THE STRONG STABILITY OF A SEMIGROUP ARISING
FROM A COUPLED HYPERBOLIC/PARABOLIC SYSTEM

By

George Avalos
and

Irena Lasiecka

IMA Preprint Series # 1347
October 1995

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA

514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455



The Strong Stability of a Semigroup Arising from a coupled
Hyperbolic/Parabolic System

George Avalos* Irena Lasiecka!

Abstract

We consider here a coupled system of hyperbolic and parabolic PDE’s which arises in a given
fluid /structure interaction. The system is transformed into an abstract differential equation, and
from this operator theoretic model, questions of strong stability for the equation are addressed.
A distinctive feature of the problem is that the resolvent of the operator is not compact, and
hence a treatment with the standard Nagy-Foias theory or Lasalle Invariance Priniciple is not
available. Instead, we show that a powerful stability result of Arendt-Batty applies, and which
consequently proves strong decay of the energy functional.

1 Introduction

1.1 Statement of Problem and Motivation

Let ©Q be an bounded open subset of R™, n > 2, with Lipshitz boundary I', and T’y a segment of
I'. We consider here the problem of finding functions z(¢,z) and v(¢,z) which solve the following
system comprised of a “coupling” between a wave and elastic plate-like equation:

(2 = Az on (0,00) x

2(0,2) = 2°,2(0,z) = 2} on Q

) 2(t,z) =0 on (0,00) x '\ T'g 1)
\ ?‘zg—y’z)+azt(t,x):vt on (0,00) x Ty with a > 0;
vy = —A%v — A?vy — 2z on (0,00) x T
v(0,z) = v%,v,(0,z) = v! on Iy @)
v(t,z) = 6_v(6t_;£l =0 on (0, 00) x 9Ty,

We are interested here in the stability of the solutions [Z2*, )T = [z, 21, v, v:]T to (1)~(2); viz. we
are concerned with the decay of the “energy” E(7Z, 7,t) of the system (1)-(2) as ¢ — oo, where

E(‘z",?,t):/ﬂ [|Vz(t)|2+|zt(t)|2] dQ+/F [|Av(t)|2+|v,(t)|2] dTo. (3)
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The “structural acoustics” model (1)-(2) mathematically describes the interaction of a vibrating
beam/plate in an enclosed acoustic field or chamber. The model has been an object of intensive
experimental and numerical studies at the NASA Langley Research Center (see [4],[5] and references
therein), particularly in the context of smart material technology.

The mathematical challenge in this problem stems from the fact that we are dealing with a system
comprised of coupled hyperbolic and “parabolic-like” equations, where the coupling takes place on
the boundary through appropriate trace operators. It will be shown below that these couplings
are modelled by unbounded and unclosable operators. As a result, many interesting—and mostly
open-issues arise, including those of controllability, stabilizability, and optimal boundary control.

Of additional mathematical interest here is that the available theories in the literature which
pertain to boundary control (see [6] and [13]) are not applicable for the problem as these works rely
heavily on the system being of either hyperbolic or parabolic character. Most recently, the authors
were able to develop an optimal control theory for this model (with « = 0), relying heavily on the
“sharp” trace regularity of hyperbolic solutions in combination with the propagation of smoothing
effects associated with a structurally damped plate (see [2]).

The aim of this paper is to address issues regarding the boundary stability of (1)—-(2). As it will be
shown below, the given model corresponds to a contractive semigroup for a > 0, with the energy of
the system consequently being nondecreasing. Moreover, we prove that if & > 0, the corresponding
system exhibits the property of strong stability. This result is optimal, since it is known that uniform
(exponential) stability cannot be achieved with only a small portion of the boundary subjected to
damping (even if @ > 0); in our case, the active I'g can be an arbitrarily small subportion of the
boundary T'.

Finally, we note that the main technical difficulty associated with our strong stability problem
is the lack of compactness of the resolvent. For this reason, the usual approaches via Nagy—-Foias
theory and the LaSalle Invariance Principle are inappropriate. To cope with this complication, we
will resort to a powerful and very interesting semigroup result due to Arendt-Batty (also proved
independently in [14]), and due to this result, our task here will boil down to eliminating all three
parts of the spectrum (of the generator) from the imaginary axis.

