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ON TRACE FORMULAS FOR
SCHRODINGER-TYPE OPERATORS

F. GESZTESY! AND H. HOLDEN?

Abstract. We review a variety of recently obtained trace formulas for one- and multi-
dimensional Schrodinger operators. Some of the results are extended to Sturm-Liouville
and matrix-valued Schrodinger operators. Furthermore, we recall a set of trace formulas
in one, two, and three dimensions related to point interactions as well as a new uniqueness
result for three-dimensional Schrodinger operators with spherically symmetric potentials.

1. Introduction. Tt is a well-established fact by now that trace formulas are of great
importance in solving inverse spectral problems for Schrodinger operators. This is demon-
strated in great detail in [7] in the context of short-range inverse scattering theory and in
[9], [11], [26], [33], [38] in connections with the inverse periodic spectral problem. Histori-
cally these trace formulas originated in the works of Gelfand and Levitan [14] (see also [8],
[12], [13]) for Schrodinger operators on a finite interval. Subsequent developments extended
the range of validity of trace formulas in a variety of directions including algebro-geometric
quasi-periodic finite gap potentials and certain classes of almost periodic potentials [6], [27],
[30]-[32], [39]. Moreover, trace formulas proved to be a vital ingredient in descriptions of
the isospectral manifold of quasi-periodic finite-gap potentials and some of their limiting
cases as well as in the corresponding Cauchy problem for the Korteweg-de Vries equation.
Due to the somewhat special nature of the potentials covered in the references cited thus
far, it seemed natural to search for extensions of these trace formulas to a large class of
potentials. This was the point of departure of our recent program which led to a trace
formula for any continuous potential bound from below and subsequent generalizations
to higher-order trace formulas in one dimension and certain multi-dimensional generaliza-
tions [15]-[19], [21]-[25],[37]. In the simplest case, the main new strategy is to compare
the L?(R) Schrédinger operators H = _?1% +V and HP = —% + V, the corresponding
operator with an additional Dirichlet boundary condition at the point y € R. The spectral
characteristics of H and Hf , especially the Krein spectral shift function (), y) associated
with the pair (H7, H), then allows one to recover the potential V (y).

In Section 2 we extend the results of [22] and [24] to Sturm-Liouville operators of the
type r2[—(p*f')' +qf] in L*(R;r?dz) and consider general self-adjoint boundary conditions
P'(y) + BY(y) = 0, B € R in addition to the Dirichlet case # = co. Section 3 sketches
an extension of the trace formula to matrix-valued Schrédinger operators in the Dirichlet
case. Section 4 briefly reviews the multi-dimensional trace formulas in [25] and illustrates
a possible abstract approach to some of these trace formulas in the special noninteracting
case. In Section 5 we recall a different type of trace formula first derived in [17] in dimen-
sions one, two, and three based on point interactions. Section 6 finally describes a new
uniqueness result for three-dimensional Schrodinger operators with spherically symmetric
potentials originally proven in [19].

2. Trace Formulas for Sturm-Liouville Operators.



Let p, ¢, € C®(R) be real-valued, p,r > 0 and ¢ bounded from below.
We then define the self-adjoint Sturm-Liouville operator in L*(R;r%dz) by

hf = %[—(pzf')' +qf], (2.1)
f€D(h) = {g € L*(R;r?dz)|g,g' € ACioc(R), hyg € L*(R;r?dz)},

where ACi,(Q) denotes the set of locally absolutely continuous functions in & C R. In
addition, we define the Dirichlet Sturm-Liouville operator

]' \/
h)f = T_g[—(lﬁf) + qf,
(2.2)
f e DY) ={g € L*(R,r’dz)|g,9" € ACic(R\{y}), limg(y +¢) =0, hyg € L*(R;r’dz)}.
In order to derive trace formulas we will compare the resolvents of A and hf . Let g(z,z,2")

and gf(z, z,2') denote the Green’s functions (i.e., the integral kernels of the resolvents) of
h and hf respectively,

g(z,z,2') = (h— z)"(z,a"), gf(z,a:,:c') = (hf — z)7 Yz, 2"). (2.3)
One verifies
!
Disaa!) = gle,z.a') — L& DWIEY) 54
g, ( ) = g( ) (29.7) (2.4)
and hence
T(A? — )7 — (b 2)7") = ¢ Inlg(z,,)]. (2.5

To proceed further, we need a high-energy expansion, i.e., z — oo, of the diagonal Green’s
function g(z,z,z). For that purpose we shall exploit the Liouville-Green transformation
to find a Schrdédinger operator H which is unitarily equivalent to A and hence use known
results for Schrédinger operators derived in [21], [22],[24].
Define the change of variable
x /
t=1t(z) = / d:t:'r(
Zo

xXr
p(a’

)
; (2.6)

for an arbitrary but fixed point zo € R. Write

P(t) = p(z(t)), Q(t) = q(=(t)), R(t) = r(z(t)) (2.7)

and introduce the unitary operator

U: L*(R;r’dz) — L*(R;dt) (2.8)
W) = [POROIMFE), F() = fe(t), f € LR rida).
Theorem 2.1. ([10], see also [20]) The operator H = UhU ™! in L*(R;dt) explicitly reads

