PASSAGE-TIME MOMENTS FOR CONTINUOUS NON-NEGATIVE STOCHASTIC PROCESSES AND APPLICATIONS

By

M. Menshikov

and

R.J. Williams

IMA Preprint Series # 1265 October 1994

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA

514 Vincent Hall 206 Church Street S.E. Minneapolis, Minnesota 55455

PASSAGE-TIME MOMENTS FOR CONTINUOUS NON-NEGATIVE STOCHASTIC PROCESSES AND APPLICATIONS

M. Menshikov† and R. J. Williams*

Abstract

We give general criteria for the finiteness or not of the passage-time moments for continuous non-negative stochastic processes in terms of sub/supermartingale inequalities for powers of these processes. We apply these results to one-dimensional diffusions and also to reflected Brownian motion in a wedge. The discrete-time analogue of this problem was studied previously by Lamperti and more recently by Aspandiiarov, Iasnogorodski and Menshikov [2]. Our results are continuous analogues of those in [2].

Key words. Passage-time moments, sub/supermartingle inequalities, diffusions, reflected Brownian motion in a wedge.

AMS Subject Classification. Primary 60G44, 60J60.

Running title. Passage-time moments.

1. Introduction

In this paper we consider the problem of finding general criteria for the finiteness or not of the passage-time moments for continuous non-negative stochastic processes which might not be Markov processes. (Here passage-time means time to hit a compact set about the origin.) The discrete-time analogue of this problem was studied previously by Lamperti [3] and recently Aspandiiarov, Iasnogorodski and Menshikov [2] have given more general criteria than those of Lamperti [3]. In this paper we give continuous analogues of the results in [2]. Specifically, in Section 2 we give conditions for the finiteness or not of the p^{th} moments (p > 0, real) of the passage-times of a continuous non-negative process in terms of sub/super-martingale inequalities for powers of the process. (Here we abuse terminology and refer to the mean of the p^{th} power of a passage-time as the p^{th} moment

[†] Research supported in part by a grant from the International Science Foundation (SOROS).

^{*} Research supported in part by NSF Grant GER 9023335.

of that passage-time, thus extending the usual terminology from integer p > 0 to all real p > 0.)

In Section 3, to provide some intuition for the reader, we give a simple application of our results to one-dimensional diffusion processes. This case may be viewed as a prototype for the more general results presented in Section 2. The conditions given in Section 3 are analogues of results obtained by Lamperti [3] and Aspandiiarov et al. [2] for one-dimensional discrete-time Markov processes.

A more substantial application is given in Section 4. In [2], Aspandiiarov et al. give explicit criteria for the finiteness or not of passage-time moments for driftless reflected random walks in a quadrant. In [1], using an approximation by these reflected random walks, Aspandiiarov and Iasnogorodski obtain analogous criteria for reflected Brownian motion in a wedge (henceforth abbreviated as RBM). Their results are in terms of a parameter α which depends in an explicit way on the geometric data of the RBM. In Section 4, we give a direct proof of the results of [1] for RBM (in all except the critical case $p = \alpha/2$) using the criteria of Section 2. In addition, we are able to prove finiteness of the p^{th} passage-time moments in the case 0 which was not covered in [1]. Throughout Section 4 (as well as in [1, 2]), a martingale function of the reflecting Brownian motion plays a crucial role. This function appeared first in the work of Varadhan and Williams [4] where in particular it was used to obtain conditions for the finiteness or not of the first passage-time moment for reflected Brownian motion in a wedge (see Corollary 2.3 of [4]).

We feel the criteria in Section 2 are natural and quite general, and might be usefully applied beyond the applications of Sections 3 and 4. Furthermore, comparison of the results here and in [1, 2] indicates that there is an intimate connection between the discrete and continuous results. These points will be further illustrated in a separate work where we apply the results of [2] and Section 2 to obtain explicit criteria for the finiteness or not of p^{th} passage-time moments for reflected random walks and reflected Brownian motions in wedges with an additional skew reflection on an interior radial line. It would be interesting to find further applications of the results of Section 2 and [2].

Acknowledgements. The authors would like to thank Sanjar Aspandiiarov and Rudolph Iasnogorodski for kindly providing access to preliminary versions of [1] and [2]. We also thank these authors and Vadim Malyshev for helpful discussions during the progress of

this work. Finally, but not least, we thank the IMA at the University of Minnesota, and INRIA, Rocquencourt (in particular, Guy Fayolle), for their hospitality and support during the conduct of the research for this paper.

2. Passage-time moments for continuous non-negative stochastic processes

In this section we give analogues of the discrete-time theorems developed in Part I of [2]. Some proofs in [2] carry over to the continuous situation without much change whilst others (most notably the $p \geq 1$ finite moments case and the proof of Lemma 2.2 for the infinite moments case) need some non-trivial modification. An analogue of Corollary 2.4 is not in [2]. For the convenience of the reader, we give complete proofs below indicating which proofs are substantially different from those in [2].

Throughout this section, $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ will be a filtered probability space on which is defined a continuous adapted process $\{X_t, t \geq 0\}$ which takes values in the non-negative real numbers. For each $r \geq 0$, let

$$\sigma_r = \inf\{t \ge 0 : X_t \le r\},\,$$

and

$$\tilde{X}_t = X_{t \wedge \sigma_r}$$
.

Here the term adapted will mean adapted to the filtration $\{\mathcal{F}_t\}$ and all (local) (sub/super) martingales referenced here will be defined relative to this filtration, unless stated otherwise. Here a continuous local sub/super martingale is defined to be the sum of a continuous local martingale and a non-decreasing/non-increasing continuous adapted process that starts from 0.

2.1 Finite Moments

Theorem 2.1 Let p > 0, r > 0 and $X_0 = x > r$. Suppose that there is $\epsilon > 0$ such that $\{\tilde{X}_t^{2p} + \epsilon \int_0^{t \wedge \sigma_r} \tilde{X}_s^{2p-2} ds, t \geq 0\}$ is a supermartingale. Then for any 0 < q < p and also for q = p if $p \geq 1$, we have

$$E[\sigma_r^q] \leq c_1 x^{2p} + c_2,$$

where c_1, c_2 are positive constants that depend on ϵ, p and q.

Remark. The proof of this result for p < 1 is very similar to that in [2]. For $p \ge 1$, we start with the same idea, namely, to show that the quantity $\left(\tilde{X}_t^2 + \frac{\epsilon(t \wedge \sigma_r)}{p}\right)^p$ is a

supermartingale. However, because we are working with continuous time we need to develop and use Taylor expansions obtained via Itô's formula and so our proof is different from that in [2].

