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Abstract. In this paper, we provide results concerning the optimal feedback control of a

system of partial di�erential equations which arises within the context of modelling a partic-

ular 
uid/structure interaction system seen in structural acoustics, this application being the
primary motivation for our work. This model onsists of two coupled PDE's exhibiting para-

bolic and hyperbolic characteristics respectively; the control action, in this case, is modelled

by a highly unbounded operator. We rigorously justify a optimal control theory or this class
of problems and characterize the optimal control through a suitable Riccati Equation. This

is achieved, in part, by exploiting recent techniques in the area of optimization of analytic

systems with unbounded inputs, along with a local microanalysis of the hyperbolic part of
the dynamics, an analysis which will consider the propagation of singularities and optimal

\trace" behavior of the solutions.

1. Introduction

1.1. Motivation. Let 
 be a bounded domain in R2 with Lipschitz boundary �; �0 a

Lipschitz segment of � with endpoints a and b, and [s; T ] some interval with 0 � s < T .

We consider the following problem (see [1],[2]) which requires that we �nd functions z(t; x)

and v(t; x), corresponding to a �xed u(t) 2 U; U � Rk , which solve the following system

consisting of a coupled wave equation and elastic beam-like equation:

ztt = �z on 
� (s; T ); (1.1a)

@z

@�
=

�
vt on �0 � (s; T )

0 on � n �0 � (s; T )
; (1.1b)

vtt = ��2v ��2vt � zt + Bu on �0 � (s; T ); (1.1c)

v(a; t) = v(b; t) =
@v(a; t)

@x
=

@v(b; t)

@x
= 0; 8 t 2 (s; T ); (1.1d)8<

:
z(s; x) = z0; v(s; x) = v0

zt(s; x) = z1; vt(s; x) = v1

; (1.1e)
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here B 2 L (U;H��(�0)), where � will be speci�ed throughout to be

� �
7

4
when 
 is rectangular;

and � �
5

3
for 
 an arbitrary smooth domain.

(1.1f)

We will be looking for a triple [z�; v�; u�]T , which solves (1.1) and which minimizes a given

performance index. Our main interest, however, is a feedback realization of the resulting

optimal control via a solution of an appropriate Riccati equation.

In the special case when the 
 is rectangular and the operator B is of the form B =
rX
i=1

�i�
0(xi), where �

0(xi) are derivatives of delta functions evaluated at \xi", the model (1.1)

was considered in [1]. The physical interpretation for this particular structure of the control

operator is that its control action is realized by the strategic placement of piezoelectric ceramic

patches on the (
exible) boundary �0; a voltage is subsequently applied through these patches

and the resulting bending moments can be interpreted as second derivatives of Heaviside

functions. Note that the control operator is highly unbounded and de�ned only through

distribution theory. This is, in fact, the main di�culty of the problem which was fully

recognized in [26], wherein the analysis culminated in the existence and uniqueness of the

solution [z; v]T of (1.1) (for �xed u) de�ned only in the sense of distributions. Our main goal

here to show the well{posedness of (1.1) in this fully unbounded case within a given state

space, i.e. [z; v]T may be taken as (continuous) functions; moreover, we wish to provide a

rigorous theory of feedback control characterized by a solution P to the Di�erential Riccati

Equation, and in particular to reveal smoothing properties of the resulting gain operator B�P

(despite the inherent unboundedness of B�).

To accomplish our goal, we shall consider a more general version of this problem formulated

within an abstract di�erential equation; the result will then derived for a broader class of

problems whereby problem (1.1) will be deduced as a special case.

It should be noted that the key elements of our analysis rely on: (i) sharp new regularity

properties of the traces of the hyperbolic part of the dynamics (eqn. (1.1a)); (ii) the theory

of analytic semigroups and associated singular integrals which takes advantage of certain

smoothing e�ects associated with the analytic part of dynamics (eqn. (1.1c)); and �nally, (iii)

recent results on the characterization of domains of fractional powers of the so{called elastic

operators which in turn, allows for a crucial interplay between functional analytical and p.d.e.

results.

1.2. Abstract Formulation. We wish to recast (1.1) into an appropriate functional ana-

lytical form for which we need the following facts and de�nitions:

(i) We set A = ��+ I , acting on L2(
) with

D(A) =

�
z 2 H2(
) 3

@u

@�
= 0 on �

�
; (1.2)

It is well known that A is self-adjoint and positive de�nite, so fractional powers are

well-de�ned.
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(ii) With A as above, we also have from [11] that

D(A�) = H2�(
); 0 � � �
3

4
; (1.3)

(iii) We shall consequently use the identi�cation of D
�
A

1
2

�
with H1(
) throughout. In the

sequel we shall also consider A as a continuous mapping of D
�
A

1
2

�
into its topological

dual
h
D
�
A

1
2

�i0
, and we denote this new realization by the same symbol.

(iv) Using (iii) we can then de�ne the (Neumann) map N on Hs(�) by setting

Ng � z 8 g 2 Hs(�) and s � �
1
2
, where z is the unique solution of the equation

hAz; vi
[D(A

1
2 )]0�D(A

1
2 )

=

Z



rz � rv +

Z



zv = hg; viHs(�)�[Hs(�)]0 (1.4)

8 v 2 D
�
A

1
2

�
. By elliptic regularity (see [4]), we will then have that

N 2 L

�
Hs(�); Hs+ 3

2 (
)
�
: (1.5)

(v) 
0 : H
1(
)! H

1
2 (�) will denote the usual Sobolev trace map, and 
 : H1(
)! H

1
2 (�0)

will be de�ned as the restriction of H
1
2 (�) (the range of 
0) to �0, i.e.


(v) = vj�0 ; 8 v 2 H1(
): (1.6)

Thus we will have from (1.5) that 8 g 2 L2(�0) and v 2 D
�
A

1
2

�
,

hANg; vi
[D(A

1
2 )]0�D(A

1
2 )

= (g; vj�0)L2(�0)
; (1.7)

i.e.,


 = N�A as elements in L
�
D
�
A

1
2

�
; L2(�0)

�
: (1.8)

(vi) We set

�A = �2; D(�A) = H4(�0) \H2
0 (�0); (1.9)

�A is also self-adjoint and positive de�nite on L2(�0), so fractional powers are well-

de�ned. By [11] we have

D(�A
�
) = H4�

0 (�0); 0 � � <
5

8
; (1.10)

(vii)

A1 �

�
0 I

�A + I 0

�
: D(A1)! H1 with

D(A1) =
n
[z1; z2]

T
2 D(A)�D

�
A

1
2

�o
;

H1 � D
�
A

1
2

�
� L2(
) = H1(
)� L2(
):

(1:11a)

(1:11b)

(1:11c)
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(viii)

A0 �

�
0 I

��A ��A

�
: D(A0)! H0 with

D(A0) =

(
[v1; v2]

T
2

�
D

�
�A

1
2

��2
3 v1 + v2 2 D

�
�A
�)

;

H0 � D

�
�A

1
2

�
� L2(�0) = H2

0(�0)� L2(�0):

(1:12a)

(1:12b)

(1:12c)

(ix)

C =

�
0 0

0 
�

�
2 L

�
H0;

h
D
�
A

1
2

�i0
�

h
D
�
A

1
2

�i0�
(1.13a)

(note that 
� = AN); by duality with respect to H1 �H0, we then have

C� =

�
0 0

0 N�A

�
2 L

�
[D
�
A

1
2

�
�D

�
A

1
2

�
; H�

0)
�
: (1.13b)

(x)

A �

�
A1 C

�C� A0

�
;A : D(A) 7! H1 �H0 where

D(A) =

�
[z1; z2; v1; v2]

T
2

h
D
�
A

1
2

�i2
�

�
D

�
�A

1
2

��2
such that

� z1 +Nv2 2 D(A) and such that v1 + v2 2 D
�
�A
��

:

(1:14a)

(1:14b)

(xi)

B = [0; 0; 0;B]T 2 L

�
U;H1 �D

�
�A

1
2

�
�H��(�0)

�
: (1:14c)

From (1.14a{c), we can proceed to show a fortiori that

(��A)�1B 2 L(U;H1 �H0) and consequently

B 2 L(U; [D(A�)]0): (1:14d)

So setting Y � [z; zt; v; vt]
T and Y0 � [z0; z1; v0; v1]

T , we can then use (1.10) and the operator

de�nitions above to rewrite (1.1) as the abstract dynamical system

dY

dt
= AY + Bu in [D (A�)]

0
; (1.15a)

Y (s) = Y0 2 H1 �H0: (1.15b)

Henceforth our attention is drawn toward solving (1.15).

