compactly supported, vanishing near 0; and

satisfying g0; h0 2 I��2k(R+; fag); and use the identity

(9.21) e�is�=2�kg(0) =
�
�2

i

@

@s

�k
e�is�=2g(0):

If in Lemma 9.2 the hypothesis that f vanishes near 0 is changed to f smooth near 0;

then we can write

(9.22) e�is�=2f(0) = 	(s)e�ib=s +�(s); �(0) = f(0);

where 	 is as above and � is smooth. This follows by writing f = g+h; with h 2 C10 (R
n
)

and g vanishing near the origin, and noting that e�is�=2h is smooth.

The following complements Lemma 9.2:

Lemma 9.3. Assume that f has compact support, that

(9.23) F (x) =

Z
SO(n)

f(gx) dg

is C1 on Rn n 0; and that

(9.24) F 0(r) � b0r
��

+ b1r
��+1

+ � � � ; r & 0;

for some � < n: Then

(9.25) e�is�=2f(0) = 	(s);
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where

(9.26) 	 2 I
�

2 (R; f0g)

has the behavior

(9.27) 	(s) � a0s
� �

2 + a1s
��

2+1
+ � � � ; s! 0:

Proof. We have (9.17), and f0 = F 0: Hence, as � & 0;

(9.28) f0(
p
� ) � b0�

��

2 + � � � ;

and if we set w(� ) = f0(
p
�)�

n
2�1; for � > 0; zero for � < 0; then w 2 I

�

2�n
2+1

(R; f0g);
provided � < n: It follows that

(9.29) ŵ(�) � c0�
�

2�n
2 + � � � ; � !1;

which implies (9.27), and hence (9.26).

Of course, by translation invariance of the Laplace operator �; we have similar results

on e�is�=2f(x); for any x 2 Rn: We can apply this to an analysis of the following type of

function. Pick a > 0; p 2 Rn: Let g 2 C1
�
Ba(p)

�
; where Ba(p) = fx 2 Rn : jx � pj < ag:

As in (2.19), set

(9.30)

f(x) = g(x); x 2 Ba(p)
1
2
g(x); x 2 @Ba(p)
0; x =2 Ba(p):

We have from Lemmas 9.2-9.3 that

(9.31) e�is�=2f(p) = 	(s; p)e�ib(p)=s +�(s; p);

where �(s; p) is smooth in s and 	(s; p) has the form (9.20), with

(9.32) � = �(p) = 0:

In addition,

(9.33) e�is�=2f(x) =
2X
j=1

�
	j(s; x)e

ibj (x)=s
+�j(s; x)

�
; x =2 @Ba(p) [ fpg:

where, for each such x; �j(s; x) is smooth in s; bj(x) = aj(x)
2=2 where aj(x) are the

critical values of jx � yj; y 2 @Ba(p); and 	j(s; x) have the form (9.20), with

(9.34) � = �j(x) = �1
2
(n � 1); x =2 @Ba(p) [ fpg:
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Finally,

(9.35) e�is�=2f(x) = 	1(s; x) +	2(s; x)e
ib2(x)=s

+�2(s; x); x 2 @Ba(p);

where �2(s; x) is smooth in s; b2(x) = 2a2; and 	2(s; x) has the form (9.20), with

(9.36) � = �2(x) = �1
2
(n � 1); x 2 @Ba(p);

and 	1(s; x) has the form (9.27), with

(9.37) � = �1(x) = 0:

In other words, for x 2 @Ba(p);

(9.38)

	1(s; x) � a0(x) + a1(x)s + � � � ;
	2(s; x) � a00(x)s

1
2 + a01(x)s

3
2 + � � � :

Incorporating this analysis into (9.15)-(9.16), we have the following.

Proposition 9.4. Let f be given by (9.30), with g 2 C1
�
Ba(p)

�
: Then, for any n;

(9.39) S0Mf(0) �! f(0) as M !1;

provided p 6= 0:

Proof. Making use of the estimates above, we see that, for jtj � �=4;

(9.40)

���eit(H�n)=2f(0) � f(0)
��� � Cjtj�;

where

(9.41)

jpj 6= a; p 6= 0 =) � =
n

2

;

jpj = a =) � = min

�
1;
n

2

�
:

Similarly, we obtain estimates of

��eit(H�n)=2f(0)�� on the rest of R=(2�Z): Together, these

estimates show that Proposition 9.1 (or rather its analogue with L replaced by �(H�n)=2)
is applicable, and (9.39) follows.