Proof. We first consider the case 0 < q < p < 1. Let

$$Y_t = \tilde{X}_t^{2p} + (t \wedge \sigma_r)^q ext{ for all } t \geq 0.$$

Observe that since $\epsilon > 0$, \tilde{X}^{2p} is a supermartingale and hence $E[Y_t] \leq x^{2p} + t^q < \infty$ for each $t \geq 0$. Furthermore, using the assumption of the theorem, for $0 \leq s < t < \infty$ we have,

$$E[Y_t - Y_s] \le -\epsilon E\left[\int_{s \wedge \sigma_r}^{t \wedge \sigma_r} \tilde{X}_u^{2p-2} du\right] + E\left[\int_{s \wedge \sigma_r}^{t \wedge \sigma_r} q u^{q-1} du\right]$$
$$= (I) + (II)$$

where for β a fixed constant such that $\frac{q}{2p} < \beta < \frac{1-q}{2(1-p)}$,

$$I_{n}(I) = -\epsilon E \left[\int_{s\wedge\sigma_r}^{t\wedge\sigma_r} \left(ilde{X}_u^{2p-2} - rac{qu^{q-1}}{\epsilon}
ight) \mathbb{1}_{[r,u^eta]}(ilde{X}_u) \, du
ight]$$

and

$$(II) = qE \left[\int_{s \wedge \sigma_x}^{t \wedge \sigma_r} u^{q-1} 1_{(u^{eta}, \infty)}(ilde{X}_u) \, du
ight].$$

Now, if $\tilde{X}_u \leq u^{\beta}$, then because 0 we have

$$\tilde{X}_{u}^{2p-2} \geq u^{2(p-1)\beta}$$

and since $2(p-1)\beta > q-1$, there is an $s_0 > 0$ such that the right member above is greater than or equal to $\frac{q}{\epsilon}u^{q-1}$ for all $u \geq s_0$. Thus,

$$(I) \leq 0$$
 for all $s \geq s_0$.

Now for (II), note that

$$(II) \leq q \int_s^t u^{q-1} P\left(ilde{X}_u > u^{eta}
ight) \, du,$$

where by Chebychev's inequality and since \tilde{X}^{2p} is a supermartingale we have

$$P\left(ilde{X}_u>u^{eta}
ight)\leq rac{E\left[ilde{X}_u^{2p}
ight]}{u^{2peta}}\leq rac{x^{2p}}{u^{2peta}}.$$

Combining the above, we have for $t > s \ge s_0$,

$$E\left[Y_{t}-Y_{s}
ight] \leq qx^{2p}\int_{s}^{t}u^{q-1-2peta}\,du,$$

where $q-2p\beta<0$ by the choice of β . Hence, since $c\equiv q\int_{s_0}^\infty u^{q-1-2p\beta}\,du<\infty$ and

$$\sup_{0 \le s \le s_0} E[Y_s] \le x^{2p} + s_0^q,$$

it follows that

$$\sup_{t>0} E[Y_t] \le x^{2p}(1+c) + s_0^q.$$

Then by monotone convergence we have

$$E[\sigma_r^q] = \sup_t E[(t \wedge \sigma_r)^q] \leq \sup_t E[Y_t] \leq c_1 x^{2p} + c_2$$

where $c_1 = (1+c)$ and $c_2 = s_0^q$.

Now we turn to the case $p \geq 1$. For $0 < q \leq p$, $E[\sigma_r^q] \leq E[\sigma_r^p] + 1$ and so it suffices to prove the desired result for q = p. Since $\{\tilde{X}_t^{2p}, t \geq 0\}$ is a supermartingale and $p \geq 1$, it follows from Hölder's inequality for conditional expectations that so too are $\{\tilde{X}_t, t \geq 0\}$ and $\{\tilde{X}_t^2, t \geq 0\}$. (Recall that \tilde{X} is a non-negative process.) Let

$$(2.1) \hspace{3.1em} \tilde{X}_t = M_t - A_t$$

be the Doob-Meyer decomposition of \tilde{X} into a continuous local martingale M and a continuous non-increasing process -A with $A_0 = 0$. Then by Itô's formula,

$$\tilde{X}_t^2 = \tilde{X}_0^2 + 2 \int_0^t \tilde{X}_s \, dM_s - 2 \int_0^t \tilde{X}_s \, dA_s + [M]_t,$$

where [M] denotes the quadratic variation process for M. We note here in passing that it follows from the above that the quadratic variation process $[\tilde{X}^2]$ for \tilde{X}^2 is given by

$$[ilde{X}^2]_t = 4 \int_0^t ilde{X}_s^2 \, d[M]_s.$$

Since \tilde{X}^2 is a supermartingale, it follows from (2.2) that

$$U_t \equiv 2 \int_0^t ilde{X}_s \, dA_s - [M]_t$$

is a non-decreasing process. Similarly,

$$ilde{X}_t^{2p} = ilde{X}_0^{2p} + 2p \int_0^t ilde{X}_s^{2p-1} \, dM_s - 2p \int_0^t ilde{X}_s^{2p-1} \, dA_s + p(2p-1) \int_0^t ilde{X}_s^{2p-2} d[M]_s$$

and since $\{\tilde{X}_t^{2p} + \epsilon \int_0^{t \wedge \sigma_r} \tilde{X}_s^{2p-2} ds, t \geq 0\}$ is a supermartingale, it follows that

$$V_t \equiv 2p \int_0^t ilde{X}_s^{2p-1} \, dA_s - p(2p-1) \int_0^t ilde{X}_s^{2p-2} d[M]_s - \epsilon \int_0^{t \wedge \sigma_r} ilde{X}_s^{2p-2} \, ds$$

is a non-decreasing process. Now we shall prove that $(\tilde{X}_t^2 + \frac{\epsilon(t \wedge \sigma_r)}{p})^p$ is a supermartingale. For this we simply compute using Itô's formula. Here we let $\tilde{t} = t \wedge \sigma_r$ and $\tilde{s} = s \wedge \sigma_r$.

$$\begin{split} \left(\tilde{X}_{t}^{2} + \frac{\epsilon \tilde{t}}{p}\right)^{p} &= X_{0}^{2p} + p \int_{0}^{t} \left(\tilde{X}_{s}^{2} + \frac{\epsilon \tilde{s}}{p}\right)^{p-1} d\left(\tilde{X}_{s}^{2} + \frac{\epsilon \tilde{s}}{p}\right) \\ &+ \frac{p(p-1)}{2} \int_{0}^{t} \left(\tilde{X}_{s}^{2} + \frac{\epsilon \tilde{s}}{p}\right)^{p-2} d[\tilde{X}^{2}]_{s} \\ &= X_{0}^{2p} + 2p \int_{0}^{t} \left(\tilde{X}_{s}^{2} + \frac{\epsilon \tilde{s}}{p}\right)^{p-1} \tilde{X}_{s} dM_{s} \\ &+ p \int_{0}^{t} \left(\tilde{X}_{s}^{2} + \frac{\epsilon \tilde{s}}{p}\right)^{p-1} \left(d[M]_{s} - 2\tilde{X}_{s} dA_{s} + \frac{\epsilon}{p} d\tilde{s}\right) \\ &+ 2p(p-1) \int_{0}^{t} \left(\tilde{X}_{s}^{2} + \frac{\epsilon \tilde{s}}{p}\right)^{p-2} \tilde{X}_{s}^{2} d[M]_{s}, \end{split}$$