Hf =—f"+Vf, (2.9)
feD(H) = {g € L*(R;dt)|g,g' € ACioc(R), Hg € L*(R; dt)},



V) = 2 4 s [ SOOI ROPO) ~ () PO
q(z) | plz) (r(@)p(@)s (ple) 1 e
- r(z) + 2r($)3(r(ac)p(:c))m + 2r(z)? (r(r))m 4r(:z:)4( (@)p(z))a
=v(z), z=uz(t). (2.10)
Furthermore,
Gt
96 7) = Fap@r e ©F R 2o &1
where GG in the Green’s function of H. Moreover,
HY =URU™ = —55—2 +V (2.12)

with V' given by (2.10), is the Schrodinger operator with a Dirichlet boundary condition
imposed at the point u = fxyo dz[p(z)/r(z)]. Let GP denote the Green’s function of HP.
Then

GP(z,t(z),t(2")

D N o
KA e e e 21
Hence we find, using known results for H [22], [24] that
Tr[e 7" — e "] o Z se(z)7t, (2.14)
£=0
Tr[(hf -2t —(h— Z)_1]|z/|:>/oo Z rj(a:)z_j_l, (2.15)

2eC\Ce j=0

where C, is a cone with apex at Fy := inf{o(H)} and opening angle ¢ > 0. Recursion
relations for s, and r; are given by (cf. [22],[24])

se(z) = (—1)“1?(—:6) ¢ € Ny,

o’
(2.16)
1
ro(z) = 2 ri(z) = sv(z),
(2.17)
'I’]’(CE) = j’)/](IL’) - Z’)’j_g(CE)T‘g((E), ] = 2a37 ceey
=1
Yo=1Lmn= %v, (2.18)

1 1< 1 1 ,
Yi+1 = -3 Z’Yﬂjﬂ-e + 5 Z [U’Yﬂj—é + Zw,m—e,x - §7z,m’7j-f ) =12,....
=1 =0

Explicitly, one computes

1 1
So = —5 si(z) = 51)(:1:), etc. (2.19)



The proof of (2.17) in [22] follows from the well-known differential equation for I'(z,t) =
G(z,t,t), namely
—2T (2, )T (2,t) + To(2,8)* + 4[V (1) — 2] (2,1)* =1 (2.20)

and the asymptotic expansion

[(z,8) 7=, 2 2712 ZF (t)z (2.21)
zeC\C
with T';(¢) defined in (2.18) but v(z) replaced by V(t).
The next ingredient concerns the fact that g(z,z,z) is a Herglotz function for all z €
R, ie., g(-,z,x): C4 — C4 is analytic, C4 = {z € C|Imz > 0}. Hence g allows a
representation [3]

g(z,z,2) :exp{c( )+ /d)\[/\_ 1:\/\2]5()\’37)}’ (2.22)

where £()\,z) is Krein's spectral shift function for the pair (A2 h) [28], satisfying 0 <
E(Az) <1, £(,2) € L (R;dN), and [ dA(1 + A2)71¢(),z) < oo. Although it will not be
subsequently used, for completeness we show how to obtain an expression for ¢(z). Let
z =1 in (2.22). By taking realparts of (2.22) one infers that

c(z) = Re{ln[g(z, z, z)]}. (2.23)

Fatou’s lemma permits the explicit representation

1
£(A,z) = —limarg[g(\ + t¢,z,2)] for a.e. A € R (2.24)

T €l0

and all z € R. We will normalize {(A, ) to be zero below the spectrum of k, i.e., (A, z) = 0
for A < Ey. Using the spectral shift function, one can show that

Te[F(hD) — F(R)] = /E N dAAF'(VEN, z) (2.25)
whenever F' € C*(R), (1 + A%)FU) € L*((0,00)), j = 1,2 and F()) = (A — 2)7 z €
C \ [Eo,OO).

In particular,

Tr[e ™ — "™ = —1 / ” de ™\ z), >0, ’ | (2.26)
Ey
D _ ,\-1_ _Z—lz_oo £\ ) . o
(R — =) — (h— )] ] DEZEG, 2 € O\olh?) Ua(h)} (227

Combining (2.14) and (2.26) we obtain the general trace formula for Sturm-Liouville operators
281(z) = v(z) = Eo + 1i{1(’)l dhe ™1 — 2£(\, z)). (2.28)
T EO

The Abelian regularization cannot be removed in general, see [18].
Higher-order trace formulas are given in the next theorem.

Theorem 2.2. One infers

_1)¢-1 [/ oo
sofz) = —+ Se(x):( 2 {E—+z11m dre X1 [i—g(x,x)]}, £ EN.

2’ 2 tlo Jp,
(2.29)




From the high-energy behavior of the Green’s function we find that
p(a)r(z) = if Jim [Vzg(z,,2)]) (2.30)

In contrast to the Schrodinger case, the spectral shift function £(A,z) does not contain
all the information necessary to construct both p and ¢ in the Sturm-Liouville case, given
the weight r. From (2.11) and (2.24) we see that in fact the spectral shift functions =
and ¢ of H and h respectively, are identical in the sense that £(X,2) = Z(),t(z)). For
a given V we may construct =(\,t) associated with (HP?, H). By choosing any positive
p € C*(R) we may define the Sturm-Liouville operator h using (2.10) (or (2.11) for the
Green’s function). By construction, the pair (h2, k) will have £(),z) as the corresponding
spectral shift function.

