SHARP REGULARITY ESTIMATES FOR SOLUTIONS OF THE
WAVE EQUATION AND THEIR TRACES WITH PRESCRIBED
NEUMANN DATA

By
George Avalos

IMA Preprint Series # 1343
October 1995

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA
514 Vincent Hall

206 Church Street S.E.
Minneapolis, Minnesota 55455



Sharp Regularity Estimates for Solutions of the
Wave Equation and Their Traces with Prescribed
Neumann Data

George Avalos

Institute for Mathematics and its Applications
University of Minnesota

514 Vincent Hall

206 Church St. S.E.

Minneapolis, MN 55455-0436

Abstract

In this paper, the regularity properties of second-order hyperbolic equations defined
over a rectangular domain {2 with boundary I" under the action of a Neumann boundary
forcing term in L2 (O,T; Hi (I‘)) are investigated. With this given boundary input, we
prove by a cosine operator/functional analytical approach that not only is the solution
of the wave equation and its derivatives continuous in time, with their pointwise values
in a basic energy space (in the interior of 2), but also that a trace regularity thereof
can be assigned for the solution’s time derivative in an appropriate (negative) Sobolev
space. This newfound information on the solution and its traces is crucial in handling
a mathematical model derived for a particular fluid/structure interaction system.

1 Description of the Problem

Let  be a rectangular domain contained in R? with boundary I'. We consider the following
wave equation with boundary input u:

zy(z,t) = Az(z,t) on Qx (0,T);
8—j=u on T x (0,T); (1.1)

z(z,0) = z(z,0) = 0on £,

where, as usual, 565 denotes the normal derivative. Needless to say, there is a copious
supply of theoretical results pertaining to the regularity of solutions of (1.1), and to second-
order hyperbolic equations in general, results which specifically deal with the case when
the prescribed datum wu is not homogeneous. For example, the works in (7], (8], [9], [10],
and [11], all deal with nonhomogeneous Neumann problems of a much more general nature
than (1.1), yielding the regularity of solutions with the datum u having an appropriate
smoothness (in the sense of Sobolev) in time and/or space.
More specifically, with & = (0,T) x I, we have the classical result of [8] which yields

uwe Hi(X) = z € C([0,T); HX()). (1.2)



Later, in [9], which deals with exterior domain problems, and in (7], which is concerned
with solutions of (1.1) in the interior of a region 2, one has

u € Ha () = [2,2]T € C([0, T); HY(Q) x L2(Q)), (1.3)

where a = 4 if Q) is a parallelpiped, and a = 3 if 2 is an arbitrary convex domain. However,
note that both of these results require some measure of Sobolev regularity in both time and
space; moreover, in neither result is there information given on the trace regularity (if such
exists) of the time derivative of the solutions. As we are of a mind to obtain a regularity
result which can be used in handling the “structural acoustics problem” (see [1]), where the
given datum is no more than square integrable in time, and wherein knowledge of a trace
of z; is indispensable, the above results and techniques used to derive them are not directly

applicable.
Alternatively, we have the following result in [10]:

ue L (0, T; H%(F)) = 2,47 € 1? (0,T; H(Q) £(9)). (1.4)

In (1.4), there is the weaker requisite that the input u be simply square integrable in time;
unfortunately, the requirement on the spatial derivative is too restrictive for our intended
purposes. In the analysis in [1], it is necessary that the datum w have a Sobolev regularity

of at best H %'E(F) (in space) for fixed ¢, where the constraint € > 0 cannot be lifted. Also,
as in the previous results, there is nothing said about the boundary values of the time

derivative, and so this particular result is of no benefit to us.
Most recently, we have the result of Tataru in [11] which provides that

we L}(0,T) x T) = [z, [T € H3((0,T) x Q) x HZ((0,T) x I"). (1.5)

The result posted above requires only square integrability in time and space to yield solu-
tions with a certain smoothness in both variables. Our concern here is with developing an

“anisotropic” regularity result.
Hence the purpose of this work is to give a regularity theory for solutions z of (1.1)

which
(i) provides for the assignment of some meaning to 2|r;
(ii) operates under the limiting assumption that the initial datum is L? in time only;

(iii) improves the known differentiability of solutions in the interior.

As mentioned earlier, this result, while being of mathematical interest in its own right,
is largely motivated by its application to our aforementioned optimization problem which

arises within the context of interacting structures.



