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Introduction

We examine the ‘inverse problem’ of determining a scatterer K C R? in terms of in-
formation on the scattered waves, particularly solutions to the reduced wave equation
(A+k%)u = 0 on R®\ K, satisfying a Dirichlet boundary condition, u = f on 8K, and the
Sommerfeld radiation condition.

In §1 we state the scattering problem more precisely, and define notation, for solution
operators to various scattering problems, the Neumann operator, the scattering amplitude,
and other objects, and briefly mention a few common attacks on the inverse problem.

In §2 we study the problem of recovering the near field wave from the scattering am-
plitude. There is an exact formula, given in terms of a family of functions of the Laplace
operator on the sphere S?, but one obtains seriously unbounded operators, an indication
of the ‘ll posed’ nature of the inverse problem. We discuss a method of regularizing the
problem of approximating the near field wave, given an approximate measurement of the
scattering amplitude, and of bounding the error, following a general approach of Miller
[Mr1]. An estimate on the error on a shell ¥ = {|z| = R} known to contain the (unknown)
obstacle well inside is given in (2.40). It is slightly weaker than the Ce” estimates one often
aims for when regularizing ill posed problems, though not nearly so weak as the (log %)_T
one sometimes fears to obtain. Indeed, this ‘bad’ estimate does lie in wait if we allow the
obstacle to touch the shell %; see (2.46). The major result of §2 is then Proposition 2.5,
guaranteeing that this disastrous error magnification does not occur if we seek only the
features of the wave on ¥ on a length scale > C/k, for an appropriate constant C > 1.

In §3 we introduce the linearized inverse problem, which is related to the problem of
recovering the Dirichlet data of a wave, on 0K, given an approximate measurement of the
wave on the shell ¥. We want to apply Proposition 2.5 to this problem. To do this, some
necessary machinery from microlocal analysis is developed in §4, some global estimates
on the solution operator to the direct scattering problem are established in §5, and these
results are applied in §6 to a regularization of the linearized inverse problem, given that
0K 1is smooth and strictly convex.

Results here provide one step in a program to resolve unknown details of an obstacle.
One might envisage a next step: to apply Newton’s method, proceeding from an approxi-
mation K to the unknown obstacle K, having the property that K| is strictly convex and
‘smooth’, i.e., featureless on length scales ~ 1/k, to a finer approximation, stopping the
process at an approximation which does have features on a length scale ~ 1/k.

This idea is very much consistent with intuition and experience. For example, a well
known statement of the limitations of an optical microscope is that, if it has perfect optics,
one can use it to examine microscopic detail on a length scale approximately equal to, but
not smaller than, the wavelength of visible light. We emphasize that this limitation applies
to discerning detail on an obstacle whose diameter is much larger than 1/k. If one has a
single obstacle whose diameter is ~ 1/k, then one is said to be dealing with an inverse
problem in the ‘resonance region,” and, given some a priori hypotheses on the obstacle,
one can hope to make out some details of its structure to a higher precision than one
wavelength. This sort of problem is discussed in a number of papers on inverse problems,



such as [ACK], [AKR], [JM], and [MTW].

One difficulty in applying Newton’s method is a problem of phase ambiguity, whose
importance was impressed upon the author by W.Symes. In problems in which K is a ball
(whose position is unknown) simple explicit calculations show that the ‘basin of attraction’
of Newton iterations is small: inversely proportional to k. The author has devised a strategy
to overcome this difficulty, in cases where scattering data can be obtained at two closely
spaced frequencies. We plan to investigate the usefulness of such a strategy in enlarging
the basin of atraction for more general problems, in a future paper.

There are modifications of the analysis given here which apply to the linearized inverse
problem when K, is not necessarily convex, but verifies some hypothesis to the effect that
it is “lluminated.” We will also take this matter up, in a future publication.

1. Direct and inverse problems of acoustical scattering

The basic scattering problem we consider is the following. Let K C R® be a compact
set with smooth boundary, and connected complement 2. Let f € H*(8K) be given, and
let £ > 0. We want to solve

(1.1) (A+k2)v:00n Q,

(1.2) v = f on OK.

In addition, we impose a ‘radiation condition,’” of the following form:

o}
(1.3) lrv(z)| < C, r(a—: - ikv) — 0 as 7 — 00,

where r = |z|. It is a fundamental result of scattering theory that (1.1)-(1.3) has a unique
solution, which we denote

(1.4) v = B(k)f.

When we want to emphasize the dependence on K, we denote the operator by Bxk(k).
Some methods of producing the solution to (1.1)-(1.3) use integral equations; some results

of this sort are recalled in Appendix B.
The solution to (1.1)-(1.3) satisfies the integral identity

(15) o) = [ [f0) 2 (ek) ~ oo D)5, )] 4Sw)

0K

for z € Q, where

-1 klz—
(1.6) g(z,y,k) = (4nfe —y|) " e



{)n light of the appearance of Ov/0v in the integrand in (1.5), the operator AV(k), defined
y

(1.7) N(k)f = % B(k)f|,p

is of fundamental significance. It is called the Neumann operator.

Let us introduce some convenient notation. If K is contained in the interior K 2 of Ko,
then g = Bk, (k) fIaK defines a bounded operator

(1.8) Bi.x,(k) : L*(0K,) — L*(9K,),

whose range is contained in C*°(9K3). If either K1 = B, = {z : |z| < 7} or K, = B,,
we use the notation Bk, (k) or Bk, ,(k); if both K; and K, are such balls, we use the
notation B ,(k).

Lemma 1.1. If K; are compact sets in R*® (with connected comp]ement) such that K; C

Kz, then for any k € R the map Bk, k,(k) is injective. If also K2 is connected, this map
has dense range.

Proof. If u = Bk, (k)f vanishes on K>, then u restricted to R*\ K, is an outgoing solution
to (1.1), so by uniqueness of solutions to (1.1)-(1.3), we have v = 0 on R*\ K5. Then unique
continuation forces u = 0 on R®\ K7, so injectivity of (1.8) is established.

As for the second claim, note that, if y € K, then |z — y|"te®*I*=¥ = g (z) is clearly
in the range of By, (k). Thus if f € L?*(8K,) is orthogonal to the range of Bg, k,(k), we
deduce that

(1.9) F(z) = / f(y)g:(y) dS(y)

0K,

is zero for ¢ € K, hence for z € K, (if K, is connected). Also, material in Appendix B
implies that F is continuous across 0K, and is an outgoing solution of (1.1) on R*®\ K.
Uniqueness of solutions to (1.1)-(1.3) forces F' = 0 on R*®\ K. Since, by (B.15), the jump
of 8, F across 8K, is proportional to f, this implies f = 0, proving denseness.

Given K; C Io(g and Io(g connected, denote the right inverse of Bk, k,(k) by Ck, Kk, (k) :

Creyxeq (K)
5

(1.10) L2(8K5) D D L*(8K,).

Here D = Range Bk, k,(k). Thus Ck, k, (k) is a closed, densely defined (but unbounded)
operator, with domain D C C*°(0K:). As above, if K; = B, or K; = B, we use the
notations

(1.11) Cror(k) = Bri, (k) ™, Cpoxy (k) = Bie, p(k) ™, Cpr(k) = Bry(k) ™.
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A particularly important family of functions defined by a scattering problem is the
following. Note that we have

(1.12) (A +¢)*)e™*¢ = 0 on R3,

for any ¢ € R®. We define the functions v(z,€) on 2 x R? to satisfy the scattering problem
(1.1)-(1.3), with &2 = |¢|?> and

(1.13) v(z,€) = —e ¢ on OK.
These are the scattered waves produced by plane waves striking the obstacle K. It is also

common to write vy (z,¢) for (1.13).
For any f € C*°(8K), by (1.5) we have an asymptotic behavior of the form

(1.14) v(rf) = r—leikra(f,e,k) +o(r7t), r— oo,

with § € S2, for the solution to the scattering problem (1.1)-(1.3), with a smooth coefficient
a(f,-,-). Also

(1.15) (8/0r)v(rb) = (ik/r)e*" a(f,0,k) + o(r ).

In particular, the scattered wave v(z,€) given by (1.9) has the asymptotic behavior
(1.16) v(rf, kw) ~ r e a(—w,0,k), T — o0,

for fixed 6,w € S?, k € RY, and its r-derivative has an analogous behavior. The coeffi-

cient a(w,8,k) is called the scattering amplitude and is one of the fundamental objects of
scattering theory.

Parallel to the definition of By (k), let Ax(k)f(0) denote the factor a(f,6,k) in (1.14),

(1.17) Br(k)f(rf) ~ r~1e*T A (k)f(8) + o(r71), r — oo.

Using (1.5) one can easily derive the formula

(118)  Ax(WfO) = o= [ [k 0)f0) + NRI@)] e ds(y)

0K

We discuss inverse problems of the following sort. For a fixed £ € R and one or more
directions w, construct K, given knowledge either of the scattering amplitude a(—w, 6, k),
or of the ‘near field’ scattered wave v(z, kw), for z in some set in R?, typically the sphere
S2 ={z:|z| =r}, assuming K C B, = {z : |[z]| <r}.