The behavior of £()\, z) is particularly simple in spectral gaps of h. Since p,q, and
r are real-valued, g(A + i0,z,z) is real-valued for A € R\o(h). More precisely, suppose
(A1, A2) C R\o(h) and assume that u(z) € (A, A2) is an eigenvalue of A2, Then one has

)0, A <A< p(e)
Ee) = {1, plz) < A< A (2.31)

Next, assume that p, ¢, and r are periodic, i.e.,
p(z +a)=p(z), ¢(z+a)=q(z), r(z+a)=r(z), TER (2.32)

for some a > 0. Then Floquet theory implies that

o(h) = |J[Eaner), Ban1l, Eo< By < Ey < E3<--- (2.33)
n=1
and
U(hglp)) = U(h) ) {,un(w)}nENa E2n—1 S ,Un(.’E) S E2n, T E ]R, n €N, (234)

In the periodic case g(A + 40, z,z) is purely imaginary on the spectrum, and hence

0, A< Eo, pn(z) <A< Egp, n €N
ENz) =11, Eypo1 <A< pn(z),n €N . (2.35)
%’ Eyn-1) <A< Eyp_y, n €N

Combining (2.29) and (2.35) we obtain the following result.

Theorem 2.3. Let p,q,7 € C®(R), p,r > 0 be periodic, p(z + a) = p(z), ¢(z + a) = ¢(z),
r(z + a) = r(z) for some a > 0. Then

2-1)"*lsy(z) = E§+ > _[E5,_y + By, — 2ua(2)"), LEN, z € R. (2.36)
n=1
In particular,

251(z) = v(z) = Eo + Y [Ean-1 + Ean — 2ua(2)]- (2.37)

n=1



Finally, we turn to the case where the Dirichlet boundary condition is replaced by a
family of (Robin-type) self-adjoint boundary conditions. Define

heyf = %[—(pzf')’ + qf],

f € D(hgy) = {g € L*(R;r?dz)|g,9' € AC(ly,£R]), R >0, (2.38)
lim{g'(y + ¢) + Bg(y £ €)] = 0, hpug € L*(R;r’da)}.

(B = 0 corresponds to a Neumann boundary condition at y.)
hg.y is unitarily equivalent (using the operator U in (2.8)) to the Schrédinger operator
2

d
Hu(ﬂ,u),u = _Tti + ‘/v

D(H,p)) = {9 € L*(R;dt)|g,¢9' € AC([u,£R]), R>0, (2.39)
limlg'(u €) +v(f,u)g(u £ €)] = 0, Hypuug € L*(R;dt)},

where V is given by (2.10), the boundary condition is located at
v r(z)
u(y) = / dz——=, 2.40
. pla) (2:40)
and v(f,u) depends on u as well as on-f3, viz.,

B Py (pr)e _ [P, (PR)
v=v(Bw)= 78— 5 |y = |58~ gp | limw (2.41)
The Green’s function of hg, is given by

9p4(2,2,2") = (hpy — 2)7'(2,2) (2.42)

n_ (B+02)g(z,2,y)(B+ 01)g(2,y,2")

=g(z,z,2') — ,

) = T 8B + 029024 v.0)
where we abbreviate

019(z,y,2") = 0:9(2,2,2') o=y, Oog(2,,y) = 0r9(2,2,7")|p1=y, ete. (2.43)

In this case —(B8 4 91)(8 + 02)9(z,y,y) is a Herglotz function such that Im[(8 + 0,)(8 +
92)g(A +10,y,y)] < 0 for —A > 0 large enough. Krein’s spectral shift function for the pair
(hgz, h) then reads

Es(M,z) = %lﬁilrgl{arg[(ﬁ +01)(B +02)9(A +ic,z,2)]} -1, BER, z €R, AER, (2.44)

and 1t satisfies

Ep(M,z) =0for A < (go(z) :=inf{o(hp.)}, (2.45)
T (haa) = PO = [ P60, (2.46)

¢p0(z)

for functions F' as in (2.25). In particular, we find
Trle=™hee — e~ To Z spe(x) Tt (2.47)

£=0
where

spela) = (()N ALy e, (2.48)



with (cf. [22],[24]),

1 1
rpo(t) = —5 reqi(z) = v(B,u(z))® — 5”(1),
7-1
r5.i(7) = Jy84-1( ZWJ e-1(@)rpelx), 7 =2,3,..., (2.49)
=1
, 1 1, 1 1, 1
v8,-1 =1, yp0 =V 21) 7ﬁ1:§’/v+zyvx_§v +§vm,
3 3 1 1 1
V8.2 = _%6',0 + 81/2'02 + Evﬂ?([}]/v + 'Um) + 8vrx(v - VZ) - gyvxi‘x - 6_4va:zza:7
Bt = o Z 2(v — V?) 8178,z — (v — VB e-1,078,5t
=1
- 4’Yﬁ a7 — 4v(v — V)18 — 20578,0-1V6,j—t + Vp,0-175,5-2)

+2 Z Vo,aVB.i-te — 2V8.0785-tee — Hv? = 20)¥8.0%8,i-¢] 7 =2,3,..(2.50)
Z_.

Explicitly, one computes
1
3[370(3:) = %’ Sﬁyl(x) = I/(,B,u(l‘))2 - 5”(‘7:)7 etc. (2’51)
The proof of (2.49) in [22] is based on the differential equation for I',(z,t) = (v + 0;)(v +
02)G(z,t,t), namely
2[V(t) — v — 20 u(z, )T (2, 1) — [V(t) — v = 2]T0(2, 1) — 2Vi(t)T, 1(2, )T, (2, 1)
—HV(t) = 2)[V(t) = v* — 2] = vVi()}T(2,1)" = —[V(t) — v* = 2P°
(2.52)

and the asymptotic expansion

. = :
Lo 7 2 Tuile™, (2.53)

zeC\C¢ j=-1

with T', ;(¢) defined as in (2.50) with 8 replaced by v and v(z) by V(t).