2 Statement of Main Result

Theorem 1 Let Q be a rectangular domain contained in R? with boundary I'; let 2 be a
weak solution to the following equation with boundary datum v in

? (0,1 Ht ()):

24t = Az on Q;
% =u on I x (0,T); (2.1)
z(t=0)=z(t =0) =0on Q,
then
(2,2, zlr]” € € (0,T; HI(Q)) x C([o, T); LX(Q)) x L? (o, H—%(r)) . (2.2)

Moreover, we have continuous dependence on the datum, viz. ¥ t € [0, T,

T
201y + 12Oy + [ @)l g ds < Colul? (23

2 <O,T;H2]£ (I‘)) '

Remark 1 Note that this regularity for z does not follow from the classical results of [8]
noted in (1.2), nor from the other posted results. This new result, however, is in the “style”
of Myatake’s in (1.4), but betters it by “7}‘ ”, in terms of the smoothness of the boundary
datum required; the differentiability of z|r is also improved (formally) by “71 ”.

Remark 2 Mimicking the details of the proof below of Theorem 2.1, one could also work

to show that the outward normal derivative —55— exists as an element of L*((0,T) x I).

In proving Theorem 1, we will adopt the cosine operator approach and accompanying
techniques used in [5] (Appendix A) to derive the regularity of [z, z;]T when u is given only
to be square integrable in time and space. More specifically, we will exploit the explicit
form of the solution z and the fact that we are working on a rectangular domain, as well as
standard Laplace transform theory, to generate the desired estimates.

3 Proof of Theorem 2.1

Without loss of generality, we can take Q to be {(z,y) € R?) 50 < z,y < 7} and by the
linearity of the operator concerned, u = 0 except on the side {y =0, 0 <z < 7}.

We define now the self-adjoint, positive, semidefinite operator Ay, Ay = —A4, with
0]
D(Ay) = {z e HA®) > 22 = 0} , (3.1)

and let {\mn, Pmn}50,—; denote respectively the eigenvalues and orthonormalized eigen-
functions (neglecting the zero eigenvalue and its constant eigenfunction), viz.

Amn =n2 4+ m? formn=1,2,...; (3.2)
@mnzﬁcosnxcosmyform,nz1,2,.... )



With these associated eigenvalues and eigenfunctions we can subsequently define the cosine
operator C(t) and sine operator S(t) by having ¥ ¢ € [0,T] and z € LY}(Q),

C(t)z= Z 08 V Amnt(2, Pmn) 12(0) Prrn;

nm=1

(3.3)

(oo}

S(t)zz/;C(T)zdv'z S

mun=1 V ‘\mn

sin vV /\mnt(z, @mn)L‘Z(Q)an

(see [5]). If we recall the “Neumann” map N € £ (LZ(F), H? (Q)) (see [2]), we then have a
fortiori that the solution z of (2.1) can be written as the image of an “input” map Ly, i.e.

2(t) = Lyu(t) = Ax /Ot S(t — 7)Nu(r)dr; and

t (3.4)
z(t) = (Lyu)e(t) = AN/O C(t — 7)Nu(r)dr
Making use of the fact that a fortior:
1
N*®ppy = —Dnlp, (3.5)
Amn
we obtain that the solution [z, 2|7 to (2.1) may be written explicitly as
z(t) = Lyu(t) = Z { = - / sin vVn2 + m2(t — 7)un (1) dT} mn;  (3.6a)
m,n=1 n +m
and
z(t) = (Lyu)e(t) = {/ cos Vn2 +m2(t — 7)un(r d'r} ®n; (3.6b)
m,n=1
where
2
pn(r) = —(u(7, ), cos (")) L2y, (3.7)

(and where T' = [0, ]).

Remark 3 In proving the asserted reqularity result for (2, 2¢)T, we will look to obtain the
following L*-estimate:

2l L2018 () + 12el L2022 0)) < ColluHLg(O)T;H,}_e(F)) (3.8)
fér €< % and Co > 0, which of course is tantamount to showing that the map
LN 2 1_¢ 2 1 2
: ; L*(0,T; 3.
[(LN)J 22 (0,T; H=4(D)) — (0,73 H'(@) x L*(®)) (3.9)
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is continuous. Having established the boundedness of this map, we can appeal to the “Lift-
ing Theorem” in [6] for hyperbolic equations to ascertain that z(*) and z(-) are actually
continuous in time into H'(Q) and L*(Q) respectively.