where we have used (2.2) and (2.3). The integral with respect to dM in (2.5) defines a continuous local martingale N. The second last integral in (2.5) may be rewritten using the definition (2.4) of V as

$$p \int_0^t \left(\tilde{X}_s^2 + \frac{\epsilon \tilde{s}}{p} \right)^{p-1} \left(d[M]_s - (2p-1)d[M]_s - \frac{\epsilon}{p} d\tilde{s} - \frac{1}{p} \tilde{X}_s^{2-2p} dV_s + \frac{\epsilon}{p} d\tilde{s} \right)$$

$$= p \int_0^t \left(\tilde{X}_s^2 + \frac{\epsilon \tilde{s}}{p} \right)^{p-2} \left(\tilde{X}_s^2 + \frac{\epsilon \tilde{s}}{p} \right) \left(-2(p-1)d[M]_s - \frac{1}{p} \tilde{X}_s^{2-2p} dV_s \right).$$

Inserting this in (2.5) we obtain

$$egin{split} \left(ilde{X}_t^2 + rac{\epsilon ilde{t}}{p}
ight)^p &= X_0^{2p} + N_t - 2p(p-1)\int_0^t \left(ilde{X}_s^2 + rac{\epsilon ilde{s}}{p}
ight)^{p-2}rac{\epsilon ilde{s}}{p}d[M]_s \ &- \int_0^t \left(ilde{X}_s^2 + rac{\epsilon ilde{s}}{p}
ight)^{p-1} ilde{X}_s^{2-2p}dV_s. \end{split}$$

Since V_t and $[M]_t$ are non-decreasing processes and $p \geq 1$ it follows that $\left(\tilde{X}_t^2 + \frac{\epsilon \tilde{t}}{p}\right)^p$ is a local supermartingale. But since it is non-negative, it is in fact a supermartingale. Hence, for any $t \geq 0$,

$$E[(t \wedge \sigma_r)^p] \leq \left(\frac{p}{\epsilon}\right)^p E\left[\left(\tilde{X}_t^2 + \frac{\epsilon \tilde{t}}{p}\right)^p\right] \leq \left(\frac{p}{\epsilon}\right)^p x^{2p}.$$

Letting $t \to \infty$ yields

$$E[\sigma_r^{2p}] \leq \left(rac{p}{\epsilon}
ight)^p x^{2p}.$$

2.2 Infinite Moments

Lemma 2.2 Let r > 0 and $X_0 = x > r$. Suppose that there are positive constants A and B, and $\gamma > 1$, such that for any $0 \le s < t$,

$$(2.6) E\left[\tilde{X}_t^2 \middle| \mathcal{F}_s\right] \geq \tilde{X}_s^2 - AE\left[t \wedge \sigma_r - s \wedge \sigma_r \middle| \mathcal{F}_s\right]$$

and

$$(2.7) E\left[\tilde{X}_{t}^{2\gamma}\big|\mathcal{F}_{s}\right] \leq \tilde{X}_{s}^{2\gamma} + BE\left[\int_{s \wedge \sigma_{r}}^{t \wedge \sigma_{r}} X_{u}^{2\gamma - 2} du\big|\mathcal{F}_{s}\right],$$

where it is implicit here that all conditional expectations are well defined and finite a.s. (In particular, the random variables inside the conditional expectations are integrable.) Then for any $\nu \in (0,1)$, there are positive constants $\epsilon = \epsilon(\nu, \gamma, A, B)$ and $\delta = \delta(\nu, \gamma, A, B)$ such that for any $s \geq 0$,

$$(2.8) P[\sigma_r > s + \epsilon \tilde{X}_s^2 | \mathcal{F}_s] \ge \nu \quad \text{on } \{\tilde{X}_s > r(1+\delta)\}.$$

Remark. This lemma is a continuous analogue of Lemma 2 of [2] and our proof is a modification of the argument given there. The use of a Gronwall-type inequality to obtain a useful bound on $E\left[\tilde{X}_t^{2\gamma}\right]$ is an innovation here.

Proof. Fix $s \geq 0$. To simplify notation, we set

$$au = (\sigma_r - s)^+, \quad Y_t = \tilde{X}_{t+s}^2, \;\; {\mathcal G}_t = {\mathcal F}_{t+s} \;\; ext{for all} \;\; t \geq 0.$$

It suffices to show that for any $\nu \in (0,1)$, there are $\epsilon, \delta > 0$ such that on $\{\tau > 0\} \cap \{Y_0 > r^2(1+\delta)^2\}$, the following holds

$$P(au > \epsilon Y_0 | \mathcal{G}_0) \geq
u$$
.

For this note that \tilde{X} is X stopped at σ_r and so

$$(2.9) P(\tau > \epsilon Y_0 | \mathcal{G}_0) = P(Y_{\epsilon Y_0} > r^2 | \mathcal{G}_0).$$

First we show that $E[Y_{\epsilon Y_0}^{\gamma}] < \infty$. It follows from (2.7) that $\{Y_t^{\gamma} - B \int_0^{t \wedge \tau} Y_u^{\gamma-1} du, \mathcal{G}_t, t \geq 0\}$ is a supermartingale. For each positive integer n, let $\eta_n = \inf\{t \geq 0 : |Y_t| \geq n\}$. Fix n and let $\hat{Y}_t = Y_{t \wedge \eta_n}$. Then by Doob's stopping theorem, $\{\hat{Y}_t^{\gamma} - B \int_0^{t \wedge \eta_n \wedge \tau} \hat{Y}_u^{\gamma-1} du, \mathcal{G}_t, t \geq 0\}$ is a supermartingale. Hence, for each $t \geq 0$,

$$(2.10) E[\hat{Y}_t^{\gamma}|\mathcal{G}_0] \leq Y_0^{\gamma} + BE\left[\int_0^{t \wedge \eta_n \wedge \tau} \hat{Y}_u^{\gamma - 1} du | \mathcal{G}_0\right]$$

$$\leq Y_0^{\gamma} + B\int_0^t E[\hat{Y}_u^{\gamma}|\mathcal{G}_0]^{\frac{\gamma - 1}{\gamma}} du.$$

Setting $\hat{v}_t = E[\hat{Y}_t^{\gamma}|\mathcal{G}_0]$, the above may be rewritten a.s. as

$$\hat{v}_t \le \hat{v}_0 + B \int_0^t \hat{v}_u^{1-\frac{1}{\gamma}} du,$$

where the integral on the right is finite a.s. because $\hat{Y}_u \leq Y_0 \vee n$ for all u. Then a Gronwall-type inequality yields that

$$\hat{v}_t \le \left(\hat{v}_0^{\frac{1}{\gamma}} + \frac{Bt}{\gamma}\right)^{\gamma}.$$