Along with the abstract equation (1.15), we associate a quadratic functional

Js(Y; u) =
1

2

Z T

s

h
kRY (t)k2Z + ku(t)k2U

i
dt; (1.16)
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where Z is some Hilbert space and R 2 L(H1�H0; Z) (WLOG we can take Z to be self-dual).

The optimal control problem associated to (1.15) is then de�ned as: Find

[
*
z
�
( � ; s; Y0);

*
v
�
( � ; s; Y0); u

�( � ; s; Y0)]
T

= [Y �( � ; s; Y0); u
�( � ; s; Y0)]

T
2 L2(s; T ;H1�H0)� L2(s; T ;U)

which minimizes (1.16) over all [
*
z ;

*
v ; u]T = [Y; u]T which solves (1.15), where the control

operator B is linear, bounded: U ! H1 �D

�
�A

1
2

�
�

h
D
�
�A

�
4

�i0
, (from the characterization

(1.10)).

1.3. Literature. Problems related to feedback control and Riccati equations for the case

of unbounded control actions have received considerable attention in the past. In fact, con-

trol problems described by analytic semigroups with fully unbounded control operators B

have a most comprehensive treatment in the literature (see [9],[16]). Also, in the case of

hyperbolic problems with a trace-type assumption imposed upon the control operator B, it

has been shown that the Algebraic Riccati Equation is solvable with the gain operator usu-

ally unbounded albeit densely de�ned (see [7],[10],[24]). The hyperbolicity of the p.d.e. is

critical in the analysis of the gains, the boundedness of which can be achieved under addi-

tional smoothing{type hypotheses imposed upon the observation R (as in [7],[3] and references

therein). Needless to say, our problem here does not fall into any of these categories; more

importantly, the techniques developed in these cited works are not readily adaptable to the

present situation. The reasons we cannot appeal to the earlier theory are threefold:

(i) Our problem consists of coupled hyperbolic/\parabolic{like" equations with an un-

bounded control operator; thus techniques developed speci�cally for parabolic or hy-

perbolic cases are no longer applicable.

(ii) The coupling between the two dynamics is represented by an unbounded (trace{type)
operator. This is a source of major di�culties in the treatment.

(iii) The observation R is not assumed here to be smoothing, and thus there is no bene�t of

an additional regularity resulting from optimization (unlike the other treatments noted

above).

In view of the above, new techniques dealing with the novel facets of the problem need to

be developed. We note that sharp regularity of hyperbolic traces (which was necessarily

studied by the authors) plays an absolutely major role. In fact, our �nal result, asserting

the solvability of the Riccati Equation with the implementation of a bounded gain operator,

clearly indicates an interplay between the degree of unboundedness of B which can be allowed

in the problem and the geometry of the domain which dictates the regularity of the traces

(see Theorem 1.2).

1.4. Statement of Main Results. With reference to the control system described by

(i) the abstract evolution equation (1.15) with A and B as given by (1.14);

(ii) the associated performance index (1.16);

the following results hold true with � as speci�ed in (1.1f):

Theorem 1.1. For all prescribed initial data Y0 2 H1 �H0, there exists a unique optimal

control and trajectory

u�( � ; s; Y0) 2 L2(s; T ;U); (1:17a)
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Y �( � ; s; Y0) 2 C([s; T ];H1�H0): (1:17b)

Moreover, the following (additional) regularity holds true:

u�( � ; s; Y0) 2 C([s; T ];U);

Y �( � ; s; Y0) 2 C(([s; T ];H1�H0) \ L2

 
s; T ;H1�

�
D

�
�A

1
2

��2! (1:18a)

(1:18b)

with continuous dependence on the data Y0 (see Remark 2.4).

Theorem 1.2.

(i) There exists a self-adjoint, positive semide�nite operator P (t),

P ( � ) 2 L(H1 �H0; C([0; T ];H
�
1 �H�

0)) (1.19)

(see Proposition 3.2).

(ii) 8 t; 0 � t � T; B�P (t) 2 L(H1 �H0; U) with norm estimate

kB
�P (t)kL(H�

1
�H�

0
;U) � CT (T � t)1�� (1.20)

where � = �
4
(see Proposition 3.1.3(i)).

(iii) The minimum of the functional Js de�ned in (1.16), corresponding to the minimizer

[Y �( � ; s; Y0); u
�( � ; s; Y0)]

T , is

Js(Y
�( � ; s; Y0); u

�( � ; s; Y0)) = hP (t)Y0; Y0i; (1.21)

where h � ; � i denotes the duality pairing with respect to the H1 � H0-topology. See

Proposition 3.1.4(iii).

(iv) For each Y0 2 H1 �H0 the optimal control u�( � ; s; Y0) is given in feedback form by

u�(t; s; Y0) = �B
�P (t)Y �(t; s; Y0); 0 � s � t � T (1.22)

(see Proposition 3.1.3(ii)).

(v) For 0 < t < T; P (t) satis�es the following Di�erential Riccati Equation (DRE) 8 Y0; Y1 2

D(A):

h _P (t)Y0; Y1i = �hR�RY0; Y1i � hP (t)AY0; Y1i

�hP (t)Y0;AY1i+ (B�P (t)Y0;B
�P (t)Y1)U (1.23)

(see Lemma 3.2.2(i)).

(vi) The solution is unique within the class of self-adjoint P̂ (t) 2 L(H1 � H0) such that

8 Y 2 H1 �H0,

B
�P̂ (t)Y 2 L1(0; T ;U) (1.24)

(see Lemma 3.2.2(ii)).

Remarks 1.1. (1) Notice that time regularity of the optimal control given by (1.17a) is

not intrinsic to PDE optimization problems with an unbounded control operator B|it is an

independent regularity result. In fact, one typically does not have continuity of the optimal

controls. In our particular case, this enhanced regularity is a result of a smoothing e�ect of

the analytic part of dynamics which is propagated onto the entire system in some sense to be

made clear presently.
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(2) The key result behind the derivation of the Riccati Equation, in the general case of an

unbounded operator B, is the regularity of the gain operator B�P (t) (which appears in the

quadratic term of the equation). In our present situation, it is shown (see Theorem 1.2(ii))
that the gain operator B�P (t) is bounded, despite the unboundedness of B (and consequently

B
�).

(3) It is well known that in a purely hyperbolic case (with unbounded B), the gain op-

erators are intrinsically unbounded. What explains the regularity result Theorem 1.2(ii), in

our particular case, is again, some propagation of regularity from the analytic part of the

dynamics. This is probably the most technical part of the proof which requires an in depth

\microlocal" analysis of traces to hyperbolic operators.

Remark 1.2. We notice that the problem considered in [1] is a special case of our more

general setup where 
 is a rectangle,

Bu =
kX
i=1

�0(xi)ui; xi 2 �0; ui 2 R; 8 i:

By the Sobolev Imbedding Theorem, �0(xi) 2 H� 3
2
��(�0); so the value of � = 3

2
+ � < 5

3
, and

hence this particular unbounded input �ts within the framework of our problem.