We give a brief description of a few methods that have been brought to bear on such
inverse problems.



Assume you know that By C K C B,, and that you have a measurement of v(z, kw)

on 9B, = §? = {|z| = r}. You want to find (an approximation to) K. One strategy is to
minimize

(1.19) O(f, K) = ||Bir(k)f — (-, kw)lZ2(s2) + 1Bixc (k) f + e—ikw’z”%z(axp

with f and K varying over certain compact sets, determined by a priori hypotheses on the
scatterer. This is close to some methods of Angell and Kleinman, Kirsch and Kress, as
described at the end of [Co2].

Instead of minimizing (1.19) over (f,K), an alternative is first to minimize the first
term of (1.19), thus choosing f, within some compact set of functions, and then to pick K
to minimize the second term, within some compact set of obstacles.

An attack, similar to one used in [JM], is the following. Given a guess K, of K, assumed
to be connected, apply the Gramm-Schmidt process in concert with Lemma 1.1 to produce
an orthonormal basis {w; : j € ZT} of L*(0K,), such that each w; is the image under
Bik(k) of a linear combination of the first j eigenfunctions of the Laplace operator on
L?(S?). In such a case, fix J and pick f in the linear span of {w; : 1 < j < J} to minimize
the first term of (1.19). Then vary K, to minimize the second term.

An attack pursued in [Rog] and [MTW] takes a guess K, of K, solves (approximately)
a linearized inverse problem, given K,, and applies an iteration, provided by Newton’s
method, to approximate K. See also [Kir].

2. Recovering the near field wave from the scattering amplitude

Depending on circumstances, one might have a measurement of the scattered wave
vy (z,kw), for = in a region not far from K, k belonging to some restricted set of fre-
quencies (maybe a single frequency), or one might have only the far-field behavior, i.e.,
the scattering amplitude a(w, 8, k), which we recall is related to vy (z, kw) by

tkr

(2.1) v4(rl, kw) ~ c

a(-w,0,k), 7 — oco.
”

It is useful to have the following explicit relation between the scattered wave vy (z, kw)
and the scattering amplitude.

Proposition 2.1. If K C Bg(0), then, for r > R,

(2.2) o(—w,8,k) = —ik L™ ATDR 4 (kr) T g(6)
where g = gr o i is given by

(2.3) g(0) = v4(rb, kw).

As in Appendix A, h,_1(kr)~! is regarded as a family of functions of the self adjoint
operator A defined by (A.10) (acting on functions of 6), and h,,()) is given by (A.17)-
(A.18).



Proof. This result follows easily from (A.12), which implies

;(k )

h 4
(2.4) B(k)f(r6) = z;jﬁ—wx

for f € C*°(S?). To prove (2.2)-(2.3), we can suppose without loss of generality that R = 1,
and apply (2.4) with f(0) = vy (6, kw), to get

hA—%(kr)
hA—%(k)

Now compare the asymptotic behavior of both sides as 7 — co. For the left side we have
(2.1), while the behavior of the right side is governed by

vy (rf, kw) = f(0);  £(60) =vi(6,kw).

b () ~ 5=

by (A.18)-(A.19), so (2.2) follows. In fact, this argument shows that, more generally, for
f € L*(6K),

(25)  Ax(k)f(6) = —ik ez AR, 1 (kr) T g(8), g(6) = Bx(k)f(r6).

Now we can invert the operator in (2.2), to write
(2.6) vy (rd,kw) = ik e ™A DR, s (kr)a(-w, 6, k),

where the operator acts on functions of §. The operator h , 1 (kr) is an unbounded operator

on L?(S?); indeed, it is not continuous from C*°(S?) to D'(S?), which has consequences
for the inverse problem as we will see below.

A formula equivalent to (2.2) played a role in Schiffer’s original proof of uniqueness of
an obstacle with a given scattering amplitude. We recall that argument here, and give a
uniqueness statement which is perhaps a little more precise than the typical formulation.

Suppose then that K; and K, are two compact obstacles in R? giving rise to scattered
waves which both agree with v;(z,kw) in some open set O in R*®\ (K; U K3). In other
words vj(z, kw) = vi(z, kw) for z € O, where v; are solutions to

(2.7) (A+k*)v; =00n R3\ K;, v; = —e **“ on 9K,

satisfying the radiation condition. We suppose the sets K; have no ‘cavities,’ i.e., each
Q; = R3\ K; has just one connected component. In this case, possibly the complement of
K1 U K is not connected. We will let / denote the unbounded connected component of
this complement, and consider R®\ ¢/, which we denote by Kz, so K1 C K,. We assume
O C U. Let R be any connected component of the interior of K, \ K;. (Switch indices if
Ky C Kl)



The functions v; and v, described above agree on ¢/ , since they are real analytic and
agree on O. Thus u; and uy agree on U, where u;(z) = vj(z) + e =% Since each u;
vanishes on 9Kj, it follows that u = ;4 ' x vanishes on 9R, so

(2.8) (A+k*)u=00nR, u=0ondR.

In fact, one verifies that w € H}(R). In particular, u provides an eigenfunction of A on each
connected component R of the interior of K, \ K, with Dirichlet boundary condition (and
with eigenvalue —k?), if u is not identically zero, and if the symmetric difference K; A K,
has nonempty interior. Now there are circumstances where we can obtain bounds on

(2.9) dim ker (A + kz),Hl(R) = d(k),

for example if we know the obstacle is contained in a ball Bg. We then have the following
uniqueness result.

Proposition 2.2. Let k € (0,00) be fixed. Suppose & = {w;} is a subset of S? whose
cardinality is known to be greater than ;d(k). (If w, and —w, both belong to ¥, do not
count them separately.) Then knowledge of vy (z,kw;) for z in an open set O uniquely

determines the obstacle K. Hence knowledge of a(—wy, 0, k) for § € S? uniquely determines
K.

Proof. If K were not uniquely determined, there would be a nonempty set R such as
described above. The corresponding uy(z) = vy(z,kw,) + e 2@t together with their
complex conjugates, which are all eigenfunctions on R, must be linearly independent.
Indeed, any linear dependence relation valid on R must continue on all of R*\ (K; N K3);
but near infinity uy(z) = e~#**“¢ 4+ O(|z|~!) guarantees independence.

We make a few complementary remarks. First, a(—w, 6, k) is analytic in its arguments,
so for any given w, k, it is uniquely determined by its behavior for § in any open subset of
S2. Next, for k small enough we can say that d(k) = 0, so uniqueness holds in that case, for
a single w = w,. Note that, even when k? is an eigenvalue of —A on R, it would be a real
coincidence for a corresponding eigenfunction to happen to continue to R*\ (K; N K> ) with
the appropriate behavior at infinity. It is often speculated that knowledge of a(—w, 8, k) for
6 € S? (or an open set) and both k and w fixed, always uniquely determines the obstacle
K. This remains an interesting open problem.

Furthermore, suppose a(—w,,k) is known on 6 € S?%, for a set {w,} C S? and a set
{km} C R*. Then one has uniqueness provided card {w;} > rrTlriln 2d(kr). In particular, if

{km} consists of an interval I (of nonzero length), then mind(k,,) = 0, so knowledge of

a(—w,0,k) for € S?, k € I, and a single w uniquely determines K.

All of these considerations are subject to the standing assumption made throughout
this paper on the smoothness of K. There are interesting cases of non-smooth obstacles,
not equal to the closure of their interiors, to which the proof of Proposition 2.2 would not
apply. This is discussed further in §12 of [T4].

A consideration of practical importance for inverse problems is how accurately can one
recover desired information, given that certain data are observed with good but limited
accuracy. We illustrate this in the following simple situation. Suppose you know the
obstacle K is contained in a ball Bg,. Fix k € (0,00), w € S2.



Problem A. Given an approximation b(—w,0,k) to the scattering amplitude, with
(2.10) la(—w, -, k) — b(—w, > k)lL2(s2) < e,

how well can you approximate the scattered wave v4(z,kw), for = on the shell |z| = Ry,
given Ry > Ry?

What makes this problem difficult is the failure of the operator A A1 (kr) appearing in
(2.6) to be bounded, even from C*(5?) to D'(S?). Indeed, for fixed s € (0,00), one has

the asymptotic behav1or as v — +00,
1 v
(2.11) HD(s) ~ —i(iy (2—”>
U es

and hence

(2.12) hyy(s) ~ —i(s) 3 (Z)".

2 €es

Consequently, an attempt to approximate v (z,kw) for ¢ = R;6 by
(2.13) vy(0) = the 2™ A Db, 1 (kRy)b(~w,8,k),

with the operator acting on functions of 6 as in (2.6), could lead to nonsense. We will
describe a method below which is well behaved. But first we look further into the question
of how well can we possibly hope to approximate vy (z,kw) on the shell |z| = R; with the
data given.