The analog of Theorem 2.2 now reads

1V T 14 %)
spe(z) = ( ml) {(‘”’( ) + £lim dhe ™)\ [—§+§ﬁ(x,x)]}, ¢ €(Bp4)

2 710 ¢p0(z)
and, in particular,

1

sga(z) =v(B,u(z))® — gv(w)
. oo (2.55)
= — ~(go(z) —lim dre™™ [-1 + &), 2)].
2 710 {po(z)

Our last example in this section will be the periodic case, assuming (2.32) to hold.
In this case

o(hpe) = o(h) U {{pn(2)}nexos

2.
Cﬁ0($)<Eo, Ey, 1<an( )<E2n, rE€R, n EN, ( 56)



with o(h) given as in (2.33). The spectral shift function now reads

07 A< Cﬁ,O(m)) E2n—1 <A< (ﬁ,n(:ﬂ)? n €N
Es(N z) = ¢ =1, (pnlz) <A< By, n €Ny (2.57)

—%, Eg(n_l) <A< E2n_1, n € N

- and the trace formula (2.54) in the periodic case now equals
2(71)££!3ﬁy£($) = 2Cﬁ,0(m)z - Eg + Z[Q(Iﬁ,n(w)f - Egn—l - Egn]a 14 €N, z cR. (258)
n=1

In the case £ = 1 we find

A

:2 (p(x) b (p(;ﬁ(?‘af;))i)  2s(e) = B+ D 2aa(e) ~ Bones ~ B

(2.59)
Subtracting this equation from (2.37) yields

C(p), @r@R\ N (e — e (s
(B5pe - ) = o Gone) + Do + B o) = Gt (260

3. Matrix-Valued Schrodinger Operators.

In this section we extend the trace formula (2.28) to self-adjoint matrix-valued Schrodinger
operators. General background on matrix-valued differential expressions can be found, e.g.,
in [1], [40]. Unlike all other sections in this contribution, the material below is in a prelim-
inary stage with more details appearing elsewhere.

Let H in L*(R)™ = L*(R) ® C™ be a self-adjoint operator defined by

Hf = —I.f"+Qf, (3.1)
feD(H)={g e L*(R)"|gj,g; € ACic(R),1 < j <m; Hg € L*(R)™},

where f = (f1,..., fm)T, I, denotes the identity in €™, and Q = (Qjk)1<jk<m denotes a
self-adjoint matrix satisfying

Q;x € C(R) bounded from below, 1 < 7,k < m. (3.2)
Closely associated with the equation
Hf==zf (3.3)
is the first-order 2m x 2m system
L(z)(f, /)" =0, (3.4)
where (f, f)" = (fi,--s fm, f1s+ s fr,)T and
L(z) = IZm% CA(z), A(z) = (Q - Ién) , (3.5)

with Iy, the identity in €*™. If U(z,z) denotes a fundamental matrix for L(z), that is,
L(z)¥(z) =0, (3.6)



or equivalently,

U'(z,2) = A(z,2)¥(z, ), (3.7)
then W(z,z) defined by
U(z,z) = U(z,z)7" (3.8)
satisfies the adjoint system
U'(z,2) = —U(z,2)A(z, ). (3.9)

Moreover, the fundamental matrices ¥(z,z) and ¥(z, z) are of the form
_ ¢1(27$) '(/)2(27‘73) U(z z) = 'J)é(z’x) —'(/32(2,113)
iz e) = (¢;(z,x) %(z,w))’ ) = (—t/){(z,m) 7,[;1(2,:1:))’ (3.10)

and one verifies that

—1/);'/(2,33) + Q(:L‘)t/)](z,’t) = 21/)]'(2,113), _QZ;'/(Z)CU) + ¢J(sz)Q(w) = zz[;j(z,a:), J=12
(3.11)

In particular, assuming t;(z), 1;(z) to be unique solutions of (3.11) (up to right resp. left
multiplication of matrices constant with respect to z) satisfying

Tﬁ%(z, ) P = ¢i(2, ) € LQ([Rv j:OO))m,
QL%(Z,.) = Yu(z,-) € LR, £0))", RER,zeC\o(H), (3.12)

the Green’s matrix G(z,z,z") of H becomes

z>a
Glz,2,2) = {‘“Ez "’;Z’) E ; Lz . (3.13)
and hence the resolvent of H is given by
(H - 2)"'f)(= /da:sz:c f(@), f € L*(R)™, z € C\ o(H). (3.14)
Since
—¥;(z,2)" + ¥i(2,2)"Q(z) = 2¢4;(z,2)", j = 1,2, (3.15)
:(z,z) are of the type
¥i(z,2) = Aju(2)91(2,2)" + Bja(2)a(2,2)", j = 1,2 (3.16)

for matrices A;(2), Bjx(2), 1 < j,k < 2 in C™ constant with respect to z. Introducing
the “Wronskian” W(¢,)(z) of m x m matrices ¢ and 1 by