Proof of Theorem 2.1:

Part 1: Show the asserted L2?-regularity for z. For this part of the proof we need
to establish desired estimates for-Lw and the spatial derivatives %LNU and %LNu, which
are given a fortiori by

d > n ¢

—_ — —_— 3 2 2 1).

deNu——mZn::1 oo {/0 sinvm? +n (t—r),un(r)dr} ol . (3.10a)

and

d > m t

—Lyu= — /sin\/m2+ 2(t — n(T)d }CD(2) 3.10

dy N m);ZI\/m{ o n ( T)/J' (T) T mn) ( 1 b)
where @5,1,21(:1;, y) = —% sinmz cosny and @gzl(x,y) = —% cosnzsinmy (note that

{ @Sﬂ%}m also forms an orthonormal basis in L2(Q), 7 = 1,2). In particular, we need to
m,n=
show that there exists a positive constant Cy such that

d d
Lyu . +”_L u +“_L b
|ILn ||L2(0,T,L2(ﬂ)) dz N L2(0,T;L2(2)) dy "

L2(0,T;L2%(Q))

< Collull (3.11)

L? <O,T;HJA’ ‘e(r‘)> !
which we now proceed to do.

Part 1(A) To estimate ||3%LNu|| 12(0,T;L2()): Denoting f as the Laplace transform
of arbitrary function f with Laplace variable A = v + ¢w and extending u by zero outside
the interval [0, T], we have upon applying the convolution theorem to equation (3.10b)

d__ = m @
— Lyu(\) = ———m(\) p B2 3.12

In estimating the L2-norm of d%LNu, we use its Laplace Transform (3.12) and the
generalized Parseval’s relation (see [3], p.212)—here we are closely following the approach

of [5], Appendix A—to arrive at
2

o0 d 2 wlld
27r/ e” 2 || — Lyu(t) dt = / — Lyu(y + tw) dw
0 &y L9 ~oo ||y )
S 23 m’ dw (3.13)
= (v + w -~ . .
/_oonz::llﬂn(')’ w)| mzz:l |(7 + w)? + Amn|2



If we can establish that 3 a positive constant Cy such that

Z
Z |(7+Zw + Amn |2

where Cj is independent of w € IR andn=1,2,3,..., then again by Parseval’s relation (this
time applied to the function u,(-)), we will consequently have from (3.13) the inequality

< Co, (3.14)

2m f(;r e~ T ” B‘?—LNu(t)

2 o X g
iy 44 < O % 3 Iy i) P

(3.15)
= Co JT e au(t) |2a gy dt < Colull?

20 T;HI ()’
after using (3.13) and the orthonormality of the o2 n’s; we will hence have the desired result,

d
—Lyu < Colul|
dy L2(0,T;L3())

So to show the existence of a constant Cp such that (3.16) holds, it suffices by (3.14) and
the definition of Riemann integrability to show that

(3.16)

L2(0,T;HE (1)

00 y2dy
= < .
/1 2+ 72 +n2 — w?)? +4y%w? = Co, (3.17)
where again Cp is independent of w € R and n = 1,2,.... In showing (3.17), the two

following cases must be considered.
Case 1: 72+ n? —w? > 0: Easily then,
0 dy
I< / — =1 3.18
7 (5.19)

Case 2: v +n? — w? < 0: Weset a2, =w? —n?— ~? and split the integral I into the
suitable intervals

co Sau 2anw 00
Iz/ g/ +/ +[ =hL+L+I. (3.19)
1 0 2%“' 2anw

To estimate I;:

anw

I _/ 2 y2dy </ 2 yidy
Tl @2 -ak)2+ 0% T o (-3-(12 ) + 4202

To estimate I3:

o *dy > y’dy
I =/ g/ YW <G (3.21)
27 Jrane 2 — a2,)2 + 49202 T Jaan, (%y2)2 +dryt




To estimate Ip: Setting ¢t = y% — a2, we then have

12 _ 20fnw y2dy _ /‘30 /t + anzw d
2

s (y? —a2,)? +4y%2 2 2 1 dy2?
3a;,., dt a 3a2,
<a / = —n s
™ -3a2, 2 +4y2w2 2|y |w| arctan(t) Y S Bk (3.22)
4

Thus the estimate (3.17) is proved and we consequently have (3.16) from the inequality
(3.15).