2. Analysis of Open Loop Dynamics

In this section we shall prove several properties related to the well-posedness of the open

loop control system. These will be critical for the study of feedback control.

By appealing to [23], we have the following result regarding the dynamics generated by A,

and the consequent wellposedness of (1.1) in a weak sense.

Theorem 2.1. The operator A given by (1.14a-b) with A0; A1, and C described by (1.11){

(1.13) generates a strongly continuous semigroup on the Hilbert space H1 �H0.

2.1. The Control ! State Map. The main goal of this section is to establish the regularity

of the control ! state map. That is to say that we will consider the map u! Y de�ned via

the dynamical system (1.15) as

Y (t) = eAtY0 +

Z t

0

eA(t��)
Bu(�)d� (2.1)

(WLOG we take the initial time s = 0). Since A generates a C0 semigroup on H1 �H0 and

B : U ! [D(A�)]0, the map L de�ned by

Lu(t) =

Z t

0
eA(t��)

Bu(�)d� 2 L(L2(0; T ;U); C([0; T ]; [D(A�)]0): (2.2)

However, the above a priori regularity is not su�cient for the subsequent analysis. We need

more information concerning the \smoothing" properties of L. In fact, the main goal of this

section, is to prove that

Lemma 2.1. L 2 L(L2(0; T ;U); C([0; T ];H1�H0)).

Remark 2.0. The result of Lemma 2.1 should be contrasted with that of [24] which shows

that the operator L is de�ned as a mapping into a space of distributions.
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The proof of Lemma 2.1 follows through a sequence of propositions. A critical role is played

by the following results:

Theorem 2.A (see [6],[7]). Let A0 be de�ned as in (1.12); then

(i) A0 generates a C0-semigroup of contractions
n
eA0( � )

o
which is also analytic on H0 and

�(A0) � f� 3 Re � � 0g.

(ii) Moreover, for 0 � � � 1
2
we have the following characterization of the fractional powers

of (�A0)
�:

D((�A0)
�) = D

�
�A

1
2

�
�D

�
�A
�
�
: (2.3)

(iii) The map

eA0( � ) 2 L

 
H0; (L

2(0; T ;

�
D

�
�A

1
2

��2!
: (2.4)

Remark 2.1. Note that feA0( � )gt�0 has a greater \smoothing" e�ect on intial data then

the standard results given for analytic semigroups (see [12], p.295).

The next theorem pertains to the regularity of solutions of the Neumann problem with

given Dirichlet boundary data (the so{called Neumann{ Dirichlet map); this result will be

used in the work ahead.

Theorem 2.B. Let z be a weak solution to the following Neumann BVP:

ztt = �z in 
� (0; T );

@z

@�
= g 2 L2

�
0; T ;H4�(�)

�
; with � � 4� <

1

2
;

z(0) = zt(0) = 0

(where � = 1
4
if 
 is rectangular, and � = 1

3
in the general case of a smooth boundary �).

Then we have that

[z; zt; ztj�]
T
2 C

�
[0; T ];H1(
)

�
� C

�
[0; T ];L2(
)

�
� L2

�
0; T ;H�4�(�)

�
;

with continuous dependence on the datum g; viz. 8 t 2 [0; T ] 9 C (independent of t), such

that

kz(t)k2H1(
) + kzt(t)k
2
L2(
) +

Z T

0

kzt(s)k
2
H�4�(�)

ds � Ckgk2
L2(0;T ;H4�(�))

:

Remark 2.2. Theorem 2.B, in the case of rectangular domains was proved in [1]. In the

case of \smooth" boundaries, the result of Theorem 2.B follows from techniques used in [15].

Remark 2.3. Notice that the result of Theorem 2.B states \sharp" regularity results for

the Neumann-Dirichlet map which do not follow from standard PDE theory. In fact, the

standard estimates (see [17]) require that g 2 H
1
2
; 1
2 ((0; T )� �) in order to obtain only that

z 2 C([0; T ];H1(
)). Thus, our result improves the regularity by a 1
2
� 4� derivative in space

and a 1
2
derivative in time. More recent and re�ned PDE estimates such as in [19] with initial

8



datum g 2 L2
�
0; T ;H

1
2 (�)

�
produce z 2 C([0; T ];H1(
)) and zt 2 C([0; T ];L2(
)). Our

result in [1] still betters that of Myatake's by a 1
2
� 4� space derivative (to obtain the same

state regularity and, more importantly, by allowing for the \trace" ztj� to be de�ned in an

appropriate negative Sobolev space. These above improvements for the Neumann-Dirichlet

map are indispensable for the following analysis.

As B 2 L(U; [D(A�)]0), then eAtB is well de�ned as an element of [D(A�)]0. Our main task

now is to show that for t > 0, eAtB may actually be taken as an element of L(U;H1 �H0).

Proposition 2.2.1.

(i) Let � satisfy � � � �
1
2
, where � is in the range � < � �

1
8
(where � = 1

16
if 
 is

rectangular, and � = 1
12

if � is a smooth arbitrary boundary), and de�ne the map K0 by

having for every
*
v2 L2(0; T ;D((�A0)

�),

K0

*
v (t) =

Z t

0

eA0(t�s)C�
Z s

0

eA1(s��)Cv(�)d� ds; (2.5)

then K0 2 L(L
2(0; T ;D((�A0)

�)).

(ii) I �K0 is boundedly invertible on L2(0; T ;D((�A0)
�)). (2.6)

Proof of (i). From Theorem 2.A(i) above, we have that

D((�A0)
�) = D

�
�A

1
2

�
�D

�
�A
�
�
; (2:7a)

and from (1.10),

D(�A
�
) � D

�
�A
�
�
= H4�(�0); (2:7b)

we then note that for arbitrary
*
v= [v; vt]

T
2 L2(0; T ;D((�A0)

�)) the term�
z( � )

zt( � )

�
�

Z ( � )

0

eA1( � ��)

�
0

ANvt(�)

�
d� =

Z ( � )

0

eA1( � ��)C
*
v (�)d� (2.8)

is a fortiori (see [15]) the unique (weak) solution of the following BVP:

ztt = �z

@z

@�
=

�
vt on �0 � (0; T )

0 on � n �0 � (0; T );
; (2.9)

z(0) = zt(0) = 0:

From the given regularity of vt we consequently deduce from Theorems 2.A(i), 2.B and the

characterization (2.7b) that the map

*
z ( � )! C�

Z ( � )

0
eA1( � ��)C

*
v (�)d� =

 
0

ztj�0

!

is an element of

L(L2(0; T ;D((�A0)
�); L2

�
0; T ;

�
D(�A

1
2

�
�H�4�(�0)

�
: (2.10)

9



Now considering the inner integral of (2.5), if we de�ne j0 as the inclusion map from

H�4�(�0) into H
�2(�0) =

�
D

�
�A

1
2

��0
and set

J 1
2
=

�
0 0

0 j0

�
; (2.11)

then 8
*
v= [v; vt]

T
2 L2

�
0; T ;

�
D(�A

1
2 )

�
�H�4�(�0)

�
; we will have by the explicit repre-

sentation of (�A0)
1
2 given in [13, p.62] that

(�A0)
� 1

2J 1
2

*
v=

2
666664
�A
� 3

4

�
2I +�A

1
2

�� 1
2

j0vt

�A
� 1

4

�
2I +�A

1
2

�� 1
2

j0vt

3
777775 ;

As �A is self-adjoint we then deduce that

(�A0)
� 1

2J 1
2
2 L

��
D(�A

1
2

�
�H�4� ; H0

�
: (2.12)

Consequently, we can make use of the well-developed theory for analytic semigroups (see [13])

(after agreeing to identify j0 as simply the identity) to establish that the map

*
v ( � )!