1.2 Preliminaries

In dealing with (1)—(2), we will find it useful to work with an associated abstract evolution equation
for which we will need the following facts and definitions:
= 0} . (4)
To

Note that A is self-adjoint, positive definite, and hence the fractional powers of A are well defined.

e Let the operator 4 : L2(Q) D D(A) — L%(Q) be defined by

0z
" Ov

Az = —Az, D(A) = {Z $Az € LX(Q); 2y, =0

¢ By [10], we have the following characterization:

D(A%) = H%‘\FO(Q) ={zeH(Q)>z=00n T\To},

(5)
1 2 1
with ||znj)(A%) = l]Aa = [,|Vz[’dQ = ”Z”if;\ro(n)v z € D(A%),

L*(Q)

where the last equality in (5) follows from Poincaré’s inequality.



o We define the map N by

Az=0 on §2

Z:Ng<=> ZIF\FOZO OnF\Fo

elliptic theory will then yield that

N € L(L*(Ty), D(AT™)) Ve > 0.

e Let y: HY(Q) — Hz () be the restriction to I’y of the familiar Sobolev trace map; viz.

zlpp, onT
Vze HYQ),v(z) = { 0 Ir on l"o\ To.

Then as is shown in [17], we have
N*A =y(z) Vz e D(A3),
where N* is the adjoint of N : L?(T') — L%(Q).
o Weset A : L2(Tg) D D(A) — L*(To) to be
A = A%, D(A) = H(To) N HE(To);
A is also self-adjoint, positive definite, again by [10] we have the characterization

D(A%)=H{*(To), 0<6< 3,

. 1 2
with "Aiv

2 2 1
L2(To) = ng |Av| dQ) = ”v”Hg(I‘O) Vv e D(Az)

o We define the energy spaces
Hy = D(A%) x L*(Q);
Ho = D(A%) x L(Ty).
o We define A; : H; D D(A;1) — H; and Ao : Ho 2 D(Ao) — Hop to be

_[o I
A = [ -A —aANN*A

D(4) = {[zl,zz]T € [D(A%)]2 3 z14+aNN*Az € D(A)}

(again, with parameter a > 0);

] with

Ag = [ _‘Ig _1{] with
D(Ao) = {[vl,vgf € [D(A%)r Sv+v€ D(A)}.

(6)

)

(8)

)

(10)

(11)

(12)
(13)

(14)

(15)



With the above operator definitions, we set

Ay
A= with
g—&A Aq (16)
D(A) = {[zl,ZQ,v,vz]T c [.D(A%)]2 5 [D(A%)]2

such that — z; — aNN*Azy + Nvy € D(A) and vy + v3 € D(A)} .

If we take the initial data [2°, 2!,v% v']T to be in H; x Ho (as defined in (12)-(13)), we can use
the definitions above to rewrite (1)-(2) abstractly as

z

d Zt o i

alv| =4 7] an
Uy

[2(0), z(0), v(0), v, (0))]" = [° 2", 0°, v!]7.

Remark 1 The structure of A, given in (16), clearly reflects the coupled nature of this particular
system; The operator Ay which models hyperbolic dynamics is linked via an unbounded coupling
with the “elastic” operator Ay which exhibits parabolic characteristics, and where the coupling is
accomplished by the “trace” operators C and C*.

We show below that 4 generates a Cp—semigroup of contractions {e"“} - which establishes

the well-posedness of the system (17), and our study of the energy decay of the system (1)—(2) will
thus be tantamount to investigating the question of strong stability of {e"”}oo; that is, does

: e e
m“e“[%]qov[%]emxm?

t — oo

1.3 Literature

There is a large quantity of recent results in regards to the well-posedness and stability of the
individual components A; and Ao of the dynamics A. [15], [16], [17], and [18] all give results
pertaining to the existence and uniqueness and/or strong stability of the wave equation modelled
by A; (with a > 0 only). Also, for the wave equation modeled by this same operator, 7], [11] and
[17) show the uniform stabilization of solutions, under suitable geometric conditions on the region
Q. The main results pertaining to the operator Ay are those provided by [8], which include the
information that Ag generates an analytic semigroup, which subsequently gives the well-posedness
and exponential decay on H; X Hy for solutions of

vge = =A% — A?v; on (0,00) x T'g

o(t) = v(t) = 6;5}” = ag(vt) =0 on 0T

[U(O),’Ut(O)]T = [UO’UI]T = HO-

Our main result will reveal that stability properties generated by the analytic part of the system
(Ap) is passed onto the entire structure A, even though the hyperbolic part A; may be unstable (as

is the case when a = 0).