Part 1(B) To estimate ”;%LNU

L20TL2()
For %LN’U,, we likewise apply the convolution theorem to (3.10a) to obtain

4 ol n
—Lu()\) = — () ) 2
dr nu( ) m%;I {/\2 + ’\mn#n( )} mn (3' 3)

Again with Parseval’s relation we have

2

o . Id 2 wo |l g
271'/ e 27t ELNu(t) , dt:/ ”ﬁLNu(’y-{—iw) dw
1+2ed
2 1-2¢ w
= + tw , 3.24
/_ Zl”’” )F'n Z (Y 4 w)2 4 An? (3.24)

after using (3.23) and the orthonormality of the ®5)’s. Now to handle the RHS of (3.24),
we define the operator

Ap = ‘Zd%’ with D(Ap) = {u € 52(0,m) 5 240 _ 2u0) _ o} : (3.25)

Oz Ox
thenV g€ H¥), 0 <a < 3 5, we have from [4] the characterization

l9ll gy = ‘ (3.26)

L2
Furthermore, as A has the respective eigenvalues and eigenfunctions {An, &5 }52, with
2
A =n? and @, = = cosn(), (3.27)

we deduce by Parseval’s Relation that for g € H*(T), 0 < a < %,

= Zl(g, ) *n?e. (3.28)

“g”Ha(r)



(3.29)

nl+2€
< C’Ov

Hence, if we can show that for € > 0 (and small enough) that

(e o)

2 T T+ P
., where the positive constant Cj is independent of w and n, we will

YVweRandn=1,2,..
consequently have by (the generalized) Parseval’s relation and (3.29) that

T d 2 o — — —~ .
Jo EMWmem@yﬁS%LwZ?IMMW+WW@J
T o oyt 2 1-2 " 2 (3:30)
=C e |lu(t s dt < C
oo nz::l Fe ey s Collell, (O,T;H% “(F))
(after using the characterization of the H %_G(F) norm given in (3.26). Since deriving the
estimate (3.29) is tantamount to showing that
1+2¢ g
e Y < constant, (3.31)

(o o]
I= /
1 (y2 +,72 + n? — w2)2 + 4,720)2
for arbitrary w € R and positive integer n (here we again consider the definition of Riemann
integrability), we will estimate I instead; again, we will break the situation up into mutually

exclusive cases.
2
Case 1. w? <% + 2=
Then
oo dy oo dy Co
< — =2 (3.32)
1 (y2 _*_,72 + n2 _ c“}2)2 + 4"72(.02 oo (yg + %)2 n
so I < constant for € < 1.
ay 5%, (3.33)

Case 2. ’yz-l-"—; <w? <yt +nk
dy

(y2 + ,),2 + n2

00
< -
w2)2 +4,72w2 — /0 y4 +272n2 n3

Then
{o o)
1

so I < constant for € < i.
Setting a2, = w? —n? — 4% > 0, we split the integral I into the following appropriate

Case 3. 72 +n? <wk
segments,
o 40w 2anw %
Iz/ g/ + + — L+ L+ 15 (3.34)
1 0 _11112.“ 2anw

2 (3.35)

142¢ K dy 142¢ .
2 2 \2 7z =N 9 1 2 2!
0 (y - anw) + 47 w 16 Anw + 4’7 w

and subsequently estimate each segment.
Anw

To estimate Iy:




and if we consider the function

T
)= ——
f(=z) Ty (3.36)
with global maximizer (on (0,0)) & = %?M\/m: then from (3.35)
nl+2e 1+2¢
I <Cy " /|wl SCon 5 (as w? > n?),
n2
soIlgCoforegi.
To estimate [3:
dy d
I3=n1+2€/ nl+2€/ _.__.y—
2anw (y2 - a121w)2 +472w2 - 2any (%y2)2 + 4'72n2
2
(as n? < W? andyz—afw > 0)
00 d C nl+2e
S2nl+2e/ — Y - on 7% (3.37)
~oo (332 + V2yn) n?
so I3 < constant for € < 71.
To estimate Iy:
Making the substitution ¢ = y? — a2, we have
L2 2anw dy B l 3a2, nit2eqt
s (2 -0l H4y%R 2J 363, (8 +4y%w?) i+ A,
nlt2e 3dk, dt a2
< — —_— 2 “nw
e /—ﬁa?;w (t2 +4'72w2) ast+a,, > 4
142¢ 2 2
n 3a 3a
= ———— |arctan [ =— %~ | + arctan | —== | | . 3.38
2wl [ (8|7||w|> (hl |w|>} (339
(a) If for arbitrary € > 0, any > 1, then
7m1+2€
(3.38) < W = Co (3.39)
(as w? > n?); so I < constant.
(b) If anw < n2 then
C 142¢ w
(3.38) < =20 < Gyt (3.40)
w