Note that, complementing (9.41), we have

(9.42) p = 0 =) � = �n
2

+ 1:

Thus, in this case, we can also apply Proposition 9.1 to get (9.39), when n = 1: However,

the integrability of t�1
��eit(H�n)=2f(0) � f(0)

�� fails in the case n = 2: On the other hand,

it follows from the results of Appendix C that the condition for (9.6) to converge to f(x);

when x = p = 0; holds here, if n = 2; but not if n � 3: Thus, complementary to Proposition

9.4, we have:
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Proposition 9.5. Let f be given by (9.30), with g 2 C1
�
Ba(p)

�
; and p = 0: Then, as

M !1;

(9.43) S0Mf(0)! f(0)

for all such functions, if and only if n � 2:

We now extend our study to that of eitH=2f(x) for x 6= 0: For t close to 0; it is convenient

to use (9.12)-(9.13) to write

(9.44) eitHf(x) = (cos t)�
n
2 e�is�=2(E�(t)xf)(x);

where

(9.45) Ezf(y) = e
1
2 iz�yf(y):

Hence

(9.46) eitH=2f(x) = (cos t)�
n
2 e�is�=2f(x) + (cos t)�

n
2

1X
k=1

ik

k!2k

�
e�is�=2'k;x(x)

�
�(t)k;

where

(9.47) 'k;x(y) = (x � y)kf(y):

As before, s = tan t and �(t) = 2 tan
1
2
t: As long as f has compact support, the series

(9.46) is convergent and has good asymptotic properties as t! 0; in view of the elementary

estimate

(9.48) ke�is�=2'kL1 � Cjsj�n
2 k'kL1 :

In particular, if f 2 L1
(R

n
) has compact support, the sum over k > [n=2] in (9.46) belongs

to L1
�
[��

4
; �
4
]

�
; in t; for each x 2 Rn:

Having the analysis above for eit(H�n)=2f(x) for t near zero, we need to consider t

in the rest of R=(2�Z): Now, if f has compact support, this is smooth for t away from

fk� : k 2Zg; so it remains to analyze it for t near �: This can be done using

(9.49) ei�(H�n)=2f(x) = f(�x);

hence

(9.50) eit(H�n)=2f(x) = ei(t��)(H�n)=2f(�x):

Thus we are reduced to the previous analysis, with f(y) replaced by �f (y) = f(�y): Thus,
we have the following result.
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Theorem 9.6. Let f 2 L1
(R

n
) have compact support, and �x x 2 Rn: Then S0Mf(x) !

f(x) as M !1 if and only if

(9.51) C(M;x) = A0(M;x) +

[n=2]X
k=1

Ak(M;x) +B0(M;x) +

[n=2]X
k=1

Bk(M;x)

satis�es C(M;x)! 0 as M !1; where, with s(t) = tan t; �(t) = 2 tan
1
2
t;

(9.52) A0(M;x) =

Z �
4

��
4

sin(M +
1
2
)t

sin
1
2
t

�
e�int=2(cos t)�

n
2 e�is�=2f(x) � f(x)

�
dt;

and, for k � 1;

(9.53) Ak(M;x) =
ik

k!2k

Z �
4

��
4

sin(M +
1
2
)t

sin
1
2
t

e�int=2(cos t)�
n
2 �(t)ke�is(t)�=2'k;x(x) dt;

with

(9.54) 'k;x(y) = (x � y)kf(y);

and

(9.55) B0(M;x) =

Z 5�
4

3�
4

sin(M +
1
2
)t

sin
1
2
t

e�in(t��)=2(cos t)�
n
2 e�is(t��)�=2f(�x) dt;

and, for k � 1;

(9.56)

Bk(M;x) =
ik

k!2k

Z 5�
4

3�
4

sin(M +
1
2
)t

sin
1
2
t

e�in(t��)=2(cos t)�
n
2

� �(t� �)ke�is(t��)�=2 k;x(x) dt;

where

(9.57)  k;x(y) = (x � y)kf(�y):

Note how the behavior of various functions at �x plays a role in Theorem 9.6, as well

as behavior at x: Compare Theorem 5.4.3 in [Th], discussing Riesz means of Hermite

expansions.

Using Theorem 9.6 and the estimates in Lemmas 9.2-9.3, and in Appendix C, we have

the following, complementing Propositions 9.4-9.5.
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Proposition 9.7. Let f be given by (9.30), with g 2 C1
�
Ba(p)

�
: Then, as M !1;

n � 2 =) S0Mf(x) ! f(x); 8x 2 Rn;(9.58)

n � 4 =) S0Mf(x) ! f(x); 8x 6= p;(9.59)

n � 5 =) S0Mf(x) ! f(x); 8x =2 fp;�pg:(9.60)

Proof. We do the analysis for x =2 @Ba(p); similar arguments, making use of Lemma 9.3,

work for x 2 @Ba(p):
For such f; as described in Proposition 9.7, the quantity A0(M;x) in (9.52) has the

form

(9.61)

Z �
4

��
4

sin(M +
1
2
)t

sin
1
2
t

e�int=2(cos t)�
n
2	

�
s(t))e�ib=s(t) dt;

plus smaller terms. Here, by Lemma 9.2, supplemented by (9.22), 	(s) has the form

(9.62) 	(s) � a�0 s
� n

2��+1
+ � � � ; �s& 0;

More precisely, if x 6= p; one has a sum of two terms of this form, with di�erent values of b;

the two critical values of jx� yj2=2; as y runs over @Ba(p); and � = �(n� 1)=2: If x = p;

one has one term, and b = a2=2; and � = 0:

Taking account of the factor sin
1
2
t in the denominator in (9.62), and applying the results

of Appendix C, we have for (9.61) the asymptotic behavior

(9.63)

� A !̂� n
2
��(bM)

= AcnM
n
4+

�

2� 1
2 Jn

2+��1(2
p
bM )

� Ac0nM
n
4+

�

2� 3
4 cos

�
2

p
bM � 1

2
(
n
2
+ �� 1)� 1

4
�
�
;

plus lower order terms. For general g; the coe�cient A will be nonzero.