Z ( � )

0
eA0( � �x)

*
v (�)d�

2 L

�
L2
�
0; T ; f0g�H�4�(�0)

��
; L2

�
0; T ;D

�
(�A0)

1
2

��
: (2.13)

As D
�
(�A0)

1
2

�
� D((�A0)

�); we have upon combining (2.10) and (2.13) that

K0 2 L(L
2(0; T ;D((�A0)

�)); (2.14)

and (i) is proved.
(ii): We have further that the operator norm of K0 is bounded by a constant dependent

upon time. To wit, 8 T0; 0 < T0 � T , and
*
v2 L2(0; T0;D((�A0)

�),

k(K0
*
v )kL2(0;T0;D((�A0)�))

� C0




K0

*
v




L2(0;T ;D((�A0)

1
2 ))

� CT0




C�
R ( � )
0 eA1( � ��)C

*
v (�)d�





L2(0;T0;H�4�(�0))

(by the norm estimate given in [14, p.455] and Theorem 2.B)

� CT0kvkL2(0;T0;D((�A0)�))

(2:15a)

(by (2.10)), where CT0 < 1 for T0 small enough.
10



Then for integer N we can de�ne the maps K0;J ; 1 � J � N , by having

8
*
v2 L2

��
J�1
N

�
T; J

N
T ;D((�A0)

�)
�
,

K0;J
*
v ( � ) =

Z ( � )

(J�1)T

N

eA0( � �s)C�
Z s

(J�1)T

N

eA1(s��)C
*
v (�)d� ds: (2:15b)

For N large enough we will have from (2.15a) that kK0;Jk < 1 8 J , and we can hence use re-

peated iteration with the maps K0;J to show the bijectivity of I�K0 on L
2 (0; T ;D((�A0)

�)),

and the bounded invertibility of I �K0 will follow from the Open Mapping Theorem. 2

We now use Proposition 2.2.1 to establish the crucial norm estimate which will ultimately

validate the input operator L (given in (2.2)).

Proposition 2.2.2. Let � be as speci�ed in (1.1f); then:

(i) 8 u 2 U the function eA( � )Bu is an element in

C([0; T ];H1)� L2
�
0; T ;D

�
(�A0)

1
2
��

4

��
\ (�4 )

C([0; T ];H0); (2.16)

where 8 � 2 R, �C([0; T ];H0) is the Banach space(
*
v2 C((0; T ];H0) 3 k

*
v k

�C((0;T ];H0) = sup
0<t�T

t�k
*
v (t)kH0

<1

)
:

(ii) 8 0 < t � T , eAtB 2 L(U;H1�H0); and there exists a constant �; 0 < � < 1
2
; such that

the following norm estimate is satis�ed:


eAtBu



L(U;H1�H0)

�
C0

t�
; (2.17)

where C0 is some positive constant, and in fact � � �
4
.

Proof of (i): If we consider, for �xed u, the quantity

eAtBu �

2
664

z(t)

zt(t)

v(t)

vt(t)

3
775 =

"
*
z (t)
*
v (t)

#
2 [D(A�)]0; (2.18)

then necessarily
*
z ( � ) and

*
v ( � ) satisfy the coupled system,8>>><

>>>:
ztt = �z in [D(A

1
2 )]0;

@z

@�
=

�
vt on �0 � (s; T )

0 on � n �0 � (s; T );
;

z(0) = zt(0) = 0;

8>>>><
>>>>:

vtt +�Av +�Avt = �zt in

�
D

�
�A

1
2

��0
v(0) = 0

vt(0) = Bu in

�
D

�
�A

1
2

��0
;

11



and by the uniqueness theory for ordinary di�erential equations, �nding the solution of the

above coupled system is tantamount to solving the following pair of coupled integral equations

in L2(0; T ;H1�H0):

*
z ( � ) =

Z ( � )

0

eA1( � ��)C
*
v (�)d�;

*
v ( � ) = eA0( � )

�
0

Bu

�
�

Z ( � )

0

eA0( � ��)C� *
z (�)d�:

(2:19a)

(2:19b)

Formally then, (2.19) is equivalent to solving

*
v +K0

*
v ( � ) = eA0( � )

�
0

Bu

�
; (2.20)

where K0 is as de�ned in (2.5).

Now, considering the RHS of (2.20) we have by the de�nition of B that

[0; B]T 2 L

�
U; D

�
�A

1
2

�
�H��(�0)

�
; (2.21)

and from (1.10) H�
0 (�0) = D

�
�A

�
4

�
; so we can deduce from Theorem A (i){(ii) that

eA0( � )

�
0

B

�
= (�A0)

�
4 eA0( � )(�A0)

��
4

�
0

B

�

2 L

�
U; L2

�
0; T ;D

�
(�A0)

1
2
��

4

���
: (2.22)

As 1
2
�

�
4
= �| where � = 1

16
if 
 is a rectangle, and � = 1

12
if boundary � is smooth|

we can hence apply the inverse (I +K0)
�1, the existence of which is ensured by Proposition

2.2.1, to (2.20) to obtain�
v( � )

vt( � )

�
�
*
v ( � ) = (I +K0)

�1eA0( � )

�
0

Bu

�
2 L2

�
0; T ;D

�
(�A0)

1
2
��

4

��
:

(2.23)

Going back to variable
*
z , de�ning�
z( � )

zt( � )

�
=
*
z ( � ) �

Z ( � )

0

eA1( � ��)C
*
v (�)d� (2.24)

will yield a fortiori via Theorem 2.B|which again is directly applicable here as 1
3
� 2�� < 1

2

in the case of a general smooth domain, and 1
4
� 2� � < 1

2
if 
 is a rectangle|the unique

(weak) solution of (2.19a), and consequently we have that

*
z2 C([0; T ];H1): (2.25)

In addition, as A0 is the direct sum of two normal operators (see [7], p.290), we have by the

analyticity of A0 that

K0 2 L

�
L2
�
0; T ;D

�
(�A0)

1
2
��

4

�
; C([0; T ];H0)

�
; (2:26a)

12



and we hence deduce from the integral representation of
*
v ( � ) in (2.19b) that

*
v ( � ) 2 (�4 )

C([0; T ];H0); (2:26b)

where the singularity at 0 is of course due to the presence of the unbounded operator B. So,
de�ning

eA( � )
Bu �

"
*
z ( � )
*
v ( � )

#
; (2.27)

where [
*
z ;

*
v ] solves (2.19), will yield the result in (i) via the regularity properties (2.23),

(2.25), and (2.26b).

(ii): With [
*
z ;

*
v ] as de�ned by (2.27), we use the a posteriori estimates given from the

regularity result Theorem 2.B and the inversion of the operator I �K0 to majorize

k
*
z kC([0;T ];H1)

, where
*
z is as given in (2.24); namely, we have

k
*
z kC([0;T ];H1) � C1kvtkL2(0;T ;H2��(�0))

� C2k(I +K0)
�1
k
L(L2(0;T ;D((�A0)

1
2
�
�
4 ))

�





eA0( � )

�
0
Bu

�




L2(0;T ;D(�A0)

1
2
�
�
4 ))

� C3





(�A0)
��

4

�
0

Bu

�




H0

from Theorem 2.A(ii)

� C4kukU : (2.28)

Moreover, using the representation for
*
v ( � ) in (2.19b) and Proposition (2.2.3), we obtain,

upon taking norms, the pointwise estimate (valid on (0; T ] because of the regularity given in

(2.26b)),

k
*
v (t)kH0

�





eA0t

�
0

Bu

�




H0

+ kvtkL2(0;T ;H2��(�0))
(2.29)

(after using the analyticity of A0 and the continuity of the trace map provided in Theorem

2.B)

�





eA0t

�
0

Bu

�




H0

+ C kukU : (2.30)

Moreover, we have again from the analyticity of A0 and Theorem 2.A(ii),



eA0t

�
0

Bu

�




H0

=





(�A0)
�
4 eA0t(�A0)