In fact, it is necessary to have some further a priori bound on v4 to make progress here.
We will work under the hypothesis that a bound on v4(z,kw) is known on the sphere
l.’I}| = RO H

(214) ||’U+(R09,ku.))”L2(53) S E.

Now, if we are given that (2.10) and (2.14) are both true and we have b(—w, 8, k) in hand
(for w, k fixed, 6 € S?), then we can consider the set F of functions f(#) such that

(2.15) |f —b(—w, - k)||l2(s2) < e,
and such that
(2.16) Ik ha_1(kRo)fllz2(s2) < E,

knowing that F is nonempty. We know that a(f) = a(—w, 8, k) belongs to F, and that is
all we know about a(—w, 8,k), in the absence of further data. The greatest accuracy of an
approximation v; (8) to v4(R10,kw) that we can count on, measured in the L?(S$?) norm,
is

(2.17) ||'U1(9) — ’U_|_(R19, kQJ)HLz(Soz) S 2 M(E,E),
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where M(e, E) is defined as follows. Denote by

(2.18) T; : F — L*(S%), j=0,1,
the maps
(2.19) Tif(8) = ihe 3 ™A~ Db,y (kR;)f(6).

Then we set

(2.20) 2M(e, E) = sup {||Ty f — Trgl|r2(s2) : f,9 € F},
ie.,
(2.21) M(e, E) = sup {||T1f|[z2 : ||fllzz < e and ||Tof||z2 < E}.

One way to obtain as accurate as possible an approximation to v4 on |z| = R; would
be to pick any f € F and evaluate T)f. However, it might not be straightforward to
obtain elements of . We describe a method, from [Mr2] and [MrV], which is effective in
producing a ‘nearly best possible’ approximation.

We formulate a more general problem. We have a linear equation

(2.22) Sv = a,

where S is a bounded operator on a Hilbert space H, which is injective, but S~! is un-
bounded (with domain a proper linear subspace of H) Given an approximate measurement
b of a, we want to find an approximation to the solution v. This is a typical ill-posed linear
problem. As a priori given information, we assume that

(2.23) Ib—allg <e, |Toalln < E.

Ty is an auxiliary operator. In the example above, H = L?(S%), and Ty and T; are given
by (2.19). Generalizing (2.20)-(2.21), we have a basic measurement of error:

M(e,E) = sup {|T1fl|lm : |flg < e and [Tof||a < E}

2.24

(2.24) _ 1 sup {ITif — Tuglls : fog € F},
where

(2.25) F{feH:|fblu<e|Tofls < E).

Now the fact of life is that, if all you know about @ in (2.22) is that it belongs to F, then
the greatest accuracy of an approximation v; to the solution v of (2.22) you can count on
is

(2.26) [or — v|lg < 2M(e, E).
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This recaps the estimates (2.14)-(2.21). Now we proceed. An approximation method is
called nearly best possible (up to a scalar ) if it yields a v; € H such that

(2.27) [o1 = olla < 2yM(e, E).

We now describe one nearly best possible method for approximating v, in cases where T}
is a self adjoint operator, with discrete spectrum accumulating only at +oo. Then, pick an
orthonormal basis {u;:1 < j < co} of H, consisting of eigenvectors, such that

(2.28) Tou; = ajuj, o / +oo.

When T is given by (2.19) this holds, as a consequence of (2.12). It is essential that the
o be monotonic, so the eigenvectors need to be ordered correctly. Now let

L

(2.29) fo = Pgb, Pepu = Z(u,uj)Uj.
j=1

Now let N be the first £ such that

(2.30) Ife —bllg < 2e.

We then claim that

(2.31) ITofn ||z < 2E.

This can be deduced from:

Lemma 2.3. If the set F defined by (2.25) is nonempty, and if M + 1 is the first j such
that aj > E/e, then

(2.32) ||fM — b”H S 2¢ and HTOfM“H S 2F.

Proof of lemma. The key fact about M is that

(233)  |Pugll < ¢ = |ToPugll < E, and |To(1 — Par)hl] < B = (1~ Pa)h]| < e.
We are given that there exists f such that

(2.34) If = bl < ¢ and |Tof] < .

The first part of (2.34) implies ||Pyf — fam|| < €, which via the first part of (2.33) yields
the second part of (2.32). The second part of (2.34) implies | To(1 — Par)f|| < E, which
by the second part of (2.33) gives ||(1 — Pa)f|| < €. Since || f — b|| < ¢, this yields the first
part of (2.32).

Having the lemma, we see that N < M, so | Tofn| < |Tofum||, giving (2.31). Then
(2.30)-(2.31), together with (2.23), yield

(2.35) |fv — a|lg < 3e and | To(fn — a)|lg < 3E.
We have established:
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Proposition 2.4. Under the hypotheses (2.23), if we set vy = Ty fn, where N is the
smallest £ such that (2.30) holds, we have

(2.36) low —vlla <3 M(e, E).

Hence this method of approximating v is nearly best possible. Note that the value of
the estimate E of (2.14) does not play an explicit role in the method described above for
producing the approximation vy; it plays a role in estimating the error vy — v.

The method described above provides a technique for solving a certain class of ‘ill posed’
problems. Other related problems involve analytic continuation of functions and solving
backwards heat equations. Further discussions of this technique, and other techniques, can
be found in papers of K. Miller [Mr1], [Mr2], and references given there.

We now turn to the task of estimating M(e, E), for our specific problem, defined
by (2.18)-(2.21). Thus, with Ry < R;, we want to estimate ||h,_1(kR1)r2, given
that [|fllz: < e and ||[Ho_1(kRo)f|lz> < E. This is basically equivalent to estimat-
ing ||A~*e P4AAF| 2, given that ||f|[rz < e and that |A" e *4AAf||. < E, where
e”® =2/eRy and e7? = 2/eR;, so a < 3. We can get a hold of this using the inequality

(2.37) p e Py < em (PO, 3em V) 4 /207,

valid for v > %, 0 < z < o0, to write

(2.38) Ty fllz2 < C inf (e_'“’E + wzs),
z€Rt

where v = 8 — a, given || f|| < e, ||[Tof|| < E. While picking z to minimize the quantity in
brackets is not easy, we can obtain a reasonable estimate by picking

log %
(2.39) T = log log g,

in which case

E

—y < e\ v/(loglog E/e) . E( € )(logloglog E/e)/(loglog E/e)
e 1 = , ezt = .
7)

Consequently,

e\ v/(loglog E/e) e \ (logloglog E/e)/(loglog E/e)
) +(5) |

(2.40) M(e,E) < C’E[(E
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As for the exponents that appear in (2.40), note the following values (to three digits):

e/E 1/(loglog E/e) (logloglog E/e)/(loglog E/¢)

1072 .655 277
1073 517 .341
10~¢ .450 .359
1075 .409 .366
1076 .381 .368
1077 .360 .368

The close agreement of the last two figures in the right column is due to the fact that
f(y) = (logloglog y)/(log log y) achieves its maximum value of 1/e at y = e* ~ 3.81 x10°,
and is very slowly varying in this region. As for the close agreement of the two figures
corresponding to e = 1077, note that log log log €** = 1. An estimate similar to (2.40) is
given in [Isal.

Even though the analysis in (2.13)-(2.39) does not directly deal with the problem of
describing OK given an approximation b(w,8,k) to the scattering amplitude a(w, 6, k), to
some degree it reduces this problem to that of describing 0K, given the solution v = B(k)f
to the scattering problem (1.1)-(1.3), with u(z) evaluated near |z| = Ry, for a certain class
of boundary data, namely f(z) = e_ik“"”|8K (where k and w belong to a specified subset
of R and S?, respectively). One assumes it given that K C {z : |z| < Ry}, where Ry < R;.
This reduction is an intermediate step in many studies of inverse problems. Thus Problem
A is complemented by:

Problem B. Approximate v = B(k)f on |z| = Ro, given (an approximation to) v on
|z| = Ri, and having some a priori estimate of v on || = Ry, but not on a smaller sphere.

Rescaling, we can consider the case Ry =1, Ry = R > 1. By (2.4), we have

ha_1(k)

(2.41) g =v(6) and w = v(RE) = g = =777y

w = Cr(k)w,

where the last identity is the definition of the unbounded operator Cr(k) on L?*(S5?). In
view of (2.12), we have, for fixed k € (0,00), R > 1,

h,_1(k)
h,_:(kR)

v—3

(2.42) ~R't:=C e, v — +oo,

where v = log R > 0.
Parallel to (2.14)-(2.21), we consider the problem of estimating Cr(k)w in L?(S?), given
a small bound on ||w||2(s2) (estimate on observational error) and an a priori bound on

Cr(k)w in H*(S?), for some £ > 0. That is, we want to estimate

(2.43) M(e, E) = sup{||Cr(k)w| 2 : ||w||z> < € and ||Cr(k)w]| g < E}.
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Parallel to (2.37)-(2.38), we can attack this by writing
(2.44) e’ < (v/z)te? + e,
valid for v,z € (0,00). Thus, if ||g| g« = ||A’g||12, we have

(2.45) ICr(k)wl|z= < Cy inf (27CE + 7%¢).