As mentioned, if x 6= p; then � = �(n� 1)=2; so the factor of M to a power in the last

line of (9.63) is M� 1
2 : The terms Ak(M;x) in (9.53) are all of lower order.

If x = p; then � = 0 in (9.63), so the factor of M to a power is M (n�3)=4: This vanishes
as M ! 1 if n � 2: When A 6= 0; the term of the form (9.63), dominates all the other

terms in (9.51) (at x = p), so if n � 3; then for general g there is not convergence at x = p:

A similar analysis applies to the terms (9.55)-(9.56). One di�erence is that sin
1
2
t does

not vanish at t = �; so instead of (9.63), the principal terms have the form

(9.64) � !̂�n
2��+1(bM) � Bc00nM

n
4+

�

2� 5
4 cos

�
2

p
bM � 1

2
(
n
2
+ �� 2) � 1

4
�
�
;

plus lower order terms. Again, for general g; the coe�cient B is nonzero. This time, if

x 6= �p; then � = �(n � 1)=2; so (9.64) tends to zero. If x = �p; then � = 0; and this

term tends to zero if and only if n � 4: Other terms in (9.55)-(9.56) are of lower order, so

the analysis of (9.58)-(9.60) is done.
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We remark that, as a consequence of the proof of Lemma 9.2, the following results hold.

In the asymptotic analysis of A0(x;M) in (9.63), at x = p; the factor A is proportional to

fp(a): Similarly, in the asymptotic analysis of B0(x;M) in (9.64), at x = �p; the factor B
is proportional to fp(a):

We mention a couple of speci�c examples, to illustrate Proposition 9.7. If f is the

characteristic function of a ball centered at p in R
3; re-de�ned on the boundary as in

(9.30), then S0Mf(x)! f(x) for all x 6= p: If we consider S0Mf(p); then (9.63) applies, with
n = 3; � = 0: Hence, S0Mf(p) has bounded oscillatory divergence, of a nature very similar

to that considered in (2.13)-(2.15).

Suppose on the other hand that f is the characteristic function of a ball centered at p

in R
5; re-de�ned as usual on the boundary of the ball. Then, by (9.63), with n = 5; � = 0;

we see that S0Mf(p) blows up as M ! 1: If p 6= 0; then the dominant part of (9.51) at

x = �p is given by (9.64). We have n = 5; � = 0 there; hence S0Mf(�p) has bounded
oscillatory divergence.

10. Nonspherical Fourier inversion on Rn

In this section we study some phenomena regarding Fourier inversion on R
n; that arise

when SR is replaced by the following. Let C be a smoothly bounded, strongly convex set

in R
n; which is symmetric, i.e., x 2 C ) �x 2 C: We de�ne

(10.1) eSRCf(x) = (2�)�n
Z

fR�1�2Cg

f̂(�)eix�� d�:

We can analyze this in a way parallel to (2.2). In fact, de�ne � 2 C1(Rn n 0) to have

the properties

(10.2)

� is homogeneous of degree one in �;

�(�) = 1 for � 2 @C:

Then we have

(10.3) eSRCf(x) = �R
�
�(D)

�
f(x):

Parallel to (1.1)-(1.3), we can write

(10.4) eSRCf(x) = 1

�

Z 1

�1

sinRt

t
u(t; x) dt;

where

(10.5) u(t; x) = eit�(D) f(x):
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In this case, �(D) is a pseudodi�erential operator, of order 1; with real symbol, and

u(t; x) solves the pseudodi�erential equation

(10.6)

@u

@t
= i�(D)u; u(0; x) = f(x):

As in (1.1), we could replace eit�(D)
by cos t�(D) in (10.5), and we will �nd it convenient

to do so below. In general, solutions to utt + �(D)2u = 0 do not enjoy �nite propagation

speed, unless �(D)2 is actually a di�erential operator.

Now, results from microlocal analysis are applicable to (10.6). We can write

(10.7) u(t; x) = �t � f(x); �t(x) = eit�(D) �(x);

where �t is a smooth function of t with values in S 0(Rn): Since t�(D) = �(tD) for t > 0;

we have

(10.8) �t(x) = t�n�1(x=t); ��t(x) = t�n��1(x=t);

for t > 0: Furthermore, the theory of Fourier integral operators implies

(10.9) ��1 2 I
1
2 (n+1)

(R
n; @B);

where B is the (open) convex subset of R
n dual to C: This is due to the fact that, under

our hypotheses,

(10.10) @B = fr�(�) : � 2 @Cg = f�r�(�) : � 2 @Cg:

From (10.8) it clearly follows that, whenever f has compact support, the decay property

(1.6) holds. Thus the analysis of eSRCf(x) is localizable, and (1.7)-(1.10) are e�ective in

this analysis.