We note here that the techniques used in proving the strong stability of the individual components
A; (with o > 0) and Ap are not applicable for the present task at hand. Indeed, in [17], the Nagy-
Foias-Fogel decomposition is used to show the weak stability of the semigroup {e4:*} >0 » and its
strong stability follows from the fact that A; has compact resolvent. An analogous argument for
our operator A is not available, as for A € p(A), (A —.A)~! is not compact. Also, as we have said
above, uniform stability for Ay follows automatically from the discovery that Ay generates analytic
dynamics; A, as it stands here, is not an analytic generator; it is a coupling of hyperbolic and
parabolic dynamics.

1.4 Statement of Main Results

Theorem 1 A given by (16) generates a Co—semigroup of contractions
{eAt}»o on the energy space Hy x Hy.

Theorem 2 The semigroup {e““}t>0 is strongly stable; that is,

T
V [2°21,0%, 0] € Hy x Hy, one has

lim
e.At

t— o0 ; (18)

< S NN
= O = O
o

consequently from (3), E(Z, v ,t) — 0 as t — oo.

Remark 2 Theorem 1.2 reveals that the coupled system is strongly stable, even in the absence of
the “damping ” boundary term z, in (1) (corresponding to o = 0).

The proof for strong stability here depends upon showing that certain spectral conditions are
satisfied which will allow for the application of the following intrinsically interesting result quoted
here from the authors in [1]:

Stability Theorem. Let X be reflexive. Assume that the Co—semigroup {T(t)},s, generated by a
linear operator L is bounded and no eigenvalue of L lies on the imaginary azis. If o(L) N iR is
countable, then {T'(t)},s, is strongly stable.

From Theorem 1.1, ||eA‘H < 1Vt, and so to prove Theorem 1.2, it will suffice to show that
O'(A) NiR = 0.

Remark 3 Our result/proof applies to a more general model than (1)-(2), by allowing (2) to be
replaced by any structurally damped problem

Vit + Av + APv, — 2, = 0,

where A is self-adjoint, positive definite, and p > 1/2. Thus other beam and plate models, as well
as those of shells, can be considered here.

Remark 4 The same stability result also holds for the system (1)-(2) with “pure” Neumann bound-
ary data, t.e.

0

a—i:OonF\I‘o,

0z

é;+az¢+ﬂz:v¢ on I'o, B € R\ {0}.



2 Proofs of the Main Theorems

2.1 The Proof of Theorem 1.1 (Semigroup generation)

In order to show the semigroup generation for the dynamics A, we wish to use the Lumer—Phillips
theorem, and hence we must show the maximal dissipativity of A.

The dissipativity of A is straightforward: Indeed, we have V [ 2", 7|7 € D(A),

21 21
Z2 Z2 _ Lo _
A vy ) v - (AZZ )AQZI)LQ(Q) (AZI)ZZ) s /
vy vy Hux He [D(A )] xD(A%)
—a(ANN*Azy, z3) , + (ANvy, z3)
[D(A%)] xD(A%) [D(A%)]/)(D(A%)
+(Abvy, Advy) R N LT /
[D(A%)] xD(A%)
—(A’Ug,‘Ug) =
/
[D(A%)] )(D(A%)
z1 V41
29 29 _ * 2 _ 1 )12 .
RelA| 2| | 2 = —a [N Azl 2oy, |A2v2 ey SO
1)2 1)2 HleO

and so A is dissipative.
To show the maximality of A: For A > 0, if [z1, 22, v1, vg]T € D(A) solves

21 fi

a-A| 2= 2\ e x Ho, (19)
U1 A
V2 g2

then a fortiori, (19) is equivalent to solving

Al B ] = fo+Afi+ «ANN*Afi — ANg: (20)
A v | 92+)\511+N*Af1+A91 ’

where A, is defined as

Ay =

2 * -
[ A+ A+ adANN*A AAN ] (21)

AN*A M4+ (1+ M)A
Considering its components, A, is easily seen to be an element of
1 1 1 / 1 / . . 1 1
c <D(A§) x D(A}), [D(Aa)] x [D(Aa)] ) and if Ay is D(A%) x D(A%)-
1 / 1 / 1 1 . .
—elliptic, then its inverse A3 € £ ([D(Ai)] x [D(AE)] ,D(A?) x D(Az)) will exist from Lax—

1 / 1 /
Milgram; and as the RHS of (20) is in the dual [D(Ai)] X [D(AE)] , we can solve for z; and



v1, and subsequently for z; and v, (after using the relations given by (19)), hence establishing the

maximality of A. In fact, letting (-, -) denote the pairing between D(A3) x D(A %) and its dual, we
have from (21) that ¥ [2,v] € D(A?) x D(A%),

(1D

+||A}2'z

2
. 402
L) + aX||N*Az||L2(p,)

—/\(ANv,z)[ + A(N"Az,v) par)

D(A%)]/xD(A%)

1 2
N7 [oll3 gy + (14 3) | A 20

L2(To)

> o) (12113, 1, + ol g8, ) 5

i.e. Ay is coercive. As mentioned above, the maximality of A is consequently deduced, and so

by Lumer—Phillips A generates a Co—semigroup of contractions {e4*} _ .