We get a decent upper bound by setting z = 2% log(£E /ev). This yields

(2.46) M(z, E) < Ci(27)E(log i—f) o (2_5_75> :

This is bad news; ¢ would have to be terribly tiny for M(e, E) to be small. Fortunately,
this is not the end of the story.

As a preliminary to deriving a more satisfactory estimate, we produce a variant form
of the ‘bad’ estimate (2.46). Fix ¢ € C§°(R), supported on [—1,1], such that $(0) = 1.
Instead of (2.43), we estimate

(2.47) Ms(e, E) = sup{||¢(5A)CR(k)w||Lz t|lwllr: < e and ||Cr(k)w]||z: < E}

We proceed via

(2.48) P(6v)e"” < eV [P(dv)eM [ + e P(6v),

to get

(2.49) l#(8A)e A wllzs < inf [C(r,8)e " CLE + %],
where

(2.50) C(v,6) = sup PY(8v)e” < /% = RS,

Using (2.42) again, we have the estimate
(2.51) M;s(e, E) < Cy RY? \/Ee.

Now we do want to be able to take § small, to make ¥(§A4)f close to f, but R/2% = eV/28
blows up very rapidly as 6§ \, 0, so this gives no real improvement over (2.46). Compare
(2.51) with the estimate

(2.52) 1$(8A)CR(k)wl|p2 < CLRY? €,

when ||w||2 < ¢, involving no use of the a priori estimate ||Cr(k)wl|[z: < E.
We now show that a different technique yields a useful bound on Mj(e, E'), when § lies
in the range § > 1/k.
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Proposition 2.5. Let R > 1 and o > 1 be fixed. Then there is an estimate
(2.53) [%(6A)CR(k)w| L2(s2) < Cllwl|p2(s2), for a/k <8,

In particular, C is independent of k.
Proof. Since 1(6A) and Cr(k) commute, it suffices to show that

(2.54) ICr(k)w||p2 < C||lwl|g2, for w € Range x(§4),
given a/k < §, where x(A) is the characteristic function of [0,1]. Thus
(2.55) 0 <A <(k/a)I on Range x(64).

Equivalently, we claim that an outgoing solution u(r,w) to the reduced wave equation

(A + k?)u = 0 satisfies
(256)  Ju(Llgese) < CllulR Ylgsey, for u(B,) € Range x(54),

given a/k < 6.
Now u satisfies the equation

%y 20u 1
-— k> —r2L)u=0, L=A4%2--=_"Ag.
3r2+r8r+( r )u ’ 4 o

(2.57)

We can replace u(r,w) by v(r,w) = ru(r,w), satisfying

v 2 -2
(2.58) 5z T (k> —r~2L)v =0,
and it suffices to establish
(2.59) llv(1,)lL2(s2) < Cllv(R,-)||lL2(s2),

given v(R,-) € Range x(§4), and assuming that v = ru, u an outgoing solution to (2.57);
let us denote by Vis the vector space of such functions v.
It will be convenient to use a family of norms, depending on r and k, given by

Ov |2

(2.60) Nir(0)? = ((1 = (k)2 L)v,0) >

2
L2(5?) ‘ r2(s2)’

where v = v(r,-) € Vis. Note that dv/0r = [N.(k) + r~!]v(r,-), where N.(k) is the
Neumann operator (1.7), for the obstacle {|z| = r}. By (A.24), extended to treat balls of
radius 7 € [1, R],

||Nr(k)f||2m(52) < C”f”%[l(s?) + Ck2||f||%2(52)

(2.61) < Ckz[(k_sz’f)L2 + ||f||§ﬂ]‘
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Now, by (2.55),
(2.62) 0 < (kr) 2L < a %I on Range x(64),

given a/k < § and » > 1. Consequently, if @ > 1, we have constants C; € (0,00),
independent of k, such that

(2.63) Collo(Mlz2(s2) < Nir(v(r))* < Callo(r)[Z2(s2),

for all v € Vys.

We now show that, for v € Vis, Nir(v(r))> = E(r) is a monotonically increasing
function of r € [1, R]; this will establish the estimate (2.59) and hence complete the proof
of Proposition 2.5. To see this, write

dE _9 OV 2 _,0%0 Ov
(264) =2 =2Re (1= (kr)?L)5o0) + 555 (Lv,0) + 2 Re (K e =),

and use (2.58) to replace k~28%v/0r? by —(1 — (kr)~2L)v. We obtain

(2.65) i _ g((kr)—?Lv,v) >0,

P
and the proof is complete.

We can place the analysis (2.60)-(2.65) in the following more general context. Suppose

8%v

where each A(r) is positive definite, all having the same domain. If we set

(2.67) Q-(v) = (A(r)v,v) +|6:v|?,

then

(2.68) dii 0u(v) = 2 Re(A(r)v, 8,0) + 2 Re (820,8,0) + (4'(r)v,v) = (4'(r)v,0).
If A'(r) can be bounded by A(r), then we have an estimate

(2.69) ‘% Qr(v)‘ < C Q.).

Of course, if A'(r) is positive semidefinite, we have monotonicity of Q(v), as in (2.65).
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3. Linearized inverse problems

We now look at another study that sheds light on the inverse problem, namely the
linearized inverse problem. Here, given an obstacle K, denote by Bx(k) the solution
operator (1.4), and by ax(w,0,k), the scattering amplitude. We want to compute the
‘derivative’ with respect to K of these objects, and study their inverses.

More precisely, if K is given, 0K smooth, we can parametrize nearby smooth obstacles
by a neighborhood of 0 in C*°(0K), via the correspondence that, to ¢ € C®(8K) (real
valued), we associate the image 0K of K under the map

(3.1) Fy(z) =z +$(2)N(z), =€ 0K,

where N(z) is the unit outward pointing normal to 6K, at z. Then, denote B, (k) and
ar,(w,0,k) by By(k) and ay(w,0,k). We want to compute

d

(3.2) Dy Bi(k)f = T-Boy(k)f|,_y»

and Dy ag(w,0,k) = %aw(w,é?,k)lszo. The following is well-known; proofs can be
found in [Kir], [KZ].

Proposition 3.1. If f is smooth near 0K and vy(z) = %Bs@b(k)ﬂs:o’ forz € R®\ K,
then vy () is uniquely characterized by

(A + k*)vy =0 on R*\ K,

(3.3) r(@@v_;/, — ikv¢> — 0 as r — oo,
0]
Vy = 1/)(:0)(./\/(k) — 8_1{) on OK.
Here, N (k) is the Neumann operator, defined by (1.7). In other words,
of
(3.4) Dy By(k)f = BK(k){¢(m)(N(k) - 5) }

The linearized inverse problem is to find %.

Therefore, for a given smooth obstacle K, granted that the operators Bx (k) and N (k)
have been constructed, e.g., by integral equation methods, or by the ‘null field’” method,
we can to some degree reduce the linearized inverse problem for 7 to the following linear
inverse problem:

Problem. Given (an approximation to) w = B(k)g(z) on |z| = R; (and assuming that
K C {z:|z| < R1}), find (an approximation to) g on OK.

Note that this is a generalization of Problem B in §2. In fact, Problem B there is the case
where K is the ball Bg,, Ry < R;.
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As for finding Bk (k) and N (k) via an integral equation method, we mention that a
representation of the form (B.10) is preferable to one of the form (B.8), since it is very
inconvenient to deal with the set of values of k for which I + N(k) is not invertible. This
point is made in many expositions on the subject, e.g., [Co].

We note that, when we take f = e~**“'® the solution to the linearized inverse problem
is unique. Compare Theorem 1 of [KR].

Proposition 3.2. Given K smooth (nonempty), such that R®\ K is connected, define

(3.5) Lx(k,w): H(0K) — C™(R?\ K)
by
(3.6) Li(k,w)p = DyBk(k)f, f(z)= g thwe

Then Lk (k,w) is always injective.
Proof. By (11.4), our claim is that

of
T~

Since BK(k)g,aK — g, the hypothesis in (3.7) implies ¥ (z)(N(k)f — 8, f) = 0 on 0K, so
it suffices to show that

(3.7) BK(k){z/;(a:)(/\/(k) )} —0onR*\ K = ¢ =0 on 9K.

(3.8) N(k)f — —gi vanishes on no open subset O of 9K,

v

when f(z) = e, To see this, consider w = B(k)f — e~z which satisfies
(3.9) (A+k)w=00onR*\ K, w=0ondK.

If N(k)f —8,f =0 on O, then

(3.10) %‘Vﬁ =0on O.