(To prove this, let $w_t = \int_0^t \hat{v}_u^{1-\frac{1}{\gamma}} du$ and use (2.11) to obtain the inequality $\dot{w}_t \leq (\hat{v}_0 + Bw_t)^{1-\frac{1}{\gamma}}$. "Solve" this by separation of variables to obtain the desired result.) Since the right member of (2.12) does not depend on n, we can let $n \to \infty$ and use Fatou's lemma to conclude that

$$(2.13) E\left[Y_t^{\gamma}|\mathcal{G}_0\right] \leq \left(Y_0 + \frac{Bt}{\gamma}\right)^{\gamma} \text{for all } \ t \geq 0.$$

Since ϵY_0 is \mathcal{G}_0 -measurable, it can be deduced from the above that

$$(2.14) E\left[Y_{\epsilon Y_0}^{\gamma}|\mathcal{G}_0\right] \leq \left(Y_0 + \frac{B\epsilon Y_0}{\gamma}\right)^{\gamma},$$

where in particular, $E[Y_{\epsilon Y_0}^{\gamma}] < \infty$, since $Y_0^{\gamma} = \tilde{X}_s^{2\gamma}$ is integrable, by assumption. Now, by Hölder's inequality for conditional expectations, since $\gamma > 1$ we have

$$(2.15) E[Y_{\epsilon Y_0}|\mathcal{G}_0] \le r^2 + \left(E[Y_{\epsilon Y_0}^{\gamma}|\mathcal{G}_0]\right)^{\frac{1}{\gamma}} \left(P(Y_{\epsilon Y_0} > r^2|\mathcal{G}_0)\right)^{1-\frac{1}{\gamma}}.$$

By (2.6),

$$egin{aligned} E[Y_{\epsilon Y_0}|\mathcal{G}_0] - r^2 &\geq Y_0 - AE[\epsilon Y_0 \wedge au|\mathcal{G}_0] - r^2 \ &\geq Y_0 - A\epsilon Y_0 - r^2. \end{aligned}$$

Then, substituting (2.14)–(2.16) into (2.9) yields:

$$P(\tau > \epsilon Y_{0} | \mathcal{G}_{0}) \geq \left(\frac{E[Y_{\epsilon Y_{0}} | \mathcal{G}_{0}] - r^{2}}{E[Y_{\epsilon Y_{0}}^{\gamma} | \mathcal{G}_{0}]^{\frac{1}{\gamma}}}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\geq \left(\frac{(Y_{0}(1 - A\epsilon) - r^{2}) \vee 0}{Y_{0}(1 + \frac{B\epsilon}{\gamma})}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$= \left(\frac{(1 - A\epsilon - \frac{r^{2}}{Y_{0}}) \vee 0}{1 + \frac{B\epsilon}{\gamma}}\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\geq \left(\frac{\left(1 - A\epsilon - \frac{1}{(1 + \delta)^{2}}\right) \vee 0}{1 + \frac{B\epsilon}{\gamma}}\right)^{\frac{\gamma}{\gamma - 1}} \quad \text{on } \{Y_{0} > r^{2}(1 + \delta)^{2}\}.$$

Clearly, given $\nu \in (0,1)$, we can choose ϵ and δ depending only on A, B, γ and ν such that the last member above is $\geq \nu$.

Theorem 2.3 Suppose that $\{X_t, t \geq 0\}$ satisfies the hypotheses of Lemma 2.2 and p > 0 such that $\{\tilde{X}_t^{2p}, \mathcal{F}_t, t \geq 0\}$ is a submartingale. Then $E[\sigma_r^q]$ is infinite for all q > p.

Remark. This theorem is a slightly simpler analogue of Theorem 2 of [2].

Proof. If $P(\sigma_r = \infty) > 0$, then obviously $E[\sigma_r^q] = \infty$. Hence we may assume that $\sigma_r < \infty$ a.s. For a proof by contradiction, suppose that q > p and $E[\sigma_r^q] < \infty$. Then by applying Lemma 2.2 with $\nu = \frac{1}{2}$ we have for all $s \ge 0$,

$$egin{aligned} &\infty > E[\sigma_r^q] \geq E\left[\sigma_r^q; \; ilde{X}_s > r(1+\delta)
ight] \ &\geq rac{1}{2} E\left[(s+\epsilon ilde{X}_s^2)^q; \; ilde{X}_s > r(1+\delta)
ight] \ &\geq rac{\epsilon^q}{2} E\left[ilde{X}_s^{2q}; \; ilde{X}_s > r(1+\delta)
ight] \ &\geq rac{\epsilon^q}{2} E[ilde{X}_s^{2q}] - rac{\epsilon^q}{2} (r(1+\delta))^{2q}. \end{aligned}$$

In the above we have used the semicolon notation as an abbreviation: $E[Y;A]=E[Y1_A]$. It follows from the above that $\{\tilde{X}_s^{2q},s\geq 0\}$ is uniformly bounded and hence that $\{\tilde{X}_s^{2p},s\geq 0\}$ is uniformly integrable and so by the submartingale convergence theorem,

$$E[ilde{X}^{2p}_s] = E[X^{2p}_{s \wedge \sigma_r}] o E[X^{2p}_{\sigma_r}] \quad ext{ as } s o \infty.$$

Note that the right member here is less than or equal to r^{2p} . On the other hand, since $\{\tilde{X}^{2p}_s, s \geq 0\}$ is a submartingale we have

$$E[\tilde{X}_s^{2p}] \ge x^{2p}$$
 for all s ,

which yields the contradiction r > x.

Corollary 2.4 Let p>0, r>0 and $X_0=x>r$. Suppose there are positive constants A and B such that $\{\tilde{X}_t^2+A(t\wedge\sigma_r),\,t\geq0\}$ and $\{\tilde{X}_t^{2p},\,t\geq0\}$ are local submartingales and for some $\gamma>(1\vee p),\,\{\tilde{X}_t^{2\gamma}-B\int_0^{t\wedge\sigma_r}\tilde{X}_s^{2\gamma-2}ds,\,t\geq0\}$ is a local supermartingale. Then, $E[\sigma_r^q]$ is infinite for all q>p.

Proof. It suffices to verify that the hypotheses of Lemma 2.2 and Theorem 2.3 are satisfied. Consider the Doob-Meyer decompositions of \tilde{X}^2 , $\tilde{X}^{2\gamma}$ and \tilde{X}^{2p} :

$$egin{align} ilde{X}_t^2 &= x^2 + M_t + U_t - A(t \wedge \sigma_r), \ ilde{X}_t^{2\gamma} &= x^{2\gamma} + N_t - V_t + B \int_0^{t \wedge \sigma_r} ilde{X}_s^{2\gamma-2} ds, \ ilde{X}_t^{2p} &= x^{2p} + R_t + W_t, \end{aligned}$$

where M, N, R are continuous local martingales and U, V, W are continuous adapted non-decreasing processes that start from zero.