2.2 The Proof of Theorem 1.2 (Strong Stability)
In proving Theorem 1.2, we will have need of the following two lemmas.

Lemma 1 With A as defined in (16), the (Hilbert space) adjoint A* is given to be

0 -1 0 0
4e_| A —wANN*A 0 AN
=l o 0 0o -1 |

0 N*A A -A
with D(A") = {[z122, 01, v2]" € D(4}) x D(4}) x D(A}) x D(A)
such that z; — aNN*Azy — Nvy € D(A) and vy — v; € D(A)} .

Proof: If we denote S to be
s = {l1,25,01, 03" € D(4¥) x D(4}) x D(A}) x D(A%)
such that ¥ — « NN*Az} — Nvj € D(A) and v] —v5 € D(A)},



T
then, V [ 7, T’]T € D(A), [z* , F] € S, we have

FLED, .-

1 1
(22, Az} A2z1,A2z§)

L ()

)D(A%)x [D(A%)]/ B (

—a (22, ANN*Az})

+ ,N*A * 2
D(A%)X[D(A%)]/ (v2 %) L2(ry)
+ (vq, Av? — (29, ANV}
vz 1>D(A%)X[D(A%)]/ (2 2)D(A’s)x [D(A%)]/
— (A% ,A%v* — (v, Av
( ! 2)[,:4(1‘0) (v2 2>D(A%)x [D(A%)]/
z =
(=145 ),
Hl)(Ho
0 -I 0 0
beno | A —GANN*A 0 —AN
v R =10 0 0 -I
0 N*A A -A
Hence S C D(A*) and A*|g = A. (23)

To show the opposite containment, we can straightforwardly calculate the inverse of .4, and
subsequently that of A* (as A is closed) to have

—-aNN*A A"! —-N 0
-1 0 0 0

sy—1 _ —1\* _
(A ) - (‘A ) - A—IN*A 0 -1 A-l (24)
0 0 -I 0
= =T
So if arbitrary [z , v ] € D(A*) satisfies
—= —
2] f
then upon applying (A*)H1 to (25), we have equivalently that
2t = —aNN*Afy + A~1f, — Ng, € D(A?%)
2= —f € D(A})
(26)

”U’{ = A_IN*Afl — 01 +A_1gz € D(A%)

v3 = —g1 € D(A3).

Further, using the relations (26), we have that z; —a N N*Azj—Nvj € D(A) and v;—v} € D (A),
and from (23) we conclude that D(A*) = S and A* = A.



Lemma 2 V r,£ € R with & # 0, the operator K¢(r) € L (D(A%) X D(A%)> , defined by

Ke(r) = [ I 0 ] [ iarNN*A —r2A-1  —¢irN ] 7

0 (14inI girA-1N*A 2R (27)
1s boundedy invertible.

Proof: It will suffice here to consider » # 0, as the result is trivial for » = 0. From ellip-
tic theory, A-% and A~ %are compact operators on L?(Q) and L%(To) respectively, and as N €

L (LZ(I‘O), H%(Q)) with the inclusion H3(Q) < H(Q) being compact (see [12]), we then deduce
(by noting its components and subsequently applying the trace theorem together with (9)) that
iarNN*A —r2A~1 —¢irN }

Rf(r) = [ fi’l‘A_lN*A —_p2R-1 (28)

is a compact operator on D(A%) x D(A7); so by the Fredholm Alternative Theorem, we can deduce
the asserted invertibility if K¢(r) is injective. Indeed, if [2,v]T € D(A%) x D(A Psatisfies

z
k)| 2] =0 (29)
then necessarily

z+4iarNN*Az —r?A~1z —¢irNv =0 30
EirA-IN*Az +v+irv—r2A-1v = 0. (30)

1,1/ 1/
Taking the duality pairing in (30) with respect to the elements [Az, Av]T € [D(AE)] X [D(Aa)]
yields

1
"A5z

+iar ||N*Azl[Larg) — 2 |2llzaqy — §ir(N=A2,0) ar,y = 0

2
L2(9) 9

. (31)
§ir (N*Az,v) par,) + ”Aiv

. 1 2
+r Asy
L%(To)

2 2 —
Lo(Te) = ||vl|Laqryy =0

(where in (31) (u,w) = [ uw). Adding the two equations in (31) induces a cancellation of imaginary
parts which yields that Ay =0;s0 by (11) v = 0. This in turn, from the use of the second equation

in (30) and (9), provides that z|p = 0. Thus, z satisfies

Az=r%z in Q

Oz . .
— = tarzly, —€&irv =0
ov | vy =€

0

zlp =05
consequently, by Holmgren’s uniqueness theorem, z = 0 which concludes the proof.