W(g,¥)(z) = ¢(z)¢'(z) — ¢'(z)¥(z), (3.17)
one verifies that
LW () () = 0 (3.18)
for solutions 9 (z,z) and ¢(z,z)* of
_¢Il(z7 $) + [Q(il?) - Z]‘P(Z, .1?) = 0, _¢”(27$)* + ¢(2,$)*[Q($) - Z] = 0. (319)
Relations (3.8), (3.12), (3.15), and (3.16) then yield
bi(z,x) = W (s (2)", 5(2)) s (2, z)* (3.20)



and hence
G(Z,:t,.’l:) = —¢+(z,:E)W(z/)_(é)*’¢+(z))_11/)_(2,m)*
= (2,2)W (P4 (2)",9-(2)) 14 (7, 2)". (3.21)

The corresponding matrix-valued Dirichlet Schrodinger operator Hf in L%(R)™ then
reads

HY f = —I.f"+Qf,
f€D(H,) = {g € L(R)"| g; € ACioc(R), g} € ACioc(R \ {y}),
lilr(l)lgj(y +e€) =0, Hfg € L*(r)™} (3.22)
and its Green’s matrix Gf(z,:v,a:’), the analog of (2.4), is given by

Gf(z, z,1') = G(z,z,2") — G(z,2,y)G(2,9,y) ' G(z,y,2). (3.23)
The analog of (2.5) then becomes

Tr[(HP —2)™' — (H — 2)™] = =Tr[G(2,",2)G(2,2,2) 'G(z, z,")]
= —TrlG(z,z,2)'G(z,z,-)G(z,,2)] = —T'r@m{G(z,:c,:z:)_l[j—zG(z,x,x)]}

— _j—zTrCm{ln[G(z,x,m)]} = —j—zln{det@m[G(Z,x,x)]}, (3.24)

where we used cyclicity of the trace,

d m
(H — 2) *(z,2');5 = Zl;G(z’:c’x’)j’k = Z / dz" G(z,z,2");0G(z,2",2")or,  (3.25)
B

and Trem[In(M)] = In[detem(M)] for matrices M in C™. Moreover, T'r(-) and T'rem(-) in
(3.24) denote the trace in L*(R)™ and C™, respectively.
Introducing the matrix-valued Green’s kernel diagonal with respect to z (cf. (3.21))
I'(z,z) = G(z,z,2), (3.26)

the matrix analog of (2.20) reads

—T(z,2)es(2,2) — Taa(z,2)0(2,2) + Tu(2,2)% + T2, :c)zQ(m)

+ Q(z)l(2,2)* 4 20(2,2)Q(2)(2,z) — 42T(2,2)% = I, (3.27)
and considerations along the lines of (2.20), (2.21) then yield
[(z,2) -2—1/2Zr (3.28)
os<C\c€
with
1
To(z) = Imy, Ti(z) = 5@(:1:), ete. (3.29)
Similarly,
——ln[G(z z,2)), 15 OOZR PR (3.30)
z€C\Ce 7=0
where

Ro(z) = %Im, Ry(z) = %Q(x), etc. (3.31)



Next, define for all # € R the analog of (2.24) by
=(\z) = llil%llm{ln[G(/\ +ie,z,z)]} for a.e. A €R,
T €
=(\z) =0, A < Ep:=inf{o(H)}, (3.32)
where Im(M), Re(M), in obvious notation, abbreviate
1 1
Im(M) = Z(M — M), Re(M)= §(M + M™) (3.33)
for matrices M in C™. It follows from the results in [5] that
0<ZE(\z)<I, forae X€ER. (3.34)
In the following denote by Cr the counter-clockwise oriented contour
Cre={z=Botee®| 242} Ufs= Byt A+icl0 <A< R)

U{z = Eo + Re'®| arctan(¢/R) < ¢ < 27 — arctan(e/R)}
U{z=FEo+X—1c|]0 <A< R}, R>e>0. (3.35)

Applying the residue theorem, taking into account that G(z,z,z), € R, is analytic in
z € C\ o(H) and det[G(z,z,2)] # 0 for z € C\ o(H) (cf. (3.23)), then yields

(In[G(z,2,2)]}s = 27”7{0 gy UnlG(2 2, )]}

z —z
= om b GG
"l ZA{nlG(# 2, 2) i
1 , , 1 z
to= - dz' {In[G(Z',z,z)]};x L, . T iT z’Q}
Re{In[G(i, 2, 2)]} 5 + © / " IO 4+ i0,2,2)]) 5, | A
= y &Ly ke - 2 ,.’E, ] -
"y o R Py 14+ A2
+o(€) + o(R™)
< 1 A
T Rellnl0 o, o))+ [ NE0 ) = al
1<jk<m. (3.36)
Thus
d - L
E;ln[G(z,x,x)] = /EO dAZ(N\, z)(A — 2)7%, (3.37)
and the matrix analog of (2.28) then reads
Q(z) = Eol,, + lim dA 2 (N — 2) 7?1, — 2E(\, )], (3.38)

2—100 EO

where we used a resolvent instead of a heat kernel regularization.

Defining

£(A,2) = Trem[Z(X, 2)], (3.39)
one infers from (3.24) that

Tr[(HP — )™ — (H — 2)""] = — /w A, 2)(\ — 2)2 (3.40)
Eq



and that

£\ z) = llimarg{detq;m[G()\ +ie,z,2)]}, 0< €A z) <m forae AeER. (3.41)

T €l0

Further details and applications of this formalism to inverse spectral problems will appear
elsewhere.