Let $\{\eta_n, n \geq 0\}$ be an increasing sequence of stopping times that converges a.s. to $+\infty$ such that for each $n, M_{\cdot \wedge \eta_n}, N_{\cdot \wedge \eta_n}, R_{\cdot \wedge \eta_n}$ are martingales and $\tilde{X}^2_{\cdot \wedge \eta_n}, \tilde{X}^{2\gamma}_{\cdot \wedge \eta_n}, \tilde{X}^{2p}_{\cdot \wedge \eta_n}, U_{\cdot \wedge \eta_n}, W_{\cdot \wedge \eta_n}$ are bounded. Then, for $0 \leq s < t$,

$$(2.18) E\left[\tilde{X}_{t\wedge\eta_n}^{2\gamma}\big|\mathcal{F}_s\right] \leq \tilde{X}_{s\wedge\eta_n}^{2\gamma} + BE\left[\int_s^t 1_{[0,\sigma_r\wedge\eta_n]}(u)\tilde{X}_u^{2\gamma-2} du\Big|\mathcal{F}_s\right].$$

By the same reasoning (cf. (2.11)) as in the proof of Lemma 2.2, we obtain

(2.19)
$$E\left[\tilde{X}_{t\wedge\eta_{n}}^{2\gamma}\right] \leq \left(x^{2} + \frac{Bt}{\gamma}\right)^{\gamma}.$$

Note that the right member in the above does not depend on n. In particular, by Fatou's lemma, $E[\tilde{X}_t^{2\gamma}] < \infty$. Furthermore, since $(1 \vee p) < \gamma$, it follows from (2.19) and Hölder's inequality that $\{\tilde{X}_{t \wedge \eta_n}^2, n \geq 0\}$ and $\{\tilde{X}_{t \wedge \eta_n}^{2p}, n \geq 0\}$ are uniformly integrable for each fixed $t \geq 0$. Now for \tilde{X}^2 we have for $0 \leq s < t$, (2.20)

$$egin{aligned} E\left[ilde{X}_{t\wedge\eta_{n}}^{2}\left|\mathcal{F}_{s}
ight]&= ilde{X}_{s\wedge\eta_{n}}^{2}+E\left[U_{t\wedge\eta_{n}}-U_{s\wedge\eta_{n}}\middle|\mathcal{F}_{s}
ight]-AE\left[\left(t\wedge\sigma_{r}\wedge\eta_{n}
ight)-\left(s\wedge\sigma_{r}\wedge\eta_{n}
ight)\middle|\mathcal{F}_{s}
ight]\ &\geq ilde{X}_{s\wedge\eta_{n}}^{2}-AE\left[\left(t\wedge\sigma_{r}\wedge\eta_{n}
ight)-\left(s\wedge\sigma_{r}\wedge\eta_{n}
ight)\middle|\mathcal{F}_{s}
ight]. \end{aligned}$$

Using the uniform integrability stated above on the left and pointwise plus monotone convergence on the right, we can let $n \to \infty$ in (2.20) to conclude that (2.6) holds. Note that $E[\tilde{X}_t^2] < \infty$ by the uniform integrability of $\{\tilde{X}_{t \wedge \eta_n}^2, n \geq 0\}$. In (2.18) we can use Fatou's lemma on the left and pointwise plus monotone convergence on the right to conclude that (2.7) holds. Note that the conditional expectations in (2.7) are well defined and finite a.s. (in particular, their arguments are integrable), by virtue of (2.19) and Hölder's inequality. Finally, we can use the uniform integrability of $\{\tilde{X}_{t \wedge \eta_n}^{2p}, n \geq 0\}$ to conclude that $\{\tilde{X}_t^{2p}, t \geq 0\}$ is not just a local submartingale but it is in fact a submartingale.

3. Passage-time moments for one-dimensional diffusions

In this section we apply the criteria of Section 2 to the simple case of a one-dimensional diffusion. This case may be viewed as a prototype for our general results developed in Section 2. Of course, the results presented here may be known to experts and they can at least be approximately conjectured from the results for discrete-time Markov processes (cf. [2, 3]). However, we were not able to find a reference that gives these results in the simple form presented here. The closest reference seems to be a paper by Yamazato [5] which gives behavior of the tails of passage-time distributions for some diffusions in terms of tail behavior of the speed measure. In any event, our main aim in this section is simply to illustrate the ease of applying our general results in Section 2 to obtain meaningful conditions for the finiteness of passage-time moments for one-dimensional diffusions, without using a lot of special structure. In particular, note that we do not use the Markov property per se.

In this section, $\{X_t, t \geq 0\}$ will be a one-dimensional diffusion satisfying the stochastic differential equation:

$$X_t=x_0+\int_0^t \mu(X_s)ds+\int_0^t b(X_s)dB_s,$$

where $x_0 \in \mathbb{R}$ and B is a standard one-dimensional Brownian motion. For simplicity we suppose that μ and b are uniformly Lipschitz continuous on \mathbb{R} , which guarantees pathwise existence and uniqueness for the above equation. We take $\mathcal{F}_t = \sigma\{B_s : 0 \le s \le t\}$. The process X will be adapted to this filtration because of the Lipschitz assumptions on the coefficients. Let $\nu = b^2$, r > 0 and $X_0 = x_0 > r$. We use the same notation σ_r and \tilde{X} as

in Section 2. By Itô's formula we have for any p > 0,

$$(3.1) \begin{split} \tilde{X}_{t}^{2p} &= x_{0}^{2p} + 2p \int_{0}^{t \wedge \sigma_{r}} \tilde{X}_{s}^{2p-1} b(\tilde{X}_{s}) \, dB_{s} \\ &+ \int_{0}^{t \wedge \sigma_{r}} \left(2p \tilde{X}_{s}^{2p-1} \mu(\tilde{X}_{s}) + p(2p-1) \tilde{X}_{s}^{2p-2} \nu(\tilde{X}_{s}) \right) \, ds. \end{split}$$

The following results (Theorem 3.1 and Corollary 3.3) are analogues of the results of Lamperti [3] and Aspandiiarov et al. [2] on the finiteness or not of passage-time moments for discrete-time Markov processes on \mathbb{R}_+ . We do not require higher than second moment conditions, though such are required in some cases by [2] and [3] to control jumps. Furthermore, in place of the second moment μ_2 that appears in the conditions of [2] and [3] we have the variance ν of the process X. In the case of finite moments, ours is a slightly weaker condition, but for infinite moments it is the same because of the assumption that the drift μ is asymptotically of order at most 1/x as $x \to \infty$.