But if O is a nonempty open subset of K, then (3.9)-(3.10) imply that w is identically
zero, by uniqueness in the Cauchy problem for A + k2. This is impossible, so the proof is
complete.

In light of (1.17), we can deduce from (3.4) that

(3.11) Dy Ax(k)f = Asc(k){w(x) (N (B)f ~ g—i) L
Then
(3.12) Dy ax(—w,0,k) = Dy Ak(k)f, f(z)= e thwz,

Recall the relation between Ag (k) and Bx (k) given by (2.5).
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4. Fine and excellent approximate identities

We look at one parameter families of operators 4(§),0 < § < 1, on functions on a
compact n-dimensional manifold M, which have integral kernels A(§,z,y) satisfying

(4.1) 67 A(8,z,y) — 0in C®(M x M \ A), for all £ > 0,

where A is the diagonal in M x M, and which, in local coordinates, have the form

(4.2) A(b,z,y) ~ 67" 68 Ap (2, (2 — 9)/8),

k>0

where each Aj(z,2)is C* in (z,z), and rapidly decreasing as |z| — 0o. An equivalent to
(4.2) is the local coordinate representation

(4.3) AB)u(z) = (2n) " [ s, 8067 a(e) de,

where

(4.4) a(8,2,6) ~ Y 6*ai(z,6¢), ar(z,€) € Sy °(R™).
k>0

Here, the difference between the left side of (4.4) and the sum over 0 < k < N of the right
side is O(6%) in S7 ¢ T{(R™), 0 < £ < N. This class was denoted OPX’(M) in [ST]. More
generally, multiplying (4.2) by §#* defines OPL#(M).

The following gives an important class of operators of this type.

Proposition 4.1. Given o € S(R), o(—82A) = A(§) belongs to OPX?, and in particular
has the form (4.3)-(4.4) with

(4'5) a0(m’€) :U(g(w,é)),

where g(z,¢) is the principal symbol of —A, i.e., g(z,&) = |€]%.

This result is a special case of Proposition 1.2 in [ST]. Related results can be found in
[T2], [T3], [Hel], [Ro2], and [Sh].
If ¢(A) = 1 for ) in a neighborhood of 0, then o(—6§>A) has the following property.

Definition. A family A(§) € OPX° is a fine approximate identity provided it has the
form (4.3)-(4.4), and, for some Cy > 0,

(46) 0.0(.’1:,6) =1 for |€| S C().

The following properties are evident.
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Proposition 4.2. If A(§) is a fine approximate identity on M, then

(4.7) A(8) is bounded in OPS] (M), 0<§<1,
and
(4.8) §7'(I — A(8)) is bounded in OPS{ ((M), 0<é<1.

In Proposition 2.2 of [ST] it was shown that OPX? is invariant under diffeomorphisms,
and that a diffeomorphism x conjugates a(é,z, D), of the form (4.3)-(4.4), to a(é,z, D), of
a similar form, with

(4.9) ao (x(z),€) = ao(z, Dx(z)*€).

It follows that conjugation by a diffeomorphism of M preserves the class of fine approximate
identities. This is a minor observation. A more incisive use of this conjugation invariance
arises in the proof of the following result.

Proposition 4.3. If A(§) € OPX(M) and if f € C(M) is real valued, and if we define
B(8) for 6 € (0,1] by

(4.10) B(6)u = e 1% A(8)('/%4),
then B(§) € OPX®(M), and, in the form (3)-(4), with b replacing a, we have
(4.11) bo(z,&) = ao(z, & + df).

Proof. Via a partition of unity, we can consider A(é) of the form (4.3)-(4.4), where a(é, z,¢)
is supported on ¢ € K, a compact set in R™ If f has no critical point on K, one can (using
the conjugation invariance (4.9) and perhaps a further partition of unity) reduce the result
to the case f(z) = z;. In that case, B(§) has the form (4.3) with a(é,z,{) replaced by
b(8,z,¢) = a(b,z,6 + 1), e1 = dzy. Thus (4.11) holds in that case. Now if f has a critical
point at g € M, we can pick a neighborhood U of zy and write f = f; + f2 on U, where
f1 and f> have no critical points in U. Using

(4.12) e=iI/5 A(§)eif/8 = g=if2/5 (e—if1/5A(5)eif1/5)eif2/5,
we have the result (4.10)-(4.11) in general.
Applying this to o(—§2A), we see that
(4.13) e 0 g(—82A) (e Pu) = Af(6)u,
where A¢(6) has the form (4.3)-(4.4) with
(4.14) ao(z,&) = a(g(:c,ﬁ + df))

If ¢(A) = 1 for |A| < CZ, then ag(z,€) = 1 for ¢ near 0, provided |df(z)| < Cy, so
|€ + df|*> < CF for |¢| < Cy, if Cy is small enough, in fact, provided Cy < Cy — |df()|. This

is a key case of the following result, which is an immediate consequence of Proposition 4.3.
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Proposition 4.4. Suppose A(§) is a fine approximate identity on M, such that (4.6) holds.
If f € C(M) is real valued and |df(z)| < By < C, for all ¢ € M, then the conjugated
operator B(§), given by (4.10), is also a fine approximate identity on M. More generally,
if

(4.15) |df(z)] < By < Cy forz € U,
where U C M is open, then B(§) is a fine approximate identity on U.
In particular, if (4.15) holds, then, given ¢ € C5°(U),
(4.16) 571 (1 - e /%6(~8A)eH/7) M, is bounded in OPS} o(M),
for 6 € (0,1]. Also
(4.17) 67 (M, - M¢e_if/‘$a(—62A)eif/§) is bounded in OPS! ,(M).
In addition,
(418)  57y(—82A)(M, - Mye™ 755 (~82 )/ ) is bounded in OPS! o(M),

provided ¥ € C§°(R) is supported on [—a,a], with a < Cy — B,.
For more refined results, it is convenient to associate to A(§) € OPX’(M) an operator

A* € OPS°(M x S%), defined by
(4.19) A% (u(z)e*®) = A(k N )u(z) e, ke Z)\o.
We define the left side to be 0 if k = 0. Then A#(z,6, D, o) has symbol

(4.20) A*(2,0,6,)) = a(A71,2,6) ~ > A a;(z, €/

>0

The hypothesis aj(z,{) € S~ implies that the apparent singularity in the symbolat A = 0
is removable. A% (z,6,£,)) is C™ in all its arguments, away from (£, ) = (0,0), and it is
a symbol in S°(M x S'). Furthermore, the complete symbol of A(z,8,D, ) vanishes to
infinite order at A = 0. Let us denote by S7(M x S!) the set of symbols in S™(M x S?!)
which vanish to infinite order on {A = 0}. Denote by OPS™s(M x S*) the set of operators
with symbols in S™(M x S') which commute with the S! action. As noted in [ST], one
easily establishes the fact that A(§) — A% gives

(4.21) J : OPY’(M) — OPS)s(M x S*),

which is an isomorphism, modulo OPX~> and OPS_°(M x S'). Also [ST] notes the
following convenient characterization of OPS?%(M x S') : Given P € OPS°(M x S'), P
belongs to OPS® (M x S') if and only if, for each j > 1, there exists P; € OPS™/(M x S?)
such that

(4.22) P = D}P; mod OPS™(M x §%).

Now the correspondence (4.20) of symbols makes the following apparent.
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Proposition 4.5. A family A(§) € OPX°(M) is a fine approximate identity if and only
if A# = J A(8) has principal symbol equal to 1 in some conic neighborhood of {¢ = 0} in
T*(M x S*)\ 0.

We now define an excellent approximate identity as a family A(§) € OPX°(M) such
that A% = 7 A(§) has total symbol equal to 1 on a conic neighborhood of {¢ = 0}. Refining
the observation that o(—§2A) is a fine approximate identity, we have the following.

Proposition 4.6. If ¢ € S(R) and o(\) = 1 for X near 0, then o(—§2A) is an excellent
approximate identity.

Proof. Given the discussion above, it remains to show that I—o(—D,?A) has order —co on
a conic neighborhood of {¢ = 0} in T*(M x 5*)\0. Note that, via (4.21), the correspondence
(4.20) shows that the principal symbol of o(—Dy 2A) is 1 on a conic neighborhood of
{¢ = 0}. To go further, we make the following observation. Pick o € Cg°(R), supported on
an interval on which o()) = 1, and such that (A) = 1 on a smaller interval about A = 0.
Then, by the same reasoning, 5(—D,>A) € OPS°(M x S') has principal symbol equal to
1 on a conic neighborhood of {£ = 0}, so it is elliptic there. But

(4.23) [I —o(—D,*A)|5(—-Dy?A) =0,

so our conclusion follows from microlocal elliptic regularity.