As we said at the end of Section 1, we wish to satisy the conditions of Arendt-Batty’s Stability
Theorem; as we are dealing with a contraction semigroup, we need only show that o(A4) NiR =

0.

Throughout, we will denote o.(.A) as the continuous spectrum of A, op(A) as its discrete spec-
trum, and o, (A) as its residual spectrum; hence o(A) = g.(A) Uop(A) U o,(A), with the three sets
being disjoint. We now proceed to show that iR\ {0} does not intersect with any of these sets (we
previously noted that A~ exists, so 0 ¢ o(A)).



2.2.1 Show o,(A)NiR=10

With A as given in (16), if for » € R and r # 0, there exists [21, 29, v1,v2)" = [Z, 7] € D(A)

such that
z i
(3)-+[3]
this then is equivalent to
29 = irzl

Vg = 1PV

21 +iarNN*Azy —irNvy — 24712, = 0

irA"IN*Az + vy + irvy — r2A-1y; = 0
L
=

Ky(r) [ ii ] =0,

(32)

(33)

(34)

where K;(r) is as defined in (27). From Lemma 2.2, we then have z; = 0, and v; = 0, and

consequently from (33) [Z", ] = 0, and so ¢,(A) NiR = 0.

2.2.2 Show o,(A)NiR=10

We will use the fact here that if A € C is in the residual spectrum of A, then X is in the discrete

be
0 -I 0 0
A = A —aANN*A 0 —-AN
10 0 0 -I

0 N*A A -A
. * T 1 2 1 2
with D(A*) = {[zl,z2,v1,v2] € [D(Ae)] x [D(A2)]
such that z; —aNN*Azy — Nvs € D(A) and v; — vy € D(A)} .

So with r € R and r # 0, if there exists [Z, T’]T € D(A*) such that

A*[Z]:ir[—i],
v v

10

spectrum of A* (see [9],p.127). We recall from Lemma 2.1 that the adjoint A* was computed to

(35)



this is then equivalent to
—29 = irzy
—vg = 1TV

21 +iarNN*Azy +irNvy —r2A~ 12, =0

—irA-IN*Az; + vy + irvy — r2A-1y; = 0

\

=

. ] » (36)

U1

ki) |

where again, K_;(r) is defined by (27). Another application of Lemma 2.2, this time to (36),
results in [, )7 = 0; thus o,(A) N iR = 0.

2.2.3 Show o (A)NiR =10

T
For arbitrary [?, ?] € Hy x Hy, suppose [ 2, 7]7 € D(A) solves the equation

wn[Z]-[2] -

g

or

irzy —zy= fi in D(A%)
irzg + Azy + tANN*Azy — ANvy = fo  in L%(Q)
(38)
irvy —vg = in D(A%)
irvg + N*Azy + Avy + Avg = g9 in L?(To)
(again with » € R and r # 0). Defining the operator F as
_[irA"'4+aNN*A A! _N 0
F= [ A-IN"4 0 rA-l41 A1) (39)

we have from the trace theorem and (9) that F€ L(H; x Ho, D(A%) x D(A%)); subsequently, (27),
Lemma 2.2 and (39) provide that the solution [, )7 of (38) satisfies

[ f}i ] =K,(r)"'F [ _; ] in D(A%) x D(A%)
—zy = f —irzy in D(A?%) (40)
—vy = g1 — 1rY; in D(A%)‘

T
Conversely, the solution [Z, T’]T of (40) for arbitrary [?,7’] € Hi x Hy will a fortiori have

(upon application of Ki(r)) and the use of the second and fourth equations of (38)) that z; +

11



aNN*Azy— Nvy € D(A) and v; +v2 € D(A). With the equivalence of the equations (37) and (40),
and consideration of the fact that if A € C is in the continuous spectrum of A, then A — X does not
have a closed range (see [9], p.128), we deduce that o.(A4) NiR = 0.

Having thus found that iR C p(A), we conclude the proof of Theorem 1.2 by applying the
Stability Theorem of Arendt-Batty.
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