��
4

�
0

Bu

�




H0

�
CT

t
�
4

kukU : (2.31)

Coupling (2.28) and ((2.29){(2.30), we indeed obtain the desired estimate


eAtBu



H1�H0

�
C

t�
kukU ; (2.32)

13



where � � �
4
, and Proposition (2.2.2)(ii) is proved. 2

Proof of Lemma 2.1: This is a simple consequence of Proposition 2.2.2. Indeed, from

(2.2), we have 8 u 2 L2(0; T ;U)

kLu(t)kH1�H0
�

Z t

0




eA(t�s)
Bu(s)





H1�H0

ds

�

Z t

0

1

(t� s)
�
4

ku(s)kUds

� CTkukL2(0;T ;U); (2.33)

after using estimate (2.17) of Proposition 2.2.2(ii) which implies kLu(t)kL1(0;T ;H1�H0) �

CTkukL2(0;T ;U). The usual density argument, together with the completeness of

C([0; T ];U), proves continuity in time as asserted in Lemma 2.1. 2

In the sequel we shall need properties of the map Ls : L2(s; T ;U) ! L2(s; T ;H1 � H0)

de�ned as

(Lsu)(t) �

Z t

s

eA(t��)
Bu(�)d�; (2.34)

where s < t < T .

It is now a straightforward result{via Lemma 2.1{that the continuity of the map Ls :

L2(s; T ;U) ! C([s; T ];H1 � H0) is preserved uniformly in the parameter \s". In fact, we

have the following:

Corollary 2.2.1.

(i) The operator Ls, de�ned on U , 8 0 < s < T , given by

Lsu( � ) �

Z ( � )

s

eA( � ��)
Bu(�)d� (2.35)

is an element of L(L2(s; T ;U); C([s; T ];H1�H0) with a norm uniform in s.

(ii) The unique solution to (1.15), for �xed u 2 L2(s; T ;U), is given by"
*
z ( � )
*
v ( � )

#
� Y ( � ) = eA( � �s)Y0 + Lsu( � ) 2 C([s; T ];H1�H0): (2.36)

(iii) The adjoint operator

L�s 2 L(L
2(s; T ;H�

1 �H�
0 ); L

2(s; T ;U))

is given by

L�sŶ ( � ) =

Z T

( � )
B
�eA

�(�� � )Ŷ (�)d� = B
�
Z T

( � )
eA

�(�� � )Ŷ (�)d�: (2.37)

Proof: Given the norm estimate (2.17) the proofs of (i){(iii) are straightforward and may

be omitted. Moreover, it can readily be shown that 8 Ŷ 2 L2(s; T ;D(A�));

L�s Ŷ ( � ) = B
�
Z T

( � )
eA

�(�� � )Ŷ (�)d�;

14



so L�s can be considered as an extension by density of the operator

Ŷ ( � )! B
�
Z T

( � )
eA

�(�� � )Ŷ (�)d�; 8 Ŷ ( � ) 2 L2(s; T ;D(A�));

hence the equality in (2.37) is entirely justi�ed. 2

2.2. The Associated Optimal Control Problem: Proof of Theorem 1.1. Given the

existence and uniqueness established in Section 2.2 for the solution [
*
z ;

*
v ]T = Y of (1.15), we

can proceed to consider the optimal control problem for 0 � s < T ,

minimize

Y 2L2(s;T ;H1�H0)
u2L2(s;T ;U)

Js(Y; u) =
1

2

Z T

s

h
kRY (t)k2Z + ku(t)k2U

i
dt; (2.38)

subject to Y ( � ) = eA( � �s)Y0 + Lsu( � ), where Y0 is the initial data

[z0; z1; v0; v1]
T
2 H1 �H0:

Lemma 2.3.1. There exists a unique optimal pair

[
*
z
�
( � ; s; Y0);

*
v
�
( � ; s; Y0); u

�( � ; s; Y0)]
T

= [Y �( � ; s; Y0); u
�( � ; s; Y0)]

T
2 C([s; T ];H1�H0)� L2(s; T ;U);

which solves (2.38) and which is given explicitly by

u�( � ; s; Y0) = �(Is + L�sR
�RLs)

�1L�sR
�ReA( � �s)Y0;

" *
z
�
( � ; s; Y0)

*
v
�
( � ; s; Y0)

#
� Y �( � ; s; Y0) = eA( � �s)Y0 + Lsu

�( � ; s; Y0)

(2:39a)

(2:39b)

(where (Is+L
�
sR

�RLs)
�1

2 L(L2(0; T ;U); here Is+L
�
sR

�RLs is the identity map on L2(0; T ;U))

.

Proof: If we de�ne V 2 L(L2(s; T ;H1 �H0)� L2(s; T ;U); L2(s; T ;H1 �H0)) by having

8 [Y; u]T 2 L2(s; T ;H1�H0)� L2(s; T ;U),

V (Y; u) = Y ( � )� eA( � �s)Y0 �

Z ( � )

0
eA( � ��)

Bu(�)d� (2.40)

(see Lemma 2.1 and Corollary 2.2.1); we then have that (2.38) is equal to the following

optimization problem:

minimize J(Y; u)

Y 2L2(s;T ;H1�H0)
u2L2(s;T ;U)

=
1

2

Z T

s

kRY (t)k2Z + ku(t)k2Udt; (2.41)

subject to V (Y; u) = 0.

Subsequently, by the standard theory of convex optimization (see [5, p.35]), there exists a

unique pair

[Y �( � ; s; Y0); u
�( � ; s; Y0)]

T

= [
*
z
�
( � ; s; Y0);

*
v
�
( � ; s; Y0); u

�( � ; s; Y0)] 2 L2(s; T ;H1�H0)� L2(s; T ;U);
15



which solves (2.41), and from Corollary 2.2.1(ii) Y �( � ; ; Y0) 2 C([s; T ];H1�H0). Moreover,

the Frech�et derivative of V can easily be computed at every [Y; u]T 2 L2(s; T ;H1 � H0) �

L2(s; T ;U) as the \constant" V 0, where V 0 is de�ned by having for every [Y; u]T ,

V 0

�
Y

u

�
=

�
Is 0

0 �Ls

� �
Y

u

�
(2.42)

(here Is is the identity on L2(s; T ;H1 � H0)). V 0 is evidently surjective; to wit 8 Y 2

L2(s; T ;H1 � H0); V
0

�
Y

0

�
= Y , so by Liusternik's Lagrange Multiplier Theorem (see [18,

p.243]) there exist s �� 2 L2(s; T ;H�
1 �H�

0) such that

J 0(Y �( � ; s; Y0); u
�( � ; s; Y0)) +

�
��; V 0

�
�

�

��
= 0 (2.43)

(where h � ; � i denotes the duality pairing between L2(s; T ;H1 � H0) and its dual); i.e.

8 [Y; u]T 2 L2(s; T ;H1�H0)� L2(s; T ;U);

0 = hR�RY �( � ; s; Y0); Y i+ h��; Y � Lsui

+(u�( � ; s; Y0); u)L2(s;T ;U): (2.44)

We thus deduce from (2.43) that

R�RY �( � ; s; Y0) = ���; (2.45a)

u�( � ; s; Y0) = L�s�
� = �L�sR

�RY �( � ; s; Y0); (2.45b)

Y �( � ; s; Y0) = eA( � �s)Y0 + Lsu
�( � ; s; Y0): (2.45c)

From here, (2.45) yields that

u�( � ; s; Y0) = �L�sR
�ReA( � �s)Y0 � L�sR

�RLsu
�( � ; s; Y0); (2:46a)

or

u�( � ; s; Y0) = �(Is + L�sR
�RLs)

�1L�sR
�ReA( � �s)Y0; (2:46b)

using the fact that Is + L�sR
�RLs is invertible on L2(s; T ;U) by Lax-Milgram, together with

regularity result of Corollary 2.2.1 (and of course, where Is is this time the identity on

L2(s; T ;U)). 2

2.3. Additional Regularity Properties of the Optimal Solution. In this section we

show that the optimal control u�( � ; s; Y0), as given in Lemma 2.3.1, is actually continuous

in time, and that
*
v
�
( � ; s; Y0) of (2.39b) has greater regularity in the spatial variable then

previously stated. These properties are critical for the derivation of the Riccati Equation.