As a step toward refining Propositions 4.3-4.4, we consider the image under 7 of B(§),
defined by (4.10). Indeed, if 7 A(6) = A#, then

(4.24) JB(6) = B¥ = ¢ #/Ds g# ¢ifDe

Now if(z)Dg = f(z)8/88 is a real vector field, generating a flow on M x S'. The fact that
the right side of (4.24) belongs to OPS%(M x S') is hence a consequence of the coordinate
invariance of pseudodifferential operators. Clearly all three factors on the right side of
(4.24) commute with Dy. Also, if A* possesses the property (4.22), so does B#. Hence

A% ¢ OPSY (M x S') = B¥ € OPS° 4(M x S?),

so, via the isomorphism (4.21), we re-establish Proposition 4.3.
We can say more. If Ay = I — A# has order —co on a cone I' C T*(M x §')\ 0,
then the time-one evaluation of the flow generated by f(z)0/96 transforms I' to a cone

T C T*(M x S*)\ 0, and the conjugated operator B; = e~ /D¢ A;¢ifDe will have order
—oo on I'. Under the hypothesis (4.15), I is still a conic neighborhood of {§ = 0}, over
U x S, so we have the following.

Proposition 4.7. If A(§) is an excellent approximate identity on M, such that (4.6) holds,
and if f € C(M) is real valued and satisfies (4.15), then B(§) = e~/ A(§)e!f/? is an

excellent approximate identity on U.

Finally, we refine Proposition 4.2.



Proposition 4.8. If A(6) is an excellent approximate identity on M, then, for m > 0,

(4.25) §~™[I — A(8)] is bounded in OPS[*(M), 0<§<1.

Proof. Tt suffices to show this for m = 27,5 € Z™. In such a case, for k € Z \ 0,

k21— A(k™))u(z) = ke (I — A%)(u(z)e'?)
(4.26) = e D2 (T — A%)(u(z)e?).

Since I — A% has order —co on a conic neighborhood of {¢ = 0}, we can write

(4.27) I — A% = Pj;A7 + Ryj, Py; € OPSS* (M x S'), Raj € OPSZ™(M x S,
where as before the subscript S indicates commutativity with Dg. This yields

(4.28) § I — A(8)] = B»j(8)A7,

modulo a negligeable error, where B;;(§) satisfies

(4.29) Boj(k™Nu(z) = e *Qq; (u(z)e™?), Qqj = Dszzj € OPSY(M x S1).
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As shown in §3 of [ST], this defines a bounded family in OPSY] ((M), of the form (4.4),

but with ag(z,€) € S™* rather than in ™. The proposition is proved.
If A(6) € OPX®(M) is an excellent approximate identity on U C M, we have

(4.30) 5~ ™M, [I - A(5)] and 5_m[I — A(6)] M, bounded in OPST\(M),

when ¢ € C°(U).

We note the fact that §~™ [I—o(—6>A)] is bounded in OPS]" (M) is relatively straight-
forward, for o()\) described above. However, the fact that e if/%o(—§2A)eif/% has the

property (4.30), under the hypothesis (4.15), is less apparent.

It will be convenient for us also to associate to A(§) € OPX’(M) an operator on
functions on the non-compact space M x R. Let B(k) = A(6) be defined for all &k =
67! € R\ 0, and assume that B(0) can be defined so that B € C®(R, £L(L*(M))). In
that case we say A(§) € OPE)O(M). For example, if M = pt., then A(§) = () (with
B(k) = k/(k)) has this property, but A(§) = §/(6) (with B(k) = (k)~! sgn(k)) does not.

Given A(6) € OPEO(M), we set

(4.31) A## (/ u(k, z)e'* dk) = /B(k)u(k,:c) e*t dk, B(k) = A(k™Y).
Then A##(z,t, D, ;) has a symbol expansion of the same form as (4.20):

(4.32) A*#(z,t,6,7) = a(t7 ), 2,€) ~ ZT Ta;(z,&/T).

3>0
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Clearly A## belongs to OPS°(M x R), and this operator commutes with ¢-translation.
Thus we can write

(4.33) At#y(t,2) = /_°° /FA(g)(t —s,z,y)u(s,y) dV(y) ds,
M

where, near t = s,z =y, Fa(6)(t — s,2,y) has the form of a singular integral operator of
order zero. Furthermore, F4(4)(t,2,y) is smooth outside {(¢,z,y) : ¢t =0,z = y}, and

(4'34) FA(&)(t’way) = O(|t|_N) as |t| — 00,

for all N € Z™, together with all derivatives. An operator P € OPS™(M x R) which
commutes with D; and has the last property will be said to belong to OPSEF(M x R). We
say P € OPSTx(M x R) if also the complete symbol of P vanishes to infinite order at
7 = 0. Parallel to (4.21), we have A(§) — A## defining

(4.35) J : OPS* (M) — OPS% (M x R),

an isomorphism, modulo OPS~°(M) and OPS_(M x R). A characterization of the
operator class OPS? o(M x R) parallel to (4.22) also works.
The Poisson summation method defines a map

0
(4.36) 0 : OPSY)p(M x R) — OPSYg(M x SY), Fa(t,z,y) — Z Fa(t+2mj,z,y),

j=—oo

and we have 7 = 0 0.7 on OPS°(M). The following is then a simple reformulation of the
definition.

Proposition 4.9. A family A(§) € OPiO(M) is an excellent approximate identity on U C

M if and only if A## = jA((S) has total symbol equal to 1 on some conic neighborhood
of { =0} in T*(U x R)\ 0.

5. Estimates on B(k)

The integral equation methods described in §B give no effective way to estimate the
norm of B(k). In this section we show that decent estimates on B(k) hold in the special
case that there is local exponential decay for the wave equation on R x Q. As is well known
[Mel], [MRS], this holds whenever there are no trapped rays.

The relation between the solution to (1.1)-(1.2) and the wave equation is the following.

Given f € H*°(0K), let u(t,z) solve

&u

(5.1) o7

— Au =0 for (¢t,z) € R x Q,
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and

(5.2) Ulp oxc = f(2)8(t), uw=0fort<0.
Then

(5.3) B(k)f(z) = a(k,=),

where i(k,z) is the Fourier transform of u(t,z) with respect to t.

It is convenient to smooth out the ¢-dependence. Pick ¥ € C§°(R) such that supp
% C [0,1] and $(0) = 1. Thus 9 € S(R). Let thy(t) = e%h(t), so Pa(k) = p(k — £). Now
define wy(¢,z) by

(5.4) 2wy — Aw, =0 on R x Q, wdmxaK = 1e(t)f(z), we=0fort <O.
We have
(5.5) we(k,z) = P(k — £)B(k)f().

Since the Dirichlet problem for the wave equation is strongly well-posed, there is an
estimate

(5.6) llwell 2o, 71x0) < C1||fllz2(0k),

for any T < oco. Furthermore, for ¢ > 1, we have

(5.7) lwe(t, Mlz2(a) < Cillfllz2(ok)-

Under the hypothesis of local exponential decay, if O is a fixed bounded open subset of 2,
say O = {z € Q:|z| < R}, we have

(5.8) lwe(t, M2y < Ce || fllz2 o)

for some L > 0. Estimating the Fourier transform of w:(¢,z) with respect to ¢, we obtain
(5.9) [e(k; )220y < Cullfllzz(ox)-

Here C; is independent of £. Taking ¢ = k, we then get from (5.5) our first estimate:
(5.10) I1B(k)fllzz(0) < Callfllz2(ox)-

In case K is the unit ball, this follows from (A.13), together with the known monotonic
decrease of |'I‘%H1(,1)(T)|, as a function of r > 0, for fixed v > 0. In fact, if we let

(5.11) Biy(k): L*(S?) — L*(S%)
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be defined by B;,f(pw) = Bk (k)f(pw), when K is the unit ball B;, we see that
(5.12) 1B1p(k)llezyy <1,

keeping in mind that S,z) has area 4mp®. From this it follows easily that, if K is contained
in B; (which can be arranged by scaling) and if S? is the sphere |z| = 7, then, as long as
K satisfies the local decay hypothesis, we have (say for r > 2)

(5.13) Bro(k) : L2(8K) — L*(S2),

given by Bk, f = Bk f|,, and

(5.14) 1Br(k)fllz2(s2) < Callfllz2(ox)-

We emphasize that the right sides of (5.10) and (5.14) are independent of k£ € R.
We can estimate the H?(O) norm of Bg(k)f by applying regularity estimates to Av =
—k2v, v|6K = f and using (5.10). We obtain

(5.15) 1Bx(k) 12(0) < Clf 43 o) + CF Il z2or)-

6. Resolution of details of an obstacle

Assume you know that B; C K C B,, and that you have a measurement of v(z, kw) on
|z|] = r. You want to find (an approximation to) K. As mentioned at the end of §1, one
strategy is to minimize

(6.1) ®(f,K) = ||Bp,(k)f — v( kw)l|3z(sz) + 1By (k)F + €™ %32 (5x),

with f and K varying over certain compact sets, determined by a priori hypotheses on the
scatterer.