4. Multi-Dimensional Trace Formulas.

First, reporting on recent work in [25], we attempt to extend the leading behavior in
(2.14),

oTr[e”™ — e_THE] =1—-7V(z)+o(r) asT |0 (4.1)

to arbitrary space dimensions v € N. The key to such an extension is an appropriate com-
bination of Dirichlet and Neumann boundary conditions on various hyperplanes through
the point z € R” taking into account that (4.1) is equivalent to

TT[E—TI"IIN — e HI =1 -1V (2) + o(t)as 7 |0, (4.2)

where HY = H? denotes the operator (2.39) with a Neumann boundary condition at
z € R. We start by introducing proper notations. In the following let V be a real-valued
continuous function on R bounded from below and define the self-adjoint operator

H=-A+V (4.3)

as a form sum in L?*(R”). Next, let A C {1,...,v} and denote by |A| the number of
elements of A. Moreover, let B((f),a C {1,...,v} be the 2” blocks obtained by removing
the hyperplanes PJ(I) = {y € RV | y; = z,} from R, that is, B = {yer" |y >apif L €
a,ye < x4 if £ ¢ o} and denote by P, the power set of {1,...,v}. The operator H4., is then
defined to be —A+V on Lz(Bt(f)) with Dirichlet boundary conditions on {Pj(z)}jeA

a€Py
and Neumann boundary conditions on {P](I)}ng.

Theorem 4.1. [25] Define C, = 3 (—=1)Mle="Ha0 7 > 0. Then the integral kernel of C,

A€B,
is given by
n | 2ve7™(z,—2'), z,z'in the same orthant
Cr(z,2) = { 0, otherwise. (4-4)
Moreover, C,,7 > 0 is a trace class operator in L*(R¥) and
Tr(C,) = zv/ FzeH(z,—z), 0. (4.5)
]BV

The proof of (4.4) in [25] is based on the method of images while the trace class property

of C, and (4.5) follow from the direct sum decomposition of C, in @ L2(B{).
a€EPy
Applying a Feynman-Kac-type analysis then yields the following v-dimensional general-

ization of (4.2).
Theorem 4.2. [25]

Tr( Z (—1)|A|6_THA") =1—7V(z)+o(r)as T | 0. (4.6)
A€P,



While Theorem 4.2 represents a multidimensional trace formula for Schrédinger opera-
tors associated with unbounded regions in R, one can also prove new trace formulas for
Schrédinger operators defined in boxes. One obtains, e.g.,

Theorem 4.3. [25] Let V be continuous on [0,1]". For A C {1,...,v},let H4 be —A+V on
L%([0, 1]*) with Dirichlet boundary conditions on the hyperplanes with z; = 0 or 1 and j €
A and Neumann boundary conditions on the hyperplanes with z; =0 or 1 and j € A. Let
(V') be the average of V at the 2” corners of [0, 1]”. Then

Z (=) Tr(e™4)y =1 —7(V) 4+ o(r) as 7 | 0. (4.7)
A€eP,
This result holds also for rectangular boxes x%_, [a;, b;] but the rectangular symmetry is
crucial in the proof of [25]. Similarly, one can prove

Theorem 4.4. [25] Let V be continuous on [0,1]*. For A C {1,...,v} let H4 be — A +
V on L*([0,1]*) with Dirichlet boundary conditions on the hyperplanes with z; = 0 for

J € A and Neumann boundary conditions on the hyperplanes with z; = 0 for j ¢ A or
zr = 1for all k € {1,...,v}. Then

S (=) (e 4y = 271 = 7V(0) + o(r)] as 7 | 0. (4.8)
A€Py
Finally, we mention an Abelianized version of a trace formula that Lax [29] derived
formally in two dimensions.

Theorem 4.5. [25] Let V be a continuous periodic function on R? with V(zy + nq, x5 +
ng) = V(:El,.’lfg) for all (:cl,:rz,nl,nz) € R? x 2% Let Hp, Hy,Hpp,Hpys,Hy, and Hp be
the operators —A + V on L?*([0,1]?) with periodic, antiperiodic, AP, PA, Neumann, and
Dirichlet boundary conditions respectively, where AP (resp. PA) means antiperiodic in
the z; (resp. ) direction and periodic in the x4 (resp. z;) direction. Then

Trie™™p 4 e7™Ha 4 e=Har 4 o=THPa _ 9e=THN _ 9e~"HD] = 1 4 7V(0) + o(7) as 7 | 0.
(4.9)

For a different kind of two-dimensional trace formula for V(2) comparing the heat kernels
for H = —A+V and Hy = —A with Dirichlet boundary conditions on a rectangular box,
see [34]. Trace formulas for heat kernels of multi-dimensional Schrodinger operators in the
short-range case have also recently been derived in [4]. '

Finally, we illustrate a possible new abstract approach to the trace formulas (4.7) based
on certain commutation (supersymmetric) techniques in the noninteracting case where
V(z) = 0, z € R”. We need a bit of notation. Let H be a (complex separable) Hilbert
space, I a closed densely defined linear operator in ‘H and define the self-adjoint operators

H, = F*F , H, = FF* (4.10)

Q= (2 F0> , P= (é _01> (4.11)

in H @ H. Moreover, we denote by tr(.) the trace in H, by T'r(.) the trace in H @ H, and
by B(H) (resp. Bi(H)) the set of bounded (resp. trace class) operators in H.

in ‘H and

Lemma 4.6. One infers that
(i)
QP+ PQ =0. (4.12)