Proposition 2.4.1. Let
*
v ( � ) be as in (2.36); then

*
v2 L2

 
s; T ;

�
D

�
�A

1
2

��2!
.
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Proof: WLOG we can take s � 0. Finding the solution Y ( � ) =

"
*
z ( � )
*
v ( � )

#
of (1.15) is

formally tantamount to solving the coupled system of integral equations

*
z (t) = eA1tz0 +

Z t

0

eA1(t��)C
*
v (�)d�;

*
v (t) = eA0tv0 �

Z t

0

eA0(t��)C� *
z (�)d� +

Z t

0

eA0(t��)

�
0

Bu(�)

�
d�;

(2:47a)

(2:47b)

which is formally equivalent to solving

*
v (t) +K0

*
v (t) = eA0tv0 �

Z t

0

eA0(t��)C�eA1�z0d� +

Z t

0

eA0(t��)
�

0
Bu(�)

�
d�;

(2.48)

where K0 is as de�ned in (2.5). Now by [19]

C�eA1( � )z0 2 L2

�
0; T ;D

�
�A

1
2

�
�H� 1

2 (�0)

�
; (2.49)

so we can use this fact along with the same argument used in establishing (2.14) of Proposition

2.2.1(i) to have that the RHS of (2.49) is in

L2
�
0; T ;D((�A0)

1
2 )
�
: (2.50)

Consequently by this same lemma we can apply the inverse (I+K0)
�1 to both sides of (2.48)

to obtain�
v

vt

�
=
*
v ( � ) = (I +K0)

�1

"
eA0( � )v0 �

Z ( � )

0

eA0( � ��)C�eA1�z0d�

+

Z ( � )

0

eA0( � ��)

�
0

Bu(�)

�
d�

#
2 L2

 
0; T ;

�
D

�
�A

1
2

��2!
;

(2.51)

after using Theorem 2.A(i). We can subsequently derive the solution
*
z ( � ) of (2.47a) by

setting�
z

zt

�
=
*
z ( � ) � eA1( � )v0 +

Z ( � )

0

eA1( � ��)C
h
(I +K0)

�1eA0( � )v0

i
�
d�

�

Z ( � )

0

eA1( � ��)C

"
(I +K0)

�1
Z ( � )

0

eA0( � ��)C�eA1�z0d�

#
�

d�

+

Z ( � )

0

eA1( � ��)C

"
(I +K0)

�1
Z ( � )

0

eA0( � ��)
�

0
Bu(�)

�
d�

#
�

d� ;

(2.52)
17



and z is in C([0; T ];H1) by Theorem 2.B which is directly applicable, as we can readily

compute that the solution of (2.47a) which we have here obtained satis�es

ztt = �z

@z

@�
=

�
vt on �0 � (0; T )

0 on � n �0 � (0; T ):
; (2.53)

z(0) = zt(0) = 0:

A fortiori then, the solution [
*
z ;

*
v ]T de�ned in (2.51){(2.52) solves the ODE (1.15), and a

uniqueness argument concludes the proof. 2

Remark 2.4. As we have just shown in Proposition 2.4.1 that every
*
v ( � ) of (2.36)

(corresponding to some �xed u 2 L2(0; T ;U)) is in L2

 
s; T ;

�
D

�
�A

1
2

��2!
, then in particular,

the optimal
*
v
�
( � ; s; Y0) given by (2.39b) has the stated regularity.

Proposition 2.4.2. Let L�s be as given in (2.37); then

L�s 2 L(C([s; T ];H
�
1 �H�

0); C([s; T ];U));

and 8 Ŷ 2 C([s; T ];H�
1 �H�

0) we have the estimate

kL�sŶ kC([s;T ];U) � CTkŶ kC([s;T ];H�

1�H
�

0 )
; (2.54)

where CT is independent of s; 0 � s < T .

Proof: L�s Ŷ is easily seen to be in C([s; T );U)8 Ŷ in C([s; T );H�
1�H

�
0), and hence we need

only show that there is no singularity at the endpoint T . So 8 t;

s � t < T , we have by (2.17),

kL�sŶ (t)kU �

Z T

t




B�eA
�(��t)Ŷ (�)





U
d�

=

Z T

t

C0

(� � t)�
kŶ (�)kH�

1
�H�

0
d�

�
C0(T � s)1��

1� �
kŶ kC([s;T ];H�

1�H
�

0 )
; (2.55)

where � is as in (2.17), and we have the result. 2

Proposition 2.4.3. Ls 2 L(C([s; T ];U); C([s; T ];H1�H0) and 8 u 2 C([s; T ];U) we have

the estimate

kLsu(t)kH1�H0
� CTkukC([s;T ];U); (2.56)

where CT is independent of s; 0 � s < T .

Proof: Similar to that of Proposition 2.4.2. 2
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Lemma 2.4.1. The operator Is + L�sR
�RLs is boundedly invertible on C([s; T ];U) with

the following norm estimate:

k(Is + L�sR
�RLs)

�1
kL(C([s;T ];U)) � CT ; (2.57)

where CT is independent of s; 0 � s < T .

Proof: We make use here of a bootstrap argument: For an arbitrary g 2 C([s; T ];U) we

wish to show that there exists a unique f 2 C([s; T ];U) such that

f + L�sR
�RLsf = g in C([s; T ];U): (2.58)

As Is + L�sR
�RLs is invertible in L2(s; T ;U) (by Lax-Milgram), then certainly there exists a

unique h 2 L2(s; T ;U) such that

h+ L�sR
�RLsh = L�sR

�RLsg in L2(s; T ;U): (2.59)

Thus, by Propositions (2.4.2){(2.4.3),

h = L�sR
�RLsg � L�sR

�RLsh in C([s; T ];U); (2.60)

and it is easy to see that f � g � h 2 C([s; T ];U) will be the unique solution to (2.58).

The result then follows upon application of the Open Mapping Theorem. The norm estimate

(2.57) is a consequence of the estimates given in (2.54) and (2.56). 2

Corollary 2.4.1. u�( � ; s; Y0), given by (2.39a) is in C([s; T ];U).

Proof: By Proposition 2.4.2, L�sR
�ReA( � )Y0 2 C([s; T ];U); and the result follows from

Lemma 2.4.1. 2

Corollary 2.4.2. We have the following estimates for the optimal pair:

(i) k
*
v
�
( � ; s; Y0)k

L2(s;T ;[D(�A
1
2
)]2)

� CTkY0kH1�H0
; (2.61)

(ii) ku�( � ; s; Y0)kC([s;T ];U0) � CTkY0kH1�H0
; (2.62)

(iii) kY �( � ; s; Y0)kC([s;T ];H1�H0) � CTkY0kH1�H0
: (2.63)

Proof: Estimates (ii), (iii) follow from (2.45b{c) and (2.46b), and the results of Propo-

sitions 2.4.2{2.4.3 and Lemma 2.4.1. For the component
*
v
�
( � ; s; Y0) we have from (2.51)

that

*
v
�
( � ; s; Y0) = (I +K0)

�1

"
eA0( � �s)v0 �

Z ( � )

s

eA0( � ��)C�eA1(��s)z0d�

+

Z ( � )

s

eA0( � ��)
�

0

Bu�(�; s; Y0)

�
d�

#
; (2.64)

where equality can be taken in L2

 
s; T ;

�
D

�
�A

1
2

��2!
. Now for the RHS of (2.64):




(I +K0)
�1eA0( � �s)v0





L2(s;T ;[D(�A

1
2
)]2

� CT




eA0( � �s)v0





L2(s;T ;(D(�A0)

1
2 ))

� CTkv0kH0
; (2.65)
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after making use of the continuity of the map (I +K0)
�1 and Theorem A(i){(ii).