We concentrate on the following case. Take g 2 C1(Rn); and set

(10.11)

f(x) = g(x); x 2 B;
1
2
g(x); x 2 @B;
0; x =2 B:

Thus f 2 I0(Rn; @B): We see that u(t; x); given by (10.5), has a perfect focus caustic at

x = 0; t = �1: Away from there, it belongs to I0(Rn;�1)+I
0
(R

n;�2); where �j are swept

out by @B; by the bicharacteristic ow for @t � i�(D); in the usual manner of geometrical

optics. We therefore have the following.

Proposition 10.1. Let f be given by (10.11), with g 2 C1(Rn): Then, as R!1;

n � 2 =) eSRCf(x) ! f(x); 8 x 2 Rn;(10.12)

n � 3 =) eSRCf(x) ! f(x); 8 x 6= 0:(10.13)
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Proof. The discussion above yields everything but the stated convergence at x 2 @B: For
this, it su�ces to establish the integrability of

(10.14)

cos t�(D) f(x) � f(x)

t

near t = 0:When cos t�(D) f is calculated for small t by the progressing wave expansion of

geometrical optics, the symmetry �(�) = �(��) implies that the principal terms will have

simple jumps across characteristic surfaces, and will lack log terms. Since cos t�(D) f(x) is

an even function of t; for �xed x; there cannot be a nonzero jump at t = 0; hence, for each

x 2 @B; cos t�(D) f(x) is at least log-Lipschitz in t near t = 0: This observation su�ces

to establish the integrability of (10.14) near t = 0; and hence complete the proof.

It is desirable to capture more precisely the principal singularity of the distributions

��1: One way ths can be done is via a stationary phase analysis of the radial Fourier

transform of these distributions, cut o� away from their singular support @B: We have

(10.15) ��1(x) = (2�)�n
Z
e�i�(�)+ix�� d�;

so, with x = r!; ! 2 Sn�1; consider

(10.16)

��(!; � ) =
ZZ

e�i�(�)+ir!���ir� a(r) dr d�

= �n
ZZ

ei� [��(�)+r!���r] a(r) dr d�:

Choose a 2 C10 (R
+
), equal to 1 on a neighborhood of fr : r! 2 @B for some ! 2 Sn�1g:

The phase function '�(r; �) = ��(�)+ r! � �� r has (for given ! and given choice of sign)

a critical point at r0 = r�(!); �0 = ��(!); determined by

(10.17) r�(�0) = �r0!; ! � �0 = 1:

Let us note that, if �(�) is another real function in C1(Rn n 0), homogeneous of degree

1 in �; and if � and � agree to third order at �0; then the quantity obtained by substituting

� for � in (10.16) has the same leading asymptotic behavior as � ! 1 as does ��(!; � );
for the �xed ! for which (10.17) holds.

This observation enables us to compare ��1 with e�i
p�� �(x); as follows. For each

�0 2 @C; we can �nd an ellipsoid E, centered at the origin, tangent to @C at �0; and

having the same second fundamental form as @C at �0: This ellipsoid is then a level set

f� : Q�0(�) = 1g for a quadratic form Q�0 ; and we see that �(�) and
p
Q�0(�) agree to

third order at �0: Now

(10.18) q�1 = e�i
p
Q�0 (D) �(x)

is singular on the dual ellipsoid eE, which is tangent to @B at x0 = r�(�0) = r0! (and at

�x0), and the radial Fourier transforms of q�1(r!) and of ��1(r!) have the same leading

terms. Since q�1(x) is obtained from e�i
p�� �(x) via a linear change of coordinates, we

have the following.
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Proposition 10.2. If n = 2k + 1; then there exists a positive A 2 C1(@B) such that

(10.19)
1
2
(�1 + ��1) = A(x)(r@r )

k!@B mod I
1
2
(n�1)

(R
n; @B);

where !@B is surface area on @B:
Corollary 10.3. If f is as in Proposition 10.1, with g > 0 on B; then eSRCf(0) is divergent,
as R!1, whenever n � 3 is odd.

Proof. Say n = 2k+1; k � 1: Using (10.8) and (10.19), we see that the leading singularity

near t = 1 of
1
2
h�t + ��t; fi is given by

(10.20) (�1)k
Z
@B

A(x) (r@r )
kf(tx) dS(x) = (�@t)k

Z
@B

A(x)f(tx) dS(x):

This last integral has a jump at t = 1; of magnitude

(10.21) �(g) =

Z
@B

A(x)g(x) dS(x):

As long as this is nonzero, we see that, as R!1;

(10.22) eSRCf(0) = cn�(g)R
k�1

cosR+ o(Rk�1):

There is a similar treatment for n even, whose details we omit.

11. Gibbs phenomena on manifolds

Let M be a strongly scattering manifold, as in x8. Let 
 be a compact region in M;

with smooth boundary, g 2 C1(
); and de�ne f as follows:

(11.1)

f(x) = g(x); x 2 
;

1
2
g(x); x 2 @
;
0; x =2 
:

The pointwise behavior of SRf(x) has been described in Proposition 8.2 and the remarks

following it. Here we want to examine the nature of the convergence on a neighborhood

of @
; obtaining a precise description of the analogue in this case of the well known Gibbs

phenomenon for 1-dimensional Fourier analysis, i.e., when M = R; 
 = (a; b):

The Gibbs phenomenon is controlled by the behavior of the integrand in (1.3) for small

jtj: We will thus analyze

(11.2) S
�
Rf(x) =

1

�

Z
sin Rt

t
u(t; x)�(t) dt;
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with � 2 C10 (R); �(t) = 1 for jtj � a; 0 for jtj � 2a: We pick a > 0 su�ciently small that

the progressing wave expansion of geometrical optics provides a parametrix for u(t; x) =

cos tA f(x); for jtj � 2a; so in particular there are no caustics in this region.