More generally, one might have measurements of v(z, kw;) on |z| = r, for a sequence of
incident directions w;. Then one might take

N N
(6.2) e = Z”BBH(k)fj - ”("k“’j)l|21;2(s,2,) + Z”BBl(k)fj + e_ikwﬂ”;z(ax)’
j=1

i=1

and minimize over (fi,... fn; K). One might also consider weighted sums. Note that the
possibility of making any one of the terms in (6.2) arbitrarily small (if K is given) follows
from Lemma 1.1, if K is connected.

In light of Proposition 2.5, we are motivated to take

a

(6.3) fi € Range x( kA> = Vi/as
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for some fixed a > 1, i.e., f; in the sum of the eigenspaces of A with eigenvalue < k/a. In
this case, a bound on ||Bp,(k)f; — v(-, kw;)||12(s2) implies an L? bound on f;, within the
finite dimensional space Vj/,. Thus this puts f; in a compact set.

Instead of minimizing (6.2) over (fi,...,fn; K), an alternative is first to minimize the
first term of (6.2), thus choosing f;, and then to pick K to minimize the second term,
within some compact set of obstacles. In this case, f; is simply given by

(6.4) fi = Co(k)x (k )'v], v;(8) = v(r8, kw;).

In light of the results of §4, we propose instead to take

a

(6.5) i = Colk)p (24) vs,

where 9 € C§°(R) is supported on [—1,1] and equal to 1 on [/, ], for some 3 € (0,1).
It is consequently of interest to investigate the following question. Give an obstacle K,
such that By C K C B,, and given other hypotheses on K, how small can we say

(6:6) o 4 B, (R (4o,

0K

is, given that v;(8) is (an approximation to) v(r6, kw;)? Recall from §1 the notation Cx (k)
for p|, BB, (k)Cr(k), so (6.6) is the same as

(6.7) e i 4 0 (k) (kA>vJ

There is a similar set-up for the linearized problem. Suppose K is given, and B; C K C
B,.. Suppose you have a measurement of

(68)  Ti(2) = DuBr(kwi(e) = B(W){p(e) (N (byu; - 52)}, = 52

where w;j(z) = e"*#*«i'® 1 < j < N. You want to find an approximation to ¢(z) on K.

A strategy parallel to (6.2) is to minimize

2

N
(69) ¥ =3 |Ba, ()

. N Ow;
- T rasy) ;HBBI(’“)JCJ' - "°<N(k)wj - FJ)

L2(8K)’

with {fi,...,fn} C L*(S?) and ¢ € L?*(8K) varying over compact sets, determined by
a priori information on the scatterer K and its variation §¢. As before, an alternative is
first to minimize the first term in (6.9), thus choosing f;, and then pick ¢ to minimize
the second term, within some compact set of functions on K. As a further modification,
parallel to (6.5), we can set

(6.10) fi = Gk (54T, A= (—rAs + i)i.
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where ¢ € C§°(R) is supported on [—1,1] and equal to 1 on [—f, ], for some 3 € (0,
Note that, if f € L?(S}) and g € L?(S?) are related by f(rf) = g(8), then A, f(r6)
Ag(0).

Consequently we are interested in the following two questions. Given an obstacle K
such that B; C K C B, and given other hypotheses on K and on ¢, how small can we
say

1).

(6.11) Crx(k)¢<%Ar>Fi —9°<N(k)“’j N 'af;U—Vj)

is on 0K, given that I'; is (an approximation to) D¢BK(k)wj|Sz? Furthermore, how small
can we say ’

B Ow; o

(6.12) (ks ~ 22 )_ICTK(k)v,b(EAT)I‘j o

is on 0K?
Note that estimates on (6.11) and on (6.6), given K, are both related to the question of
producing estimates on

given g on OK. In fact, suppose Bk, (k)g = h is measured as hy = h + hg, where hg is the
error. Then

«

(6.14) g- CTK(k)IZ’(%Ar) hy = (6.13) _CTK(k)‘b(k

Ar>h0,

and the uniform bound on C,x (k)¢ (% A,) given by Proposition 2.5 controls the last term.

It is easiest to tackle the question of estimating (6.13) in the case that K is the unit
ball B,, since

(6.15) K = B, = CTK(k)ip(%AT)BKT(k)g - ¢(%A> g.

In this case, we are estimating g — 1/)(%A)g, and we have a number of strong estimates on
this, discussed in §4, following from the fact that

(6.16) I- ¢(%A) is O(k™™) in OPST(52), m > 0.
Let us now look at what estimates we can get on (6.12), when K = B;. In (6.12),

Bywjlsz = —ik(w; - *)wj, since ¢ = v(z) is the normal to S? at . Now, we can analyze
N(k)w; for large k, away from the shadow boundary

Y ={z €S :v(z) wj =0}
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via Kirchhoff’s approximation:

N(k)w; = +ik(w; - v(z))w; + O(1)  in Hlum(w;)

(6.17) = —ik(w; - v(z))wj + O(k~*°) in Shad(w;),

where, for a general convex K,
Num(w) = {z € 0K : v(z) -w < 0}, Shad(w)={z € 0K : v(z)-w > 0}

are the ‘illuminated’ and ‘shadow’ regions of 0K, for a plane wave travelling in the direction
w. Rigorous justification of (6.17) requires knowledge of the propagation of singularities
of solutions to the wave equation. A proof of (6.17), including an estimate of the error
near Y;, is given in Chapter 10 of [T3]; a detailed analysis of corrections near the shadow
boundary is given in [MeT1].

In particular, in the shadow region, (N(k)wj — Bywj) ! is too large, so we have by
(6.12) a poor approximation to ¢ there, if k is large.

On the other hand, within the illuminated region, Proposition 4.4 applies, and we see
that we get a good approximation to ¢ there. More precisely, Proposition 4.4 yields a good
estimate on (6.12), for z in the set

(6.18) Top(ws) = {z € Tum(wy) : /1 - ((z) - w;)? < ()},

provided ¢ € C§°(—1,1), ¥(A) =1 for |A] < B, when 8K = S2.
We now analyze (6.13) for more general K than balls. For now we assume K is strongly
convex. We have the following extension of (6.15).

Proposition 6.1. If By C K C B, and K is strongly convex, then, with ¢, a, and A, as
above, we have

(6.19) 2(6) = CTK(k)qb(%A,)BKT(k) € OPY(8K), 6=1/k.

Furthermore, Z(§) is an excellent approximate identity.

Proof. We will examine J Z(§), acting on functions on 0K x R. We have
(6.20) JE(8) = C,x ¥(aD;'4,) By,

where Bk, which maps certain functions on 8K x R to functions on S? x R, is defined
as follows. If f € £'(OK x R), Bk, f is the restriction to 52 x R of the unique solution
u=Bgf of

&%u

52 u =0 for t << 0.

(6.21) —Au=0on (R*\ K) xR,

u|BKxIR =1
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Bx and Bk, extend to more general spaces of functions and distributions, as will be
discussed below. Since 3 € C§°(R) and #(X) = 1 for A near 0, we can set ¥H(A7!) =
1 —11(X), Y1 € C§°(R), and we have

(6.22) p(aD;'A,) =1 — 1 (e A D,) € OPS? 5(S? x R).

The operator C,x acts on a space of functions on S2 x R; C,x f is the restriction to K xR
of the solution to the wave equation on (R®\ B;) x R continuing Bp, f. The domain of
C,k contains the range of 'd)(aDt_lAr)BKT.

To say more about the domains and ranges of these three operators, note that, by
propagation of singularities and local exponential decay, given f € £'(OK x R), Bk, f €
D'(S? x R) vanishes for ¢ << 0, has compact singular support, and is exponentially de-
creasing, with all derivatives, as ¢ / +o0o. The operator Bg, is the sum of a Fourier
integral operator Bﬁr of order 0 and an operator B (whose detailed nature need not
concern us here), which smooths out distributions with wave front set disjoint from a small
conic neighborhood of glancing. The integral kernel of an operator in OPS? (52 x R) was
discussed in §4.

We now look at C,x1 (aDt_lAr), the restriction to K x R of C,9 (aDt_lAr), defined
by

r)% HY(sD,)

(6.23) C,.gb(aDt_lAr)g(sG,t) = <— zb(aDt_lA)g(rG,t), 1<s< oo

s/ HP(rDy)
Parallel to (2.57), this satisfies
2w 20w 9 _sg
(6.24) oo (D2 +572A5)w =0,

and, as s decreases from 7 to 1, if g(r6,t) is in the range of ¥ = ¥(aD; 'A4,), then the
family of square norms of w :

2

2 -2 8
(6.25) ((D; +s “As)w,w> + Hgﬂ

S

L2(S?)

is monotone. On the range of ¢, D? + s 2Ag is comparable to —(8? + Ag), for 1 < s <'r,
and the estimate (2.67) applies to dominate ||8w/8s||';’42(52). Thus

(6.26) C.x ¥(aD;'A;) : L*(82 x R) — L*(8K x R).