0 - (fé-l ]3) (4.13)

Fe_tHl D G—tH?F, F*e—tH2 D e—tHlF*. (414)

(iii)

Proof. While (i) and (ii) are obvious, (iii) follows from

Qe_tQ2 ») e“tQ2Q.
Lemma 4.7. Assume B € B(H @ H) is bounded and commutes with @), i.e., QB 2 BQ.
Suppose e~9*, Q%e7?* € By (H @ H), t > 0. Then

d

aT7~[Pe—t<9231 = 0. (4.15)
Proof.
%Tr[Pe‘thB] = —Tr[PQ%* '’ B
= Tr[PQe 'Y QB] = --- = Tr[PQ% %’ B (4.16)

using commutativity of @ and B and anticommutativity of @ and P in (4.12) and cyclicity
of the trace. The fact that () is unbounded is offset by the trace class hypotheses in Lemma
4.7. In fact, rewriting

~Tr[PQ* " B] = ~Tr[PQ(1 +|Q)'Q(L +|Q|)e ¥ B]
enables one to prove (4.16) in a trivial manner by reshuffling Q(1+|Q|)™* € B(H® H) as
opposed to @ in (4.16).
Next we introduce the closed densely defined linear operators F,, 1 < n < v as in ‘H
and define H,, = FXF,, Hy, = F,F}, 1 <n < v asin (4.10). Moreover, assume
etHin  Hi e Hin e Bi(H), 1<n<v

and

[Fon, Fu] €0, [Fn, F] C 0, m#n
implying

[Hj,m,Hg,n] QO, j,fZ 1,2, m;én
We also denote

Q, = (-Ign 1;”), 1<n<vw (4.17)

in H@® H as in (4.11) and define for any A € P, (the power set of {1,2,...,v}) the
self-adjoint operator

HY =Y Hin+ Y Hp (4.18)
neA n¢A

Then an abstract version of (4.7) in the noninteracting case reads as follows.

Theorem 4.8.
> (—)Mitr(e74) = 3 (—1)M dim Ran[ Py ({0})], (4.19)
A€ePy A€EP,

where PH%(Q), Q) C R, denote the spectral projections of HY.



Proof. One computes

% N (—)Mltr(e ) = = Y (=) lir(HGeHA) (4.20)

A€EP, A€EP,
==Y Tr[PQZe*%"B,,] =0
n=1

by (4.15), where
1 0
Bl,] - <0 1) ) (421)

_Byyn _ (b;(/jn bO ) ’ b,,wn - _ H (e—tf-lg,m _ C_tH]’m), v 2 9
v,n m=1
m#n

are bounded and commute with @,. Thus the left-hand-side in (4.19) is independent of ¢
and taking ¢ T oo then determines the right-hand-side of (4.19).

Identifying A, =1®---®1Q 52:

L@ 1®---®1in L*([0,1])") with

0
oz,

_d
D_d:c

, 1<n<v (4.22)
cge((0,1))

in L*([0, 1]) then yields (4.7) in the case V(z) = 0 since only the zero-energy eigenvalue of
the Neumann operator Hj contributes on the right-hand-side of (4.19). More generally, if
A, has the tensor product structure

A, =10 ®1Qa, ®1Q---®1
inH=H,®- - ®H,, then clearly [A,,, A,] C 0 and one evaluates

> (=) hr(e ~tH Hn ~tanaq _ g-tanan) (4.23)

A€P,

In the special case (4.22), where a, = 5—2—;

, one confirms that
D

r (e—tana,‘l _ e—ta,*,an) =1, 1<n<w

5. Trace Formulas and Point Interactions in Dimensions One, Two, and Three.

In this section we describe a different kind of multi-dimensional trace formula based on
point interactions [2] and hence rank-one perturbations of resolvents first derived in [17]
in a slightly different form. Since point interactions (also called contact interactions or
b-interactions) are limited to v = 1,2, 3 space dimensions, so will be our approach below.

Assuming V to be real-valued, continuous and bounded from below on R, v = 1,2, 3,
we introduce H = —A + V as in (4.3). The resolvent of the self-adjoint Hamiltonian H, .,
modeling H plus a point interaction centered at ¢ € R¥ (whose strength is parameterized
in terms of a € R), is defined as follows (see, e.g., [2], [42])

(Hyp —2) = (H — 2) 4 Do o(2) H(G(2,2,.),.)G(2,.,2), 2z € C\{o(Hyz)U U(H()S}l)



where

[ —a'=Ty(z,z), v=1, a € RU{co},a #0
Daslz) = { a-Ty(z2),  v=23 ach, (5.2)
(e,2) = Glz,z,a), Taleso) = limGlema o) - 2r) ()], (53)

I's(z,2) = lim[G(z,z,z + €) — (47 |¢]) 7],

lel10

and G(z,z,2') denotes the Green’s function of H. In analogy to (2.5) one then computes

d
Tri(Hop—2)"' = (H—2)"" = - In[Dqy 2(2)]. (5.4)
Krein’s spectral shift function for the pair (Hq,z, H) is then introduced via
_ -1 _ _ -1 - _ d)\ éa, ( .
Trl(Hos — 27 = (H =2 = - [ ag= (5.5)
with E, .0 = inf{c(Ha.) U o(H)} and the normalization
éa,z(/\) = 0-; A< Ea,z,O' (56)

Eaz(N) is related to Dy (2) as €(A, z) is to g(z,z, ) in (2.24). The high-energy expansion
(see, e.g., [35], [41])