Again from [19], C�eA1( � �s)z0 2 L2

�
s; T ;D(�A

1
2 )�H� 1

2 (�0)

�
, and so we will have






(I +K0)
�1

"Z ( � )

s

eA0( � ��)C�eA1(��s)z0d�

#





L2(s;T ;[D(�A

1
2
)]2)

� CT







Z ( � )

s

eA0( � ��)C�eA1(��s)z0d�







L2(s;T ;[D(�A

1
2
)]2)

�




C�eA1( � �s)z0





L2(s;T ;D(�A

1
2
)�H

�
1
2 (�0))

� CTkz0kH1
; (2.66)

after using the theory for analytic semigroups followed by the regularity estimate in [19].

Likewise, by the theory for analytic semigroups we obtain the estimate





Z ( � )

s

eA0( � ��)

�
0

Bu�(�; s; Y0)

�
d�







L2(s;T ;[D(�A

1
2
)]2)

� CT ku
�( � ; s; Y0)kL2(s;T ;U) ;

(2.67)

and using the characterization of u�( � ; s; Y0) in (2.46b), we consequently have from Propo-

sition 2.4.3 and (2.67) that





Z ( � )

s

eA0( � ��)

�
0

Bu�(�; s; Y0)

�
d�







L2(s;T ;[D(�A

1
2
)]2)

� CTkY0kH1�H0
:

(2.68)

Thus, combining (2.64){(2.66) and (2.68) we arrive at

k
*
v
�
( � ; s; Y0)k

L2(s;T ;[D(�A
1
2
)]2)

� CTkY0kH1�H0
; (2.69)

and our proof of (i) is concluded. 2

Remark 2.5. The proof of Theorem 1.1 follows from Lemma 2.3.1, Proposition 2.4.1, and

Corollaries 2.4.1 and 2.4.2.

3. The Riccati Operator

3.1. De�nition of the Operator �( � ; � ). At this point we introduce the (evolution)

operator �(t; s) de�ned by

�(t; s)Y0 = Y �(t; s; Y0); Y0 2 H1 �H0; 0 � s � t � T; (3.1)

and one can readily establish that

�(t; t)Y0 = Y0; (3:2a)

�(t; �)�(�; s) = �(t; s); 0 � s � � � t � T: (3:2b)

Furthermore, one has

Proposition 3.1.1. With �( � ; � ), as de�ned in (3.1), the following properties hold:
20



(i) For �xed s; 0 � s � T , the map t ! �(t; s)Y0 is continuous in H1 � H0,

s � t � T ;

(ii) for �xed t; s � t � T and Y0 2 H1 � H0, the map s ! �(t; s)Y0 is continuous in
H1 �H0.

Proof. Having established regularity properties of Corollary 2.4.2, the proof is the same

as in [10] and is hence omitted. 2

With �( � ; � ) de�ned as in (3.1), we subsequently de�ne

P (t)Y0 =

Z T

t

eA
�(��t)R�R��(�; t; Y0)d� (3.3)

and a fortiori P (t) 2 L(H1 �H0; H
�
1 �H�

0) 8 t; 0 � t � T , and

P ( � ) 2 L(H1 �H0; L
1(0; T ;H�

1 �H�
0)):

Again, in a standard way we can show that:

Proposition 3.1.2. P ( � ) 2 L(H1 �H0; C([0; T ];H
�
1 �H�

0)).

The key result in this section is the following regularity property of the \gain" B�P .

Proposition 3.1.3: (i) 8 t; 0 � t < T; B�P (t) 2 L(H1�H0; U) with the pointwise norm

estimate

kB
�P (t)kL(H�

1�H
�

0 ;U) � CT (T � t)1�� ; (3.4)

where � is as given in (2.17).

(ii) For each Y0 2 H1 �H0 the optimal control u�( � ; s; Y0) is given in feedback form by

u�(t; s; Y0) = �B
�P (t)Y �(t; s; Y0); 0 � s � t < T: (3.5)

Proof of (i): 8 Y0 2 H1 �H0, we have 8 t; 0 � t < T ,

kB
�P (t)Y0kH�

1
�H�

0
�

Z T

t




B�eA�(��t)R�R�(�; t)Y0





H�

1�H
�

0

d�

�

Z T

t

C0

(� � t)�
kY0kH1�H0

d�;

(after using Proposition 2.2.2(ii), duality and (2.63))

=
C0(T � t)1��

1� �
kY0kH1�H0

: (3.6)
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(ii): Using the characterization of u�( � ; s; Y0) given by (2.45b) we have

u�(t; s; Y0) = �

Z T

t
B
�eA

�(��t)R�R
h
eA(��s)Y0 � Lsu

�( � ; s; Y0)(�)
i
d�

= �

Z T

t
B
�eA

�(��t)R�R�(�; s)Y0d�

= �B
�P (t)�(�; t)�(t; s)Y0 (after using property (3.2b))

= �B
�P (t)Y �(t; s; Y0): 2 (3.7)

Proposition 3.1.4. (i) For 0 � t � T we have 8 Y0; Y1 2 H1 �H0,

hP (t)Y0; Y1i =

Z T

t

(R�(�; t)Y0; R�(�; t)Y1)Z

+

Z T

t

(B�P (�)�(�; t)Y0;B
�P (�)�(�; t))Ud�: (3.8)

(ii) P (t) 2 L(H1 �H0; H
�
1 �H�

0) is self-adjoint and positive semide�nite.

(iii)With Jt as de�ned in (2.38), we have that the constrained minimum of Jt corresponding

to the minimizer [Y �( � ; t; Y0); u
�( � ; t; Y0)]

T is

Jt(Y
�( � ; t; Y0); u

�( � ; t; Y0)) = hP (t)Y0; Y0i; (3.9)

where the duality product is taken between H1 �H0 and H�
1 �H�

0 .

Proof of (i): Using the de�nition of P (t) in (3.3) we have for Y0; Y1 2 H1 �H0,

hP (t)Y0; Y1i =

Z T

t

�
R�(�; t)Y0; Re

A(��t)Y1

�
Z
d�: (3.10)

Now using (3.1) and (2.36), we have that 8 Y 2 H1 �H0,

R�(�; t)Y = ReA(��t)Y +RLtu
�( � ; t; Y )(�); (3.11)

applying (3.11) to (3.10) then yields

hP (t)Y0; Y1i =

Z T

t

(R�(�; t)Y0; R�(�; t)Y1)Zd�

�

Z T

t

(R�(�; t)Y0; RLtu
�( � ; t; Y1)(�))Zd�

=

Z T

t

[(R�(�; t)Y0; R�(�; t)Y1) + (u�(�; t; Y0); u
�(�; t; Y1))]d�; (3.12)

after taking the adjoints of R and Lt and using the characterization of u�( � ; t; Y0) in (2.45b);

the result follows upon applying Proposition 3.1.3(ii). (ii) and (iii) follow immediately from

(i). 2
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3.2. Derivation of the Riccati Equation. In this section, we show that P (t) de�ned by

(3.3) satis�es the Di�erential Riccati Equation (DRE). we �rst prove a property of �( � ; � )

regarding di�erentiation in the second variable. This result is a key element in the derivation
of the DRE.