It is also clear that this is a Fourier integral operator of order 0, which smooths out the
elements of the range of B4 and whose wave front relation inverts that of Bﬁr. Therefore
the operator (6.20) is a pseudodifferential operator of order 0 on K x R.

Certainly the operator (6.20) commutes with Dy, so it has a Schwartz kernel of the
form L(t — s,z,y). We see that the singular support is contained in {t = s,z = y}, but
it is not clear that L is rapidly decreasing as |t — s| — o0, and we do not claim that
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=(8) € OPio(aK). However, we can pass to the quotient of t-space, R — R/(£Z) = T,,
if £ is large enough, and establish the analogues of (6.23)-(6.26) with R replaced by Ty,
together with a similar modification of Bk, obtaining

(6.27) J E(8) € OPS° (0K x T,),

commuting with D;. Also, by Egorov’s theorem, J =(§) is microlocally equal to 0 on a
conic neighborhood of {7 = 0} and microlocally equal to I on a conic neighborhood of
{€ =0} in T*(OK x T,) \ 0. This finishes the proof of Proposition 6.1.

A. Some formulas for scattering by a sphere

In this appendix we collect some useful formulas for solutions to problems of scattering
by the unit sphere 2 C R3, particularly the scattering problem

(A.1) (A+ k) =00nQ, v=fon S r(8v/0r —ikv) — 0 as r — oo,

where Q@ = {z € R®: |z| > 1}, the complement of the unit ball. As before, we consider
real k to start with. This problem can be solved by writing the Laplace operator A on R®
in polar coordinates,

(A.2) A=082+2r"18, +r % Ag,
where Ag is the Laplace operator on the sphere S?. Thus v in (A.1) satisfies
(A.3) r20%2v 4 2r0,v + (k*r* + Ag)v = 0

for r > 1. In particular, if {¢;} is an orthonormal basis of L?(S5?) consisting of eigenfunc-

tions of Ag, with eigenvalue —A?, and we write

(A4) o(rw) = S vi(r)esw), r>1,

J
then the functions v;(r) satisfy the ODEs
(A.5) r*off(r) + 2roj(r) + (k*r® = X3)vi(r) =0, r>1.

This is a modified Bessel equation, and the solution satisfying the radiation condition
r(v;(r) —1kvj(r)) — 0 as 7 — oo is of the form

(A.6) vj(r) = ajr 2 HY (kr),

where H ,(,1)()\) is the Hankel function. We recall from [Wat] the integral formula

2\ seilz=—%) [ 1 s \V"3
A7 HWM(2) = (— ———/ T2 (1 — —) ds.
(A.7) v (2) 7rz) T'(v + %) 0 © e ( ’
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This is valid for Re v > —% and —%71' < arg z < 7. Also, in (A.6), v; is given by

(A.8) vi=(%+7) :

The coefficients a; in (A.6) are determined by the boundary condition v;(1) = (£, ;), so

(A.9) a; = (f,0;)/H) (k).

Using these calculations, we can write the solution operator B(k) to (A.1), v = B(k)f,
as follows. Introduce the self adjoint operator

(A.10) A= (—As + i)é,
(A.11) Ap; = vjp;.

Then

(A.12) B(k)f(rw) = r"%%(A,k,kr)f(w),

where (v, k,kr) = H,(,l)(kr)/H,(,l)(k), and, for each k,r, »(A,k,kr) is regarded as a

function of the self adjoint operator A. For convenience, we use the notation

HY (kr)
1

H ()

D=

(A.13) B(k)f(rw) =r~ f(w).

Similar families of functions of the operator A will arise below.
Taking the r-derivative of (A.13), we have the following formula for the Neumann op-
erator:

_REDR) 1
(A.14) N = [t 0 | #).

We also denote the operator on the right by kQ(A, k) — %, with
(A.15) Qv k) = HY'(k)/HV ().

We now derive some properties of the operators (A.13) and (A.14) which follow from the
special nature of the operator defined by (A.10). The standard analysis of the spectrum

of the Laplace operator on S? gives

(A.16) spec A={m+3:m=0,1,2,...}.
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(1)
m+%
elementary functions of \. We have

Now , as shown in [Wat], H ' .(}) and the other Bessel functions of order m + 1 are all

(A.17) H(l) 1(}\) <27;\) B ()
where

m  eih
(A.18) hm(A)z—i(—l)mG%) (%)

— A_m_lpm(A)ei’\

and p.,,(A) is a polynomial of order m in A, given by

—m— k + k) ek
p(3) =77 2 (5) G an

(A.19)
!
:zm_lAm_{.__*_ _I_.M.
2mg  m!
Consequently,
_1 hm(k'f') e e pm(k'p)
A,zO r 2%m+%’k’kr — =p m lelk(’r‘ 1)___
20) 2 b ) = pul®)
and
!
k
(A.21) kQ(m + 1,k) = ik — (m+ 1) + & PmlP),
) pm(k)
Each polynomial p,,(\) has m complex zeros {(mm1,...,{mm}, by the fundamental theorem

of algebra, and the collection of all these (,; is clearly the set of scattering poles for S2.
Note that (A.21) can be written

(A.22) kQ(m + 1, k) =ik — (m+ 1 Z (k — (i)~

It is known (see [Wat]) that, for v € [3,00), the zeros (;(v) of H,(,l)(z) in {Im z < 0}
are bounded away from the real axis. Consequently, using (A.22), we obtain the estimate

(A.23) |kQ(m + 1,k)| < C(|k| + m + 1),

for k € R,m > 0. Applying this to the formula (A.14) for the Neumann operator, we
deduce that, for s € R,k € R,

(A.24) IV () fllae(s2y < Collflla+1(s2) + Cslk| - || fll s (s2)-
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B. Integral equations for direct scattering problems

Here we collect some well known integral equations which lead to the solution of the
scattering problem (1.1)-(1.3). These involve the single layer and double layer potentials,

(B.1) St(k)f(z) = / 7w) gle,u,k) dS(w),
and

(B.2) / F(y) 2L (2,y, k) dS(y),
where

(B.3) g(z,y,k) = %

Key facts about these are the limiting behaviors

St(k)f+(z) = S(k)f-(2) = G(k)f(),
Di(k)f(z) = £3f(z) + 3N (k) f(=),
where uy(z) is the limit of u(z) as z — ¢ € 0K from within R®\ K, and u_(z) is the

limit as z — z from within the interior of K. Here, the singular integral operators G(k)
and N (k) are given by

(B.4)

(B.5) /f z,y,k) dS(y),
and
(B.6) B)f(z) =2 / @) 2 (2, k) dS().

The operators G(k) and N (k) are both compact. In fact, an analysis yields
(B.7) G(k),N(k) € OPS™'(8K), G(k) elliptic.

The solution to (1.1)-(1.3) can be written in the form

(B.8) B(k)f = Di(k)g, g=2(I+N(k)) " f,
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or in the form

(B.9) B(k)f = Sk(k)g, g=G(k)7"f,

with some exceptions. As is well known, I + N(k) is invertible on H*(0K) for all real
k except for k = )\;, where —)\? is an eigenvalue for A on the interior of K, with the
Neumann condition, while G(k) : H*(8K) — H*''(OK) is invertible for every real k
except k = pj, where —u? is an eigenvalue of A on the interior of K, with the Dirichlet
boundary condition. Since it is undesirable to have to deal with all these exceptions, one
also looks at another useful representation of the solution to (1.1)-(1.3), which arises by
picking a real n # 0 and using the form

(B.10) B(k)f = De(k)g + inSl(k)g, g=2(I+ N(k)+ 2inG(k))”f.

It is known that I + N(k) + 2inG(k) is invertible for all k in the first closed quadrant in
C, when n > 0, and for all k in the second closed quadrant of C when n < 0.
We also note that (1.4) gives the representation

(B.11) B(k)f = DE(k)S — SURIN(R)S,

where NV(k) is the Neumann operator (1.7). Note that evaluation of this on 8K, using
(B.4), gives

(B.12) N(k) = G(k) ™ (N(k) - I).

The poles of G(k)™! on the real axis are removable singularities for AV/(k), being cancelled
by the action of N(k) — I.

Another representation of the Neumann operator is obtained by looking at the normal
derivative of S¢(k)g. In rough parallel with (B.4)-(B.7), we have

(B.13) % St(k)g = L(N#(k)g F g),

where 8/0v4 is the normal derivative from outside/inside K, and

(B.14) _2/f z,y,k) dS(y); N%(k) € OPS™(8K).

In particular,

9 —SL(k)g — iSﬁ(k) = —g on OK.
81/+

(B.15)
Now, computing 8/0v; on S€(k)g = B(k)f, we obtain the identity

(B.16) N(k) = +(N#(k) - I)G(k) .
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Note that comparing (B.16) with (B.12) yields the intertwining relation N(k)G(k) =
G(k)N# (k).
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