Hm[G(z, 2,z + €) — GO(z,z,2 + €)] = =V ()

lelio

1/4(=2)%2 4 0(27%?), v=1
—1/47z + o(z71), v=2 (5.7)
1/87(—2)"2 4 o(271/?), v =3
then yields
B £V(CE)Z_3/2 + o(27%/?), v=1
Da(z) =14 | 2 4 5 g
az\Z) =\ (27) n((—iz)Y?) + & — (4n) W (z)z T +o(z7Y), v=2 > (5.8)
—i(47) 2?2 o +i(87) WV (2)2 2 o(271?), v =3
where
&=a+(2r) 'y — (27) " In(2)
with 4 = .5772... being Euler’s constant. A combination of (5.4), (5.5), and (5.8) then
implies the following trace formula.

Theorem 5.1. [17]

v=1:
Vo) lim,| e {—z -2 if\?[a(H)] drz}(\ — Z)_Zﬁm,z(/\)} , a = oo,
z) = 9 . . %
éoﬂ + lim,| oo {—gz + %azlm + %za—lzsm fE“O dA(A — Z)_Zﬁa,x()‘)} ,
a € R\{0}. (5.9)
v =72
V(z) = llim {—z + 47[(27) 7 In(—i2'/?) + @] / drz?(\ — z)_2§ayz()\)} . (5.10)
Zl—oo Ea,r,O
v =3

V(z) = 167%a® + llim {—z + 4miaz'/? + 2/
Z]—00 E

a,z,0

d\2*(\ — z)-%w(A)} : (5.11)



Using the systematic high-energy expansion of limyo[G(2, 7,z +€) = G)(z,2, 2+ ¢)] in
terms of (multi-dimensional) KdV invariants (see, e.g., [35], [41]) one can extend Theorem
5.1 to higher-order trace relations in analogy to (2.29) and (2.54).

In the special case where V(%) = 0, one obtains explicitly,

—a7 — (—4z)7V2, v=1
DO(z) ={ &+ (2r) ' In((—2)Y?), v=2 (5.12)
&+ (4m)"H(—2)"?, v =3,
and
o (0) )\)
0 -1 (g0 _ \-1] — _ d/\ﬁa( . .
Tr(HE) - =) = (O =5 = - [ o0 Vo (5.13)
Here, for v =1,
0, A< —a?/4
(0) _ _’ 9 0, A<0 0, A<0
&7 (M) = { aal(,/\) Aoz>/81<x<o { Y0 Ut aa(0), A> 0 (5.14)
a<0 a=0 a € (0,00]
writing aq()) = —7 ! arctan(|e|/2A!/2), and, for v = 2,
0, A< —emim@
-1 —e 1M < X <0
Oy <) b <
¢’ (M) = —nlarctan[r /(47 +In(A))] =1, 0 <A < e ™ (5.15)
—n~larctan[r/(47& + In(A))], A > emima
and, finally, for v = 3,
0, A< —(4ra)?
Ooy= {1 _(47fa7;§‘)<A<0 {0’1 A <0 {o, A <0
7 PRI “1A>0 ) Au(}d), A>0 7 (5.16)
a<0 a=0 a>0
writing Aq()) = —7~!arctan(\'/2/47 |«|), and
' £ _ —a?/4, a<0 [ et —(4ra)?, a<0
@0 ™ 0, ac€[0,00] 0, a>0 ’ (5.17)

v=1 v=2 v=3

6. A Uniqueness Result for Three-Dimensional Schrodinger Operators.
Finally, we briefly sketch a uniqueness result in the context of three-dimensional Schro-

dinger operators with spherically symmetric potentials originally derived in [19]. Consider
the potential V : R® — R,

V(z) = v(|z]), v € L*([0, R)]) for all R >0 (6.1)

and define the self-adjoint Schrodinger operator H in L?(R®) associated with the differ-
ential expression —A + v(|z|) by decomposition with respect to angular momenta. This
represents H as an infinite direct sum of half-line operators in L?((0,00); r2dr) associated
with differential expressions of the type

. &2 2d e+1)
Te = _W— 7_‘37“4_ 2 +U(T), r= ISC| >0? ZGNO‘ (62)




A simple unitary transformation (see, e.g., [36], Appendix to Sect. X.1) reduces (6.2) to
& LL+1)
_W + 2 + U(T') (63)

and associated Hilbert space L*((0,00);dr). Next, let G(z,z,2'), z # z’ denote the Green’s
function of H and define Hyo in L*(R%), @ € R as in (5.1) (with ¢ = 0) and the corre-
sponding Krein spectral shift function £,0(A) as in (5.5), i.e.,

Eao(N) = leilngw_l Im{In[Dq4o( X + 7€)]} a.e. (6.4)

T¢ —

Then the following uniqueness result holds.

Theorem 6.1. [19] Define Hj, H; 4,0, a; € Rassociated with —A+v;(|z]), z € R, j = 1,2
as above and introduce Krein’s spectral shift function &;q;0()) for the pair (Hjq, 0, Hj),
j = 1,2. Then the following are equivalent:

(i)
€1 a1 0(A) = E2,000(A) for a.e. A € R. (6.5)

(ii)
a; = ap and Vi(z) = Va(a) for a.e. z € R®. (6.6)

The proof of this result in [19] is based on detailed Weyl-m-function investigations as-
sociated with the angular momentum channel £ = 0.
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