Lemma 3.2.1. Let �( � ; � ) be as de�ned in (3.1); then 8 �; 0 � � < T and Y0 2 D(A),

we have that d
d�
�( � ; �)Y0 exists as an element of C�([�; T ];H1�H0) (where � is as given in

(2.17), and moreover,

d

d�
�( � ; �)Y0 = (I� + L�L

�
�R

�R)�1
h
eA( � ��)

BL��R
�R�( � ; �)(�)� eA( � ��)

AY0

i
:

(3.13)

Proof: Using the de�nition of Y �( � ; � ; Y0) in (2.39b) and the representation of u
�( � ; � ; Y0)

in (2.45b), we have that for Y0 2 H1 �H0

�( � ; �)Y0 = (I� + L�L
�
�R

�R)�1eA( � ��)Y0; (3.14)

after using the fact that I� + L�L
�
�R

�R is invertible on L2(�; T ;H1�H0) (by Lax-Milgram).

Thus for �xed t, � < t � T , and Y0 2 D(A),

d

d�
�(t; �) +

d

d�
(L�L

�
�R

�R�( � ; �)Y0(t))

= �eA(t��)
AY0 in H1 �H0; (3.15)

where each term on the LHS of (3.15) is well de�ned initially (in the variable �) at least in

the sense of distributions, i.e., as elements of D0(0; t;H1 � H0) (see [16, p. 101]). Now for

�xed t, the distributional derivative of L�L
�
�R

�R�( � ; �)(t) is

d

d�
(L�L

�
�R

�R�( � ; �)Y0(t)) = �eA(t��)
B(L��R

�R�( � ; �)Y0)(�)

+

�
L�L

�
�R

�R
d

d�
�( � ; �)Y0

�
(t) in D0(0; t;H1�H0); (3.16)

thus using (3.15) and (3.16) we have for �xed t, � < t � T ,�
(I� + L�L

�
�R

�R)
d

d�
�( � ; �)Y0

�
(t)

= eA(t��)
B(L��R

�R�( � ; �)Y0)(�)� eA(t��)
AY0 in D0(0; t;H1�H0) (3.17)

(given that Y0 2 D(A)). But for �xed � the function

eA( � ��)
B [(L��R

�R�( � ; �)Y0)(�)]� eA( � ��)
AY0

is an element of C�([�; T ];H1 � H0); and we can use Propositions 2.4.2 and 2.4.3 and the
same boot-strap argument employed in the proof of Lemma 2.4.1 to �nd that I� +L�L

�
�R

�R

is boundedly invertible on C�([�; T ];H1�H0). We can thus deduce that d
d�
�( � ; �)Y0 can be

taken as an element of C�([�; T ];H1�H0) and representation (3.13) is valid. 2
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Lemma 3.2.2. (i) P (t) as de�ned in (3.3) satis�es the following Di�erential Riccati

Equation (DRE): 8 Y0; Y1 2 D(A) and 8 t 2 (0; T ),

h _P (t)Y0; Y1i = �hR�RY0; Y1i � hP (t)AY0; Y i

�hP (t)Y0;AY1i � hB
�P (t)Y0;B

�P (t)Y1i; (3.18)

where the duality pairing h � ; � i is taken between H1 �H0 and H�
1 �H�

0 .

(ii) The solution P (t) is unique within the class of self-adjoint operators P̂ (t) 2 L(H1�H0)

which satisfy 8 Y 2 H1 �H0

B
�P̂ (t)Y 2 L1(0; T ;U); (3.19)

8 0 < t < T .

Proof of (i): 8 Y0; Y1 2 D(A) and 8 t; we have by the de�nition of P (t),

hP (t)Y0; Y1i =

Z T

t
hR�R�(�; t)Y0; e

A(��t)Y1id�; (3.20)

and di�erentiating both sides yields

d

dt
hP (t)Y0; Y1i

= �hR�RY0; Y1i+

Z T

t

d

dt
hR�R�(�; t)Y0; e

A(��t)Y1id�: (3.21)

Now using Lemma 3.2.1 to move the di�erentiation above inside the bracket yields

on the RHS of (3.21)

= �hR�RY0; Y1i

�

Z T

t

hR�R
h
(It + LtL

�
tR

�R)�1eA( � �t)
AY0

i
(�); eA(��t)Y1id�

+

Z T

t

hR�R
h
(It + LtL

�
tR

�R)�1eA( � �t)
B(L�tR

�R�( � ; t)Y0)(t)
i
(�); eA(��t)Y1id�

�

Z T

t

hR�R�(�; t)Y0; e
A(��t)

AY1id�

= �hR�RY0; Y1i � hP (t)AY0; Y1i

+

*
B�P (t)Y0;

Z T

t

B�eA
�(��t)

h
(It + LtL

�
tR

�R)��R�ReA( � �t)Y1

i
(�)d�

+

� hP (t)Y0;AY1i: (3.22)

Now from Proposition 3.1.4(ii), P (t) = P �(t) and from (3.14),

�( � ; t)Y0 = (It + LtL
�
tR

�R)�1eA( � �t)Y0;
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so by directly computing the adjoint P �(t) we have that (3.20) indeed becomes

�hR�RY0; Y1i � hP (t)AY0; Y1i+ hB
�P (t)Y0;B

�P (t)Y1i � hP (t)Y0;AY1i:
(3.23)

(ii): It su�ces to prove the uniqueness of the solution (in the given class (3.19)) to the

following (Riccati) Integral Equation:

hP (t)Y0; Y1i =

Z T

�

�
ReA(��t)Y0;Re

A(��t)Y1

�
Z
dt

�

Z T

t

�
B
�P (�)eA(��t)Y0;B

�P (�)eA(��t)Y1

�
U
d�; (3.24)

8 Y0; Y1 2 H1 � H0. To this end, if P1( � ) and P2( � ) both solve the DRE for 0 < t < T

and are of the class (3.19)), then setting Q( � ) � P1( � ) � P2( � ), one has necessarily

8 Y0; Y1 2 H1 �H0 that

hQ(t)Y0; Y1i =

Z T

t

�
B
�P2(�)e

A(��t)Y0;B
�Q(�)e calA(��t)Y1

�
U
d�

�

Z T

t

�
B
�Q(�)eA(��t)Y0;B

�P1(�)e
A(��t)Y1

�
U
d�; (3.25)

or

Q(t)Y0 =

Z T

t

eA
�(��t)

h
(B�Q(�))�B�P2(�)e

A(��t)
� (B�P1(�))

�
B
�Q(�)eA(��t)

i
Y0d�;

(3.26)

or setting V (t) = B�Q(t), we have then, after applying B� to both sides of (3.26), the equation

V (t)Y0 =

Z T

t

B
�eA

�(��t)
h
V �(�)B�P2(�)e

A(��t)
� (B�P1(�))

�V (�)eA(��t)
i
Y0d�:

(3.27)

As P1(t); P2(t) are in the speci�ed class (3.19), then by Banach-Steinhaus one has the

estimate 8 Y 2 H1 �H0, 0 � t � � � T;

kB
�Pi(�)Y kU � CTkY kH1�H0

(3.28)

(i = 1; 2).

Using the above estimate and taking the norm of both sides of equation (3.27) will yield

kV (t)Y0k �

Z T

t

CT

(� � t)�
kV (�)k kY0kH1�H0

(after using the norm estimate (2.17))

�

Z T

t

CT

(� � t)�

(
sup

t���T
kV (�)k

)

� CT (T � t)1��
(

sup
t���T

kV (�)k

)
: (3.29)

25



Thus for t0 � t � T we obtain

sup
t0�t�T

kV (�)k � CT (T � t0)
1��

(
sup

t���T
kV (�)k

)
; (3.30)

and for T � t0 small enough, we will have that CT (T � t0)
1�� is less than one, and uniqueness

can be deduced within the class of all self-adjoint P̂ (t) 2 L(H1 �H0) such that

B
�P̂ (t)Y 2 L1(t0; T ;U); (3.31)

8 Y 2 H1 � H0 and t 2 (t0; T ). Iterating this argument and establishing uniqueness within

each speci�ed class will yield uniqueness for the entire interval after a �nite number of steps.

2
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