Theorem 3.1 Let p > 0. Suppose that $\epsilon > 0$ such that

$$(3.2) 2x\mu(x) + (2p-1)\nu(x) \le -\epsilon \text{for all} x \ge r.$$

Then for any 0 < q < p and also for q = p if $p \ge 1$, we have

$$E[\sigma_r^q] \le c_1 x_0^{2p} + c_2$$

where c_1, c_2 are positive constants that depend on ϵ, p and q.

Proof. By (3.1) we have

$$\begin{split} \tilde{X}_{t}^{2p} + \epsilon p \int_{0}^{t \wedge \sigma_{r}} \tilde{X}_{s}^{2p-2} \, ds &= x_{0}^{2p} + 2p \int_{0}^{t \wedge \sigma_{r}} \tilde{X}_{s}^{2p-1} b(\tilde{X}_{s}) \, dB_{s} \\ &+ p \int_{0}^{t \wedge \sigma_{r}} \tilde{X}_{s}^{2p-2} \left(2\tilde{X}_{s} \mu(\tilde{X}_{s}) + (2p-1)\nu(\tilde{X}_{s}) + \epsilon \right) \, ds. \end{split}$$

In the above, the integral with respect to dB defines a continuous local martingale and the last integral defines an adapted non-increasing process by (3.2). Thus,

$$\left\{ ilde{X}_t^{2p} + \epsilon p \int_0^{t \wedge \sigma_r} ilde{X}_s^{2p-2} \, ds, \, t \geq 0
ight\}$$

is a positive local supermartingale, and hence is a supermartingale. The desired result then follows immediately from Theorem 2.1. ■

Theorem 3.2 Let p > 0. Suppose

$$(3.3) 2x\mu(x) + (2p-1)\nu(x) \ge 0 \text{for all } x \ge r,$$

and assume that $x\mu(x)$ and $\nu(x)$ are bounded on $\{x:x\geq r\}$. Then $E[\sigma_r^q]=+\infty$ for all q>p.

Proof. By (3.1) with p = 1,

$$ilde{X}_t^2 = x_0^2 + 2 \int_0^{t \wedge \sigma_r} ilde{X}_s \, b(ilde{X}_s) \, dB_s + \int_0^{t \wedge \sigma_r} \left(2 ilde{X}_s \mu(ilde{X}_s) +
u(ilde{X}_s)
ight) \, ds.$$

Now by the boundedness assumptions on $x\mu(x)$ and $\nu(x)$, there is a positive constant A such that $2x\mu(x) + \nu(x) \geq -A$ for all $x \geq r$. It then follows from the above that $\{\tilde{X}_t^2 + A(t \wedge \sigma_r), t \geq 0\}$ is a local submartingale. Similarly, for $\gamma > (1 \vee p)$, by choosing B to be a fixed positive constant such that $B \geq \gamma |2x\mu(x) + (2\gamma - 1)\nu(x)|$ for all $x \geq r$, we see from (3.1) with γ in place of p that $\{\tilde{X}_t^{2\gamma} - B\int_0^{t\wedge\sigma_r} \tilde{X}_s^{2\gamma-2} ds, t \geq 0\}$ is a local supermartingale. Condition (3.3) together with (3.1) implies that $\{\tilde{X}_t^{2p}, t \geq 0\}$ is a local submartingale. Thus, the hypotheses of Corollary 2.4 are satisfied and we may conclude that $E[\sigma_r^q] = +\infty$ for all q > p.

Corollary 3.3 Let p > 0. Suppose there is $\epsilon > 0$ such that

$$(3.4) 2x\mu(x) + (2p-1)\nu(x) \ge \epsilon \quad \text{for all} \ \ x \ge r,$$

and assume that $x\mu(x)$ and $\nu(x)$ are bounded on $\{x:x\geq r\}$. Then $E[\sigma_r^q]=+\infty$ for all $q\geq p$.

Proof. Since ν is bounded, we can find $0 < \tilde{p} < p$ such that (3.4) still holds with \tilde{p} in place of p and a slightly smaller, but still positive, $\tilde{\epsilon}$ in place of ϵ . It then follows immediately from Theorem 3.2 that $E[\sigma_r^q] = +\infty$ for all $q > \tilde{p}$ and hence for all $q \geq p$.

4. Passage-time moments for reflected Brownian motion in a wedge

Let $\xi \in (0, 2\pi)$. In polar coordinates, let

$$S = \{(r, \theta) : r \geq 0, 0 \leq \theta \leq \xi\},\$$

 $\partial S_1 = \{(r,\theta) : r \geq 0, \theta = 0\}$ and $\partial S_2 = \{(r,\theta) : r \geq 0, \theta = \xi\}$. The origin, which is the corner of the wedge S, will be denoted by 0. For i = 1, 2, let v_i be a vector defined on

 $\partial S_i \setminus \{0\}$ whose inward normal component is of length one, and let θ_i denote the angle that v_i makes with the inward normal to $\partial S_i \setminus \{0\}$ where θ_i is positive if and only if v_i points towards the origin.

Let Z, defined on some filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$, be a reflecting Brownian motion in S with absorption at the origin and directions of reflection on the boundary given by v_i on $\partial S_i \setminus \{0\}$, i = 1, 2. We assume that $Z_0 = z \in S \setminus \{0\}$. Heuristically this process behaves like Brownian motion in the interior of the wedge and prior to hitting the origin, it is confined to the wedge by instantaneous reflection (or pushing) at the boundary, where the direction of reflection on $\partial S_i \setminus \{0\}$ is given by v_i , i = 1, 2. For the precise definition of this process see Varadhan and Williams [4].

Define

$$\alpha = (\theta_1 + \theta_2)/\xi$$
.

We assume that $\alpha > 0$ since this ensures that Z hits the origin with probability one (see [4, Theorem 2.2]). We define

$$\phi(r,\theta) = r^{\alpha} \cos(\alpha \theta - \theta_1),$$

for $(r,\theta) \in S \setminus \{0\}$. It can be verified (see Varadhan-Williams [4]) that $\phi \in C^2(S \setminus \{0\})$ and

$$\Delta\phi=0\quad \text{in }S\backslash\{0\},$$

$$(4.2) \hspace{1cm} v_i\cdot\nabla\phi=0 \hspace{0.3cm} \text{on} \hspace{0.1cm} \partial S_i\backslash\{0\}, \hspace{0.3cm} i=1,2,$$

$$|\nabla \phi|^2 = \alpha^2 r^{2\alpha-2} = \phi^{2-\frac{2}{\alpha}} h \quad \text{on } S \backslash \{0\},$$

where

$$h(r, heta)=lpha^2(\cos(lpha heta- heta_1))^{rac{2}{lpha}-2}.$$

There are positive constants a_1, a_2 such that for all $\theta \in [0, \xi]$,

$$(4.4) \hspace{1cm} 0 < a_1 \leq \cos(\alpha \theta - \theta_1) \leq a_2,$$

and hence there are positive constants b_1,b_2 such that for all $(r,\theta)\in Sackslash\{0\},$