Thus, for jtj � 2a and x in a neighborhood O of @
; we can write

(11.3)

u(t; x) = A0(t; x)�+
�
t�  (x)

�
+

kX
j=1

Aj(t; x)�
j
+

�
t�  (x)

�

+B0(t; x)�+
�
t+  (x)

�
+

kX
j=1

Bj(t; x)�
j
+

�
t+  (x)

�
+Rk(t; x);

with terms having the following nature. The function �+ is the characteristic function of

R
+; and �

j
+ are as in (8.6). The function  (x) solves the eikonal equation near @
 :

(11.4) jr (x)j2 = 1;  (x) = 0 for x 2 @
:

We take  to be positive in 
; then  is uniquely speci�ed, and � also solves (11.4).

The functions Aj(t; x) and Bj(t; x) are C
1

and are obtained by solving certain transport

equations. The remainder Rk has the property

(11.5) Rk 2 Ck([�2a; 2a]�O):

We remark that comparing jumps across @
 at t = 0 yields the relation

(11.6) A0(t; x) �B0(t; x) = g(x); x 2 @
:

Let us look at the contribution of the �rst term on the right side of (11.3) to S
�
R: We

have

(11.7) A0
Rf(x) =

1

�

Z 1

 (x)

sin Rt

t
A0(t; x)�(t) dt:

Writing A0(t; x) = A0(x) + tA01(t; x); we have

(11.8) A0
Rf(x) = A00

R f(x) +A01
R f(x);

with

(11.9) A00
R f(x) =

A0(x)

�

Z 1

 (x)

sinRt

t
�(t) dt:

Suppose the neighborhood O of @
 is su�ciently small that j (x)j � a for x 2 O: Then

(11.10) A00
R f(x) =

A0(x)

�

Z 1

 (x)

sinRt

t
dt+O(R�1);
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uniformly for x 2 O; since the di�erence between the integrals in (11.9) and (11.10) is

equal to

R1
0
(sinRt)t�1[1� �(t)] dt and t�1�+(t)[1 � �(t)] 2 S�11;0(R):

We can express this in terms of the special function

(11.11) G(� ) =
2

�

Z �

0

sin t

t
dt:

A residue calculation shows that G(� )! 1 as � !1; so (11.10) implies

(11.12) A00
R f(x) =

1
2

�
1�G

�
R (x)

��
A0(x) +O(R�1):

As is well known, the graph of G(� ) gives the prototypical pro�le of the Gibbs phenomenon.

While G(� )! 1 as � ! +1; we have

(11.13) Gmax = G(�) � 1:178979744472167 � � � :
Similarly G(� ) ! �1 as � ! �1; and Gmin = G(��) = �G(�): This extra 17% on the

loci R (x) = �� is the contribution of A00
R f(x) to the Gibbs phenomenon in our case.

The other term in (11.8) is

(11.14) A01
R f(x) =

1

�

Z 1

 (x)

A01(t; x)�(t) sinRt dt:

Clearly

(11.15) A01
R f(x) = O(R�1);

uniformly on O:
The next terms in S

�
Rf(x) arising from (11.3) have the form

(11.16) A
j
Rf(x) =

1

�

Z
sinRt

t
Aj(t; x)�

j
+

�
t�  (x)

�
�(t) dt;

for 1 � j � k: This is equal to

(11.17) SR	j;x(0);

where

(11.18) 	j;x(t) = Aj(t; x)�
j
+

�
t�  (x)

�
�(t):

These functions are all uniformly Lipschitz in t, with support in �2a � t � 2a. Hence, as

R!1; (11.17) converges to 	j;x(0); uniformly for x 2 O; i.e.,
(11.19) A

j
Rf(x) ! Aj (0; x)�

j
+

�
� (x)

�
; uniformly for x 2 O:

We can make a similar analysis of the remaining terms in S
�
Rf(x) arising from (11.3).

In particular, we have

(11.20)

B00
R f(x) =

B0(x)

�

Z 1

� (x)

sinRt

t
�(t) dt

=
1
2

�
1 +G

�
R (x)

��
B0(x) +O(R�1):

All other terms in S
�
Rf(x) arising from (11.3) converge uniformly on O; as R!1:

Note that

(11.21) A00
R f(x)+B

00
R f(x) =

1
2
[A0(x)+B0(x)]� 1

2
G
�
R (x)

�
[A0(x)�B0(x)]+O(R

�1
):

We have the following conclusion.
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Proposition 11.1. Let 
 be a compact region with smooth boundary in a strongly scat-

tering manifoldM: Let f be given by (11.1), with g 2 C1(
): Then @
 has a neighborhood

O such that, as R!1;