-

so I < constant for € <



Hence we have established the estimate (3.31), and subsequently via (3.30) we obtain

the norm bound
d
—L NU

L2(0,T; L?(Q)) U2 0 E % —e(ryy- (3.41)

Part 1(C) To estimate || Lyul|12(0,1;12(q)): For Lyu, we once more apply the convo-
lution theorem, this time to (3.6a), to have that

— ot 1 .
Lyu(d) = > {mun()\)}q)mn; (3.42)

m,n=1

and analogous to the case for %LNU and B%LNu, we are interested in the quantity

(oo} S —
2 [ e Ol = [ Bl + i) ey

_/ Zl,un('y—hw )2 Z |(7+zw Esw. l2d (3.43)

As o oo r
[ S+ = 2m [ e u() gt (3.44)

“®n=1 0

then using the same argument as was employed above in Part 1(A) and (B), if we can
show that

co dy
45
/1 (W2 + 12 + 12 — w?)? £ dny2e? < (3.45)

forall we Rand n=1,2,..., we can then deduce from (3.44) that

| Ll 20,2 (0)) < CO””“L?(O,T;H% R— (3.46)

But as we have just shown above,
00 n1+2edy 1
< G fore < - 3.47
/1 P2+ 02— w2t dy? = O (0”—4)’ (3.47)

and so we trivially have (3.45) and subsequently-via (3.44)-the estimate (3.46). With
(3.16), (3.41), and (3.46) we have the final desired L*-estimate (3.11).

Part 2: Prove the asserted regularity for z;. Recalling that the time derivative z;
is given explicitly in (3.6b) by

{/ cos vVn2 + m2(t — 7)pn(T) d'r} mn (3.48)

m,n=1

10



we take the Laplace transform in the same fashion as was done in Part 1, to subsequently
obtain

20 = T = Y {0} @m. (3.49)

m,n=1

By Parseval’s relation we have (with A\ = v + iw) the equality

06 o0 —
o [ e Pt = [ Ty + i) B e

o

>

m,n=1

A2 2
(¥ + 1)? + Amn

| (y + iw)) 2dw; (3.50)

and by a smnlar line of reasoning as was used in Part 1-—when considering the characteri-
zation of the H3 ~¢(T') norm given in (3.28)—we will have established the estimate

I(Lnwell2(o,r;r2(e)) < CO”””L?(O,T;H%“‘(P))’ (3.51)
provided that
(v* +w?)dy
9
ni-2e /1 (yz T2 +n2 —w?)? + 4202 < Gy, (3.5,)

where the constant Cj is independent of w and n. Now since we have already obtained
(3.45), it remains only to show that

1 0 w2dy
<
I nl—2e /; (y2 + ,),2 +n2 _ w2)2 + 472w2 = CO: (353)

which we now proceed to do.

Case 1. '72 +n2>w
Then
I< { 142 4 —} il < Cy (3.54)
= 2| J1 (2442 +n?—w?) 4+ 4yt T

when € < 1, after making use of the previously derived estimates (3.31) and (3.45).

Case 2. 72+ n? < w?
Then with a2, = w2 n? — 4%, we again as in Part 1, split the integral I into the

segments
Snu 2enw
13/2 + +/ =N+ +]Is. (3.55)
0 2anw
To estimate Ij:
I 1 /2’3“‘ a dy N 1 /2’5“‘ [n? +~?dy (3.56)
P nl o (v? - a’nu) +4y2? onlt2 o (y? —al))? + 4R ‘

11



now the second integral on the RHS of (3.56) < constant for € < {, after using the work
done to estimate I; of Part 1(A) and (B), and moreover, we obtain

, [ dy 1 a
an, S _ nw <
w/o (y2 — a2,)? + 4y2w? 2(%a%w)2 RICRCE Co (3.57)

o=

(as n? < w?), so I; < constant for € <

To estimate I3:

1 o0 al dy 1 o0 [n? ++2)d
I = / nw / vUlay
3= 12 L (y2 —a2,)? + 472u? + n1=2€ Joo. (% — a2,)? + dy2w?’ (3.58)

and again we will have that the second integral on the RHS of (3.58) < constant for € < 4

by the previous analysis done for I3 of Part1(A) and (B). Also v

0 d 2
2 Y y-dy
— < .
i /anu (y*—a2,)?2+ 47%2 4 . ( P22 4 4yt = Co; (3.59)

thus I3 < constant for € < i

To estimate Iy:
Once more, by the work done in Part 1(A) and (B) for I, we have that

RN R

< Cy, 3.60
n1=% Jeau (y2 —a2,)? + 4722 ~ 0 (3.60)
fore < 71; hence we need only show that
20n0 2 d
I = Onw Y < constant. (3.61)

s (7= 0B,)7 AP

2

By making the substitution ¢ = y% — a2, we obtain that

a2 3a dt

30.
I T <o [ T
n= -202,, (t2 + 4y2w?)\/t + a2, a2, 2 + 4’7 20,2

3a2,, T

< — (as any < |wl). (3.62)

-3a2, 1l

arctant

T2 |7| lwl

Thus I < constant for € < 3 and we indeed have (3.53).
So, using the equality (3.50) with the now established estimate (3.53), we deduce the
L2-estimate (3.51). As noted in Remark 3, the desired continuity of z and z, as well as

the estimate

I Lnu)llcqoma @) + IInvwe)lleqomicz@) < COHUNLQ(O’T;H,} ~4(r) (3.63)

12



follows upon the application of [5].

Part 3: Show the asserted regularity for z|r. Recalling the definition of Ap given
in (3.25) and the characterization of its fractional powers given in (3.26), we deduce that
for g € LXT) and 0 < o < 3,

(3.64)

_X
||9||[Ha(f)1/ = Af‘ ‘9

LX(T)

(where the inverse A 2 is initially well defined for square integrable functions which are
L?-orthogonal to Vo = space of constant functions, and subsequently for all functions in
L%(T), albeit nonuniquely). With extension by density we will thus have that the equality
(3.64) is valid for all g in [H*(T')]'. So with @ = 1 — ¢, to show the desired regularity of
z¢|r, it will suffice to derive the estimate

—

2 (Lnw)e

< Collul| (3.65)

il L2(0,7;L%(T) L2(0,T; ot )

(where, again, € < 1), for some positive Cp. So we will work towards establishing (3.65),
using the fact that:

(Lvu)e(®)|p = / 008 /o (£ — )i (7) d'chosn() (3.660)

Al:%(LNu)t(t)l = Z /cos\/ mn(t — T)pn (T)dTN™ O‘—cosn()

TT'LTI_
(3.66Db)
and with Laplace variable A = 'y+iw
3 o 2 (Inw)e(N) Z Z pepn /\ un(/\)n o2 — cosn(). (3.66¢)
r n=1lm=1

So with the previous train of logic in mind (involving the use of the Generalized Parse-
val’s Inequality) employed in establishing (3.16), (3.41), (3.46), and (3.51), we arrive at for
arbitrary =,

T T a
o /0 & | (L))l -aq dE < 2 /0 il IO I
(using the characterization (3.64))
2 A 2
- / Fiwuply+i) | dw= / \2 ()| n .
L(T) =17 mn
(3.67)

With a = — — ¢ and given that u € L? (0, T; H%"E(f‘)), if we can show that 3 a positive
constant Cy such that

1 > A
nl_2€ Z;:1 )‘2 +/\mn S CO) (3.68)

13



where Cy does not depend on w € R and m € N, then (3.67) will become

2
A A [P mopat-2
/\ —-2a n
/ \2 + Am N"( nTdw = £ ,\ T oo 2 W
T
1 2 _ -2
<G /_ Z (N2 0!~ %dw = 27 Cy / 7t||un(t)||H . (3.69)
and we will consequently deduce that
To show the convergence of (3.68) it will suffice as before to show that
1 o0 (v + iw)dy
-2 /1 (N + 42 + 72 — w?) + 2w < (3.71)

and having already established estimates (3.17), (3.31), (3.45), and (3.53), it only remains
to show that
w [° (M +y’ 4+ —wP)dy
nl-2 J; (n2 412 + 42 — w?)? + dy2u?

< Cy, (3.72)
which we now proceed to do.