$$(4.5) 0 < b_1 \leq h(r,\theta) \leq b_2.$$

Let

$$X_t = \phi^{1/lpha}(Z_t), \quad t \geq 0.$$

For r > 0, let

$$\tau_r = \inf\{t \ge 0 : |Z_t| \le r\},\,$$

and

$$\sigma_r = \inf\{t \ge 0 : X_t \le r\}.$$

Then it follows from (4.4) and the definition of ϕ that

$$(4.6) \sigma_{r_2} \le \tau_r \le \sigma_{r_1},$$

where $r_2 = r a_2^{1/\alpha}, \, r_1 = r a_1^{1/\alpha}.$ Thus, for p > 0,

$$(4.7) E[\tau_r^p] < \infty for all r > 0,$$

if and only if

(4.8)
$$E[\sigma_r^p] < \infty \quad \text{for all } r > 0.$$

Note also that $\tau_0 = \sigma_0$ and that if $E[\sigma_0^p] < \infty$ then $E[\sigma_r^p] < \infty$ for all r > 0.

Theorem 4.1 If $p < \alpha/2$, then $E[\tau_r^p]$ is finite for all $r \geq 0$. If $p > \alpha/2$, then $E[\tau_r^p]$ is infinite for all $0 \leq r < |z| (a_1/a_2)^{\frac{1}{\alpha}}$.

Remark. For all except the case $0 , this result can be found in [1]. Furthermore, the authors in [1] obtain that the critical case <math>p = \alpha/2$ is like the $p > \alpha/2$ case. Our methods are not sharp enough to recover this result, though one might be able to obtain it by proving analogues of the fine tail estimates in [1].

Before proving Theorem 4.1, we shall develop some preliminary properties of Z and powers of $\phi(Z)$.

Fix r > 0 and for all $t \geq 0$, let

$$ilde{Z}_t = Z_{t \wedge \sigma_r}$$

and

$$ilde{X}_t = X_{t \wedge \sigma_x} = \phi^{1/lpha}(ilde{Z}_t).$$

The process \tilde{Z} defined on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)$ has a semimartingale decomposition:

$$ilde{Z}_t = B_t + v_1 Y_t^{(1)} + v_2 Y_t^{(2)}, \quad t \geq 0,$$

where B is a two-dimensional Brownian motion martingale starting from z and stopped at σ_r , and for i=1,2, $Y^{(i)}$ is a continuous, adapted, non-decreasing, one-dimensional process such that $Y^{(i)}(0)=0$ and $Y^{(i)}$ can increase only when Z is on $\partial S_i\setminus\{0\}$. Note that for all $t\geq \sigma_r$, $B_t=B_{\sigma_r}$ and $Y_t^{(i)}=Y_{\sigma_r}^{(i)}$, i=1,2.

We shall need the semimartingale decompositions of various powers of $\phi(\tilde{Z})$. We develop these using Itô's formula, the semimartingale decomposition of \tilde{Z} , and the properties of ϕ described above. For $t \geq 0$, P-a.s.,

$$\phi(ilde{Z}_t) = \phi(ilde{Z}_0) + \int_0^t
abla \phi(Z_s) \cdot dB_s + \sum_{i=1}^2 \int_0^t v_i \cdot
abla \phi(Z_s) dY_s^{(i)} + rac{1}{2} \int_0^{t \wedge \sigma_r} \Delta \phi(Z_s) ds.$$

The first integral in the right member above is a continuous local martingale, the second integral is zero by equation (4.2) and the property that $Y^{(i)}$ can increase only when Z is on $\partial S_i \setminus \{0\}$, and the third integral is zero by equation (4.1). Thus,

$$(4.9) \hspace{1cm} M_t \equiv \phi(\tilde{Z}_t) \hspace{3mm} \text{for all } t \geq 0,$$

is a continuous local martingale with quadratic variation process

(4.10)

$$[M]_t = [\phi(ilde{Z})]_t = \int_0^{t\wedge\sigma_r} |
abla \phi|^2(Z_s) ds = \int_0^{t\wedge\sigma_r} (\phi^{2-rac{2}{lpha}}h)(Z_s) ds = \int_0^{t\wedge\sigma_r} M_s^{2-rac{2}{lpha}}h(Z_s) \, ds,$$

where we have used (4.3). Then by Itô's formula for $\tilde{X}_t^2 = \phi^{\frac{2}{\alpha}}(\tilde{Z}_t) = M_t^{\frac{2}{\alpha}}$ we have P-a.s. for all $t \geq 0$,

(4.11)
$$\tilde{X}_{t}^{2} = \tilde{X}_{0}^{2} + \frac{2}{\alpha} \int_{0}^{t} M_{s}^{\frac{2}{\alpha} - 1} dM_{s} + \frac{1}{2} \int_{0}^{t} \frac{2}{\alpha} \left(\frac{2}{\alpha} - 1\right) M_{s}^{\frac{2}{\alpha} - 2} d[M]_{s}$$

$$= \tilde{X}_{0}^{2} + \frac{2}{\alpha} \int_{0}^{t} M_{s}^{\frac{2}{\alpha} - 1} dM_{s} + \int_{0}^{t \wedge \sigma_{r}} \frac{1}{\alpha} \left(\frac{2}{\alpha} - 1\right) h(Z_{s}) ds,$$

where we have used (4.10). The quadratic variation process of the semimartingale \tilde{X}^2 is given by:

$$[ilde{X}^2]_t = rac{4}{lpha^2} \int_0^{t \wedge \sigma_r} M_s^{2\left(rac{2}{lpha}-1
ight)} M_s^{2-rac{2}{lpha}} h(Z_s) ds = rac{4}{lpha^2} \int_0^{t \wedge \sigma_r} ilde{X}_s^2 h(Z_s) ds.$$

Similarly to (4.11), by Itô's formula for $\tilde{X}_t^{2p} = M_t^{\frac{2p}{\alpha}}$ and p > 0, we have P-a.s. for $0 \le s < t$:

$$(4.12) \quad \tilde{X}_t^{2p} = \tilde{X}_s^{2p} + \frac{2p}{\alpha} \int_s^t M_u^{\frac{2p}{\alpha} - 1} dM_u + \frac{1}{2} \int_s^t \frac{2p}{\alpha} \left(\frac{2p}{\alpha} - 1 \right) 1_{[0,\sigma_r]}(u) M_u^{\frac{2p-2}{\alpha}} h(Z_u) du.$$