(11.22) S
�
Rf(x) = �1

2
G
�
R (x)

�
[A0(x) �B0(x)] + S

#
R f(x);

for x 2 O, and S#
R f(x) converges uniformly as R!1:

Recall from (11.6) that A0(x) �B0(x) = g(x) for x 2 @
:
Considerations of propagation of singularities imply that S

�
Rf(x) coverges uniformly

on any compact subset of M n @
: The analysis of SRf(x) � S
�
Rf(x) is amenable to the

methods of x8. One has
(11.23) SRf(x) � S

�
Rf(x)! 0;

uniformly, on any compact set disjoint from the set K of caustic points of order � 1:

There are a number of variants of Proposition 11.1 which can be treated by a similar

wave equation analysis. For one, we can suppose 
 is a domain with smooth boundary

in a sphere Sn: We take g 2 C1(
) and again de�ne f by (11.1). This time, SNf(x) is

given by (5.7) if n is odd, or more generally by (5.30). More generally, instead of Sn; we

can take a compact rank one symmetric space, as in x6, and also have such a formula for

SNf(x): In this case, the Gibbs phenomenon arises from the behavior of

(11.24) S�Nf(x) =
1

4�

Z
sin

1
2
(N +

1
2
)t

sin
1
4
t

u(t; x)�(t) dt;

where, as above, � 2 C10 (R); �(t) = 1 for jtj � a; 0 for jtj � 2a; and we take a << �: An

analysis parallel to that in (11.3)-(11.21) holds here, so we have:

Proposition 11.2. Let 
 be a region with smooth boundary in a compact rank one sym-

metric space X: Let f be given by (11.1), with g 2 C1(
): Then @
 has a neighborhood

O such that, as R =
1
2
N !1; (11.22) holds, and S

#
R f(x) converges uniformly.

As above, SNf(x)�S�Nf(x) ! 0 uniformly on every compact subset of X disjoint from

the set K of caustic points of order � 1:

We mention that the Gibbs phenomenon was studied in [W] in the special case X = S2
.

Next, consider � on M = R
n n K; with the Dirichlet boundary condition on @K: As

in x8, we assume R
n nK has no trapped rays. If f 2 C1(M ) has compact support, then

u(t; x) is given by (8.26)-(8.30). In this case, a parametrix for w(t; x); for small jtj; and for
x in a small neighborhood O of @K in M , has a form which is a variant of (11.3):

(11.25) w(t; x) = A0(t; x)�+
�
t�  (x)

�
+

kX
j=1

Aj(t; x)�
j
+

�
t�  (x)

�
+Rk(x):

Here,  satis�es the eikonal equation (11.4) (with @
 replaced by @K), and  (x) � 0 onO:
The functions Aj (t; x) are C

1; and Rk is of class Ck; as in (11.5). This time, comparing

jumps across t = 0 at @K; we have

(11.26) A0(x) = f(x); x 2 @K;
where, as above, A0(x) = A0(0; x): We have the following result.
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Proposition 11.3. AssumeM = R
nnK has no trapped rays, and let � have the Dirichlet

boundary condition. Let f 2 C1(M ) have compact support. There is a neighborhood O
of @K in M such that

(11.27) S
�
Rf(x) = G

�
R (x)

�
A0(x) + S

#
Rf(x);

for x 2 O; and S#
R f(x) converges uniformly on O as R!1:

A. The Dirichlet kernel and the wave equation

In this section we give a self-contained treatment of the Dirichlet kernel of the multiple

Fourier integral and its application to a new proof of the representation formula (4.1) for

the wave equation. One can compare the derivation on pp. 683-686 of [CH].

The n-dimensional Dirichlet kernel is de�ned by the integral

(A.1) DMn (x) =
1

(2�)n

Z
j�j�M

eix�� d�:

When n = 1 we have the elementary computation

(A.2) DM1 (x) =
sinMx

�x
; x 6= 0:

Proposition A.1. For n � 1; DMn (x) = DM
n (jxj) where DM

n : [0;1) ! R and we have

the reduction formula

(A.3) DM
n+2(r) = � 1

2�r

d

dr
DM
n (r); r > 0:

In particular for n = 2k + 1;

(A.4) DM
n (r) =

�
� 1

2�r

d

dr

�k �sinMr

�r

�
:

Proof. Taking x = re1 in (A.1), we have

(A.5) DM
n (r) = (2�)�nVn�1

Z M

�M
eir�1 (M2 � �21)

n�1
2 d�1;

where Vn�1 is the volume of the unit ball in R
n�1

(with V0 = 1). Thus,

(A.6)
d

dr
DM
n (r) = (2�)�nVn�1i

Z M

�M
eirss(M2 � s2)

n�1
2 ds:
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On the other hand,

(A.7) rDM
n+2(r) = (2�)�n�2Vn+1

Z M

�M
reirs(M2 � s2)

n+1
2 ds:

If we write reirs = (1=i)@s(e
irs
) and integrate by parts, then, since

@s(M
2 � s2)

n+1
2 = �(n+ 1)s(M2 � s2)

n�1
2 ;

we get, upon comparing the result with (A.6),

(A.8) rDM
n+2(r) = Cn

d

dr
DM
n (r);

with

Cn = � (n+ 1)(2�)�n�2Vn+1

(2�)�nVn�1
= �n+ 1

4�2
Vn+1

Vn�1
:

Using the well-known formula

Vn =
�

n
2

�(
n
2
+ 1)

;

we see that Cn = �1=2�; so (A.3) is proved.
We now use the form of the Dirichlet kernel to identify the fundamental solution of the

wave equation, by comparing two formulas for the spherical partial sum operator. On the

one hand, we have

(A.9)

SMf(x) =

Z
Rn

f(x + y)DMn (y) dy

=

Z 1

0

�Z
Sn�1

f(x + r!)d!
�
DM
n (r)rn�1 dr

= An�1

Z 1

0

�fx(r)D
M
n (r)rn�1 dr:

As in (2.7), An�1 is the area of the unit sphere Sn�1 � R
n: If f is smooth with compact

support, the following computations can be made pointwise in the classical sense for n � 3:

(A.10)

SMf(x) = An�1

Z 1

0

rn�1 �fx(r)
�1
2�r

d

dr
DM
n�2(r) dr

=

An�1
2�

Z 1

0

(d=dr)[rn�2 �fx(r)]DM
n�2(r) dr:

Repeating this procedure k times, we have for n � 2k + 1,

SMf(x) =
An�1
(2�)k

Z 1

0

r
� d

r dr

�k
[rn�2 �fx(r)]DM

n�2k(r) dr:
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If n = 2k + 1 is odd, we have

(A.11) SMf(x) =
An�1
(2�)k

Z 1

0

r
� d

r dr

�k
[rn�2 �fx(r)] �

sinMr

�r
dr:

On the other hand, as seen in x1, for any L2
function

(A.12) SMf = �M (

p
��)f =

2

�

Z 1

0

u(t; �) sinMt

t
dt

By the uniqueness of one-dimensional Fourier transforms, we conclude that

(A.13) u(t; x) =
An�1
2(2�)k

t
� d

t dt

�k
[tn�2 �fx(t)]; n = 2k + 1:

B. The heat kernel and the wave kernel

Here we give another derivation of the formula for u(s; x) = cos s
p
�� f(x); by com-

paring two formulas for et�f(x): The �rst is

(B.1)

et�f(x) = (4�t)�
n
2

Z
Rn

e�jyj
2=4tf(x � y) dy

= (4�t)�
n
2An�1

Z 1

0

fx(r)r
n�1e�r

2=4t dr;

where An�1 is the area of the unit sphere Sn�1 in Rn: This follows, via Fourier analysis,

from the evaluation of the Gaussian integral

(B.2)

Z
Rn

e�tj�j
2+ix�� d� =

��
t

�n
2

e�jxj
2=4t:

The second formula is

(B.3) et�f(x) =
1

2�

Z 1

�1
ĥt(s)u(s; x) ds;

with ht(�) = e�t�
2

; hence, by (B.2), ĥt(s) = (2�=
p
4�t)e�s

2=4t: Setting 4t = 1=� and

comparing these formulas, we have

(B.4)

Z 1

0

u(s; x)e��s
2

ds = 1
2
��

n�1
2 An�1�

n�1
2

Z 1

0

fx(r)r
n�1e��r

2

dr;

for all � > 0: The key to getting a formula for u(s; x) from this is to make the factor �
n�1
2

on the right side of (B.4) disappear.
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Let us assume that n = 2k + 1; and use

(B.5) � 1

2r

d

dr
e��r

2

= �e��r
2

to write the right side of (B.4) as

(B.6) Cn

Z 1

0

r2kfx(r)
�
� 1

2r

d

dr

�k
e��r

2

dr:

Repeated integration by parts shows that this is equal to

(B.7) Cn

Z 1

0

r
�
1

2r

d

dr

�k�
r2k�1fx(r)

�
e��r

2

dr:

Now it follows from uniqueness of Laplace transforms that

(B.8) u(t; x) = Cnt
�
1

2t

d

dt

�k�
t2k�1fx(t)

�
;

for well behaved functions f on R
n; when n = 2k + 1: By (B.4), we have

Cn =
1

2

��(n�1)=2An�1:

We can also compute Cn directly in (B.8), by considering f = 1: Then fx = 1 and u = 1;

so

1 = Cnt
�
1

2t

d

dt

�k
t2k�1 = Cn(k � 1

2
)(k � 3

2
) � � � 1

2
;

i.e.,

(B.9) Cn =
1

(k � 1
2
)(k � 3

2
) � � � 1

2

; n = 2k + 1:

This simply means

A2k =
2�k

(k � 1
2
)(k � 3

2
) � � � 1

2

;

a formula which is frequently derived by looking at Gaussian integrals.