Case 1. w? < n? + 42
Then Gpy = w? — n? — 72 <0, and

(92 - anw)dy

3.72) = /
( nl 2¢ \/(y _ anw + 472w2 . \/(3,/2 _ anw)2 + 4,.),2(”2

|wl dy < V2| /
S o \/y — Gny)? + 47202 ~ S i y +2I7IIWI

1
m/lel_  Co(n® +77)s < Co

T JRlnt T nl

(3.73)

for e <

.(:nl;—t

Case 2. w? > n? +~%
Further specifying that |y| < 1—we have this degree of freedom from the use of Parseval’s

relation in (3.67)—then at, =w? —n? —+4? >0, and as we have similarly done before, we
split the integral

(y* —al,)dy
=(3.72 n“’
(3.72) = / (y? —al,)? + dy2w?
into
Qam., 00
I= / / / A =0+ I + I3, (374)
Anw
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and estimate each segment.

To estimate [;:

w /“’5“‘ (y2—aﬁw)dy
L=
0

nl-2e (42 — a2,)2 + dy?w?

(Lol [Tl Al

~ nl=2% Jo (y?2 — a2 )2 +47y%w? T nl=2 Jo  |y? —al,| +2]v||w|
2|w| Gnw dy 2|w| Anw

< — (3.75)
W% o Jal, 2l i Ja, + 2nil

(a) If n? < w? < kn?, where fixed k is, say, some integer satisfying k& > ;2‘%5; then

considering the function f(z) = g—5—%—— with global maximizer z = %-5- Vv V]w], then
$a24+2|7l|w| 3
(3.75) becomes

|l -f\/l_x/_ Cov/lw] _ Cokind

(3'75) 1 % ")l,-Y“w| — npl-2 — pl-2

< Co, (3.76)

€
(b) If w? > kn?; then (3.75) becomes
8|w] < 8|w|

= 3nl-2 /w2 —n? —42 3 l-2e (k;1)w2 — 2

(3.75) < < Cy, (3.77)

(as <k—;-l-) w? >4?).
To estimate I3:

w [ (Y —ap,)dy
I / (

T 1% Jaa, (37— a2,)? + 4%
ol /°° [y —ad, +20llwlldy _ 8 || /°° __Eigy__
= nl=2 oo, (42 — a2,) + 2A|wl]? T 3017 Jaan, [P + 510 lwl]

_2v2 \/_\/;T _ [” arctan[ \/_‘\//_FI[‘:’/_H (3.78)

. 2
(a) If n? < w? < kn?, where again fixed integer k> ;g“’_—,yg, then

Co+/|w Ck 7
(3.78) < =2 o=

126— n12e

< Co, (3.79)

for €

IN
A=
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(b) If w? > kn?, then

2v2 Vel V2 Vel ol
(3.78) < V3 nl=% /3 a., < (k—;l;w2—72

< Cp. (3.80)

To estimate [y:

2
(a) If n? < w? < kn?, where once more k > mw_—,yg, then we consider:

(a)i If an, > n'~2, then making the substitution y? — a2, = t, we arrive at

I— w 2anw (y2 — a%w)dy < 'wl /3a$w tdt
nl=2€ Jemu (y2 —a2,)?+ 4720t T 2n17% 30 (2 4+ 4n202)\/E + a2,
|w| 9al, + dw?y? < Colw] < Cokin <C 3.81
_n1—2€anw _1_96_a%w+4w272 - nl—2eanw = np2-4¢ — 0, ( . )
for e < ‘—11.
(a)ii If any, < n'~%, then again
n1-2€ Joaw  (y2 —a2,)2 + 472w 20172 J_3az ) (82 + 4wy2)\/t+ a2,

6lwlany 3ok dt ¢
< e —_ <12
ST /_ Sa3, (12 + 4w4?) as /t +aZ, ~ Anw

6 Iw | anw [ dt Conw
S i /_oo (t2 + 4w?+?) S e S Co- (3.82)

(b) If w? > kn?, then again with the change of variable y? — a2, =t, we have

I = w 2any (y2 _ a'?uu)dy _ w /30'?“" tdt
2Tl o (12— a2+ 4% 200 ey, (82 + dwPy?)V/E+ ok,
|w] ’ 902, + 4w?y? < Colwl
S T %ay, | Tkt dwy? | T pl /ot — 2 — 2
Co|w|

<
= E—1)w?
nl-2e i_kL"i__72

< Co, (3.83)

and we have finally have (3.72), and consequently (3.71) and (3.70). The proof of Theorem
2.1 is now complete.
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