C. Distributions oscillatory at the origin

Here we study oscillatory integrals of the form

(C.1) g(R) =

Z 1

0

'(t)t�e�i=�(t)e�iRt dt;
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given ' 2 C10 (R); � : R! R a di�eomorphism (at least on supp '), such that �(0) = 0;

and given � 2 C : If we write

(C.2) �(t) =
t

� (t)
;

with � (0) = �0(0)�1 = b; then

(C.3)
1

�(t)
=
b

t
+ �0(t);

where �0(t) is smooth, so

(C.4) g(R) =

Z 1

0

 (t)t�e�ib=te�iRt dt;

with  (t) = '(t)e�i�0(t) in C10 (R):

We can analyze this in terms of

(C.5) !̂�(R) =

Z 1

�1
t�e�i=te�iRt dt;

where

(C.6) !�(t) = t�e�i=t:

For Re � > �1; !� is locally integrable and of tempered growth, hence in S 0(R): There is
a unique holomorphic continuation � 7! !; satisfying

(C.7) !� = i(� + 2)!�+1 � i@t!�+2:

Thus

(C.8) !̂�(R) = i(� + 2)!̂�+1(R) +R!̂�+2(R):

Contrast this with the family t�; whose continuation is merely meromorphic in �:

Now (if b = 1) (C.4) is given by

(C.9) g(R) =  ̂ � !̂�(R);

and, given  2 C10 (R); we have

(C.10)  ̂ 2 S(R);
Z
 ̂(R) dR = c (0):

The slowly oscillatory behavior of !̂�(R); R ! 1 we establish below will also hold for

g(R): We now show that !̂�(R) can be computed in terms of a standard Bessel function
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Proposition C.1. We have

(C.11) !̂�(R) = c�R
� 1

2
(�+1)J���1(2

p
R); R > 0:

Proof. By the Paley-Wiener Theorem, !̂�(R) vanishes for R < 0: There are several ways

to analyze it for R > 0: For one, we can use the ODE satis�ed by !� :

(C.12) t2@t!� = (i + �t)!�;

to obtain

(C.13) R@2R!̂� + (2 + �)@R!̂� + !̂� = 0:

Now (C.11) follows from an investigation of (C.13). To see this, set h�(s) = !̂�(s
2
): Then

(C.13) implies for h� the di�erential equation

h00�(s) +
3 + 2�

s
h0�(s) + 4h�(s) = 0:

This is readily transformed into a Bessel equation, and one gets

!̂�(R) = R�
1
2 (�+1)

�
c(�)J���1(2

p
R) + d(�)Y���1(2

p
R)
�
; R > 0:

The coe�cients c(�); d(�) are uniquely determined, hence holomorphic in �: Now, for

� < �1; since !� is integrable near in�nity, !̂� is bounded on R 2 (0; 1]: This forces

d(�) = 0 for � < �1; hence, by holomorphy, d(�) = 0 for all �; and we have (C.11).

It is interesting to consider an alternative derivation of some special cases of this propo-

sition, namely the important cases � = �n
2
; n = 1; 2; 3; : : : :We can directly relate !̂�n

2
(R)

to the Dirichlet kernel, as follows. We have

(C.14) !�n
2
(t) = t�

n
2 e�i=t = ce�it��(x); jxj = 2:

Hence

(C.15)

!̂�n
2
(R) = c

Z 1

�1
e�it(�+R) dt �(x)

= c�(���R)�(x)

= c@RSpR�(x);

where SpR is the partial sum operator on R
n: Hence

(C.16) !̂� n
2
(R) = cn@RD

p
R

n (2);

where the Dirichlet kernel, at r = 2; appears on the right side. Recalling (A.2), we have

(C.17) !̂� 1
2
(R) = c1@R

�
sin 2

p
R

2�

�
= c01

cos 2

p
Rp

R
;
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and, by (A.4),

(C.18)

!̂�k� 1
2
(R) =

�
� 1

2�r

@

@r

�kh
c1@R

�
sin r

p
R

�r

�i���
r=2

= c01
�
� 1

2�r

@

@r

�k cos rpRp
R

���
r=2

:

In particular,

(C.19) !̂� 3
2
(R) = c003 sin 2

p
R:

A well-known general formula, valid for both even n and odd n; is

(C.20) @�D
�
n(r) = cn�

n�1
Z

Sn�1

ei�r!�!
0

dS(!);

valid for any !0 2 Sn�1: Hence,

(C.21) @�D
�
n(r) = c�n�1(�r)1�

1
2nJn

2�1(�r);

where J� is the Bessel function. Thus

(C.22) @RD
p
R

n (2) =

1

2

p
R
@�D

�
n(2)

��
�=
p
R
= cR

n
4� 1

2 Jn
2�1(2

p
R):

In other words, for R > 0;

(C.23) !̂�n
2
(R) = cR

n
4� 1

2Jn
2
�1(2

p
R):

Thus we have another derivation of (C.11), when � = �n
2
: Using the identities

(C.24) J�1
2
(z) =

�
2

�z

�1
2

cos z; J 1
2
(z) =

�
2

�z

� 1
2

sin z;

we recover (C.17) and (C.19) from (C.23).

Corresponding to the case n = 2; we have

(C.25) !̂�1(R) = cJ0(2
p
R):

In view of the asymptotic behavior

(C.26) J�(s) �
�
2

�s

�1
2

cos(s� 1
2
�� � 1

4
�) +O(s�3=2); s! +1;

valid for any �xed � > �1
2
(see, e.g., [Leb]), we have

(C.27) !̂�1(R) � CR�
1
4 cos(2

p
R � 1

4
�); R!1:
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