The first integral in the right member above is a continuous local martingale. Let $\{\eta_n, n \geq 0\}$ be a localizing sequence for it (i.e., $\{\eta_n, n \geq 0\}$ is an increasing sequence of stopping times which converges a.s. to infinity and is such that when the local martingale is stopped with any one of these times, it becomes a martingale). Taking conditional expectations in (4.12) stopped at η_n , we obtain

$$(4.13) \qquad E[\tilde{X}^{2p}_{t\wedge\eta_n}|\mathcal{F}_s] = \tilde{X}^{2p}_{s\wedge\eta_n} + \frac{p}{\alpha}\left(\frac{2p}{\alpha} - 1\right)E\left[\int_s^t 1_{[0,\sigma_r\wedge\eta_n]}(u)\tilde{X}^{2p-2}_u h(Z_u)du \middle| \mathcal{F}_s\right],$$

where we have replaced $M^{\frac{1}{\alpha}}$ by \tilde{X} in the last member above. On letting $n \to \infty$, using Fatou's lemma on the left and monotone convergence for the last term on the right, we obtain:

$$(4.14) E[\tilde{X}_t^{2p}|\mathcal{F}_s] \leq \tilde{X}_s^{2p} + \frac{p}{\alpha} \left(\frac{2p}{\alpha} - 1\right) E\left[\int_s^t 1_{[0,\sigma_r]}(u) \tilde{X}_u^{2p-2} h(Z_u) du \middle| \mathcal{F}_s\right].$$

Proof of Theorem 4.1. We consider conditions for the finiteness of the p^{th} moments first. Recalling the inequality (4.5) for h and (4.14), we see that for $0 , there is <math>\epsilon > 0$ (not depending on r) such that

$$E[ilde{X}_t^{2p}|\mathcal{F}_s] \leq ilde{X}_s^{2p} - \epsilon E\left[\int_{s \wedge \sigma_r}^{t \wedge \sigma_r} ilde{X}_u^{2p-2} du \middle| \mathcal{F}_s
ight]$$

and hence the hypotheses of Theorem 2.1 are satisfied for $0 < r < x \equiv \phi^{\frac{1}{\alpha}}(z)$. Now for $0 < q < \alpha/2$ we can always find a p such that q . Then by Theorem 2.1,

$$E\left[\sigma_r^q\right] \le c_1 x^{2p} + c_2,$$

where c_1, c_2 do not depend on r because ϵ does not depend on it. Then, since $\sigma_0 = \lim_{r \downarrow 0} \sigma_r$, we can let $r \to 0$ to conclude that $E[\sigma_0^q] < \infty$. This, together with the comment just before Theorem 4.1, concludes the treatment of the finite moments case.

We now turn to proving infiniteness of the p^{th} passage-time moments for $p>\alpha/2$ and r sufficiently small. Observe that $X_0=x\equiv\phi^{\frac{1}{\alpha}}(z)$. We suppose that r>0 is such that

 $r<|z|a_1^{\frac{1}{\alpha}}$ and so r< x (cf. (4.4)). Let $p>\alpha/2$ and $\gamma>1\lor p$. By (4.12) with p replaced successively by $1,\gamma,p$, we see that the hypotheses of Corollary 2.4 are satisfied with A=1 if $\alpha\leq 2$, $A=-\frac{a_2}{\alpha}\left(\frac{2}{\alpha}-1\right)$ if $\alpha>2$, and $B=\frac{\gamma}{\alpha}(\frac{2\gamma}{\alpha}-1)b_2$. Hence it follows by applying the result with $q>p>\alpha/2$ that $E[\sigma_r^q]=+\infty$ for all $q>\alpha/2$ and $r<|z|a_1^{\frac{1}{\alpha}}$. Then by (4.6), $E[\tau_r^q]\geq E[\sigma_{\tilde{r}}^q]=+\infty$ for all $q>\alpha/2$ and $r<|z|(a_1/a_2)^{\frac{1}{\alpha}}$ where $\tilde{r}=ra_2^{1/\alpha}$.

References

- [1] ASPANDIIAROV, S. and IASNOGORODSKI, R. (1994). Tails of passage-times and an application to stochastic processes with boundary reflection in wedges. Preprint.
- [2] ASPANDIIAROV, S., IASNOGORODSKI, R. and MENSHIKOV, M. (1994). Passage-time moments for non-negative stochastic processes and an application to reflected random walks in a quadrant. Preprint.
- [3] LAMPERTI, J. (1963). Criteria for stochastic processes II: passage-time moments. J. Math. Anal. Applic. 7 127-145.
- [4] VARADHAN, S. R. S., and WILLIAMS, R. J. (1985). Reflected Brownian motion in a wedge. Comm. Pure Appl. Math. 38 405-443.
- [5] YAMAZATO, M. (1990) Hitting time distribution of single points for 1-dimensional generalized diffusion processes. Nagoya Math. J. 119 143-172.

M. Menshikov
Laboratory of Large Random Systems
Moscow State University
Moscow 119899
RUSSIA
email: menshikov@llrs.math.msu.su

R. J. Williams

Department of Mathematics
University of California at San Diego
9500 Gilman Drive
La Jolla CA 92093-0112
USA

email: williams@math.ucsd.edu

#	${ m Author/s}$	Title
	•	
1173		ockburn, Convergence of a finite element method for the drift-diffusion ions: The multidimensional case
1174	<u> </u>	tion and finite difference approximations of nonconvex differential inclusions
	with free time	and an arrange approximations of noncontex unferential inclusions
1175		ss, and Jianhua Zhang, A Stefan problem for reaction-diffusion system
1176		s for micromagnetic computations
1177	Nikan B. Firoozye, Homogeniza	tion on lattices: Small parameter limits, H-measures, and discrete
	Wigner measures	
1178	G. Yin, Adaptive filtering with a	
1179	•	Dembo, Large deviations for quadratic functionals of Gaussian processes
1180		rid generation with intersection-based geometry interface
1181		multipole methods to two matrix eigenproblems
$\begin{array}{c} 1182 \\ 1183 \end{array}$		on of steady euler equations in streamline-aligned orthogonal coordinates nilinear parabolic equations with prescribed energy
1184	9 9	pal existence for a class of Non-Fickian polymer-penetrant systems
1185		osbergh, Robust stabilization of a uniformly rotating rigid body
1186		ecka, Uniform decay of weak solutions to a von Kármán plate with nonlinear
	boundary dissipation	,
1187		ka & Daniel Tataru, Well-posedness and uniform decay rates for weak solutions
	to a von Kármán system v	ith nonlinear dissipative boundary conditions
1188		ndary stabilization of a von Kármán plate via bending moments only
1189		Geyer, Constrained covariance component models
1190		rithm estimating the height of random trees
1191		ntropy principles for disordered spins
1192	nonlinear stability	ntag & Yuan Wang, Recent results on Lyapunov-theoretic techniques for
1193		graphs: Asymptotic distributions and contiguity
1194		s media flow on large 3-D grids: Numerics, performance, & application to
1101	homogenization	a mount now on tanger of a german transmiss, posterimentos, as approximentos
1195	Moshe Fridman, Hidden Marko	model regression
1196	Petr Klouček, Bo Li & Mitch	ell Luskin, Analysis of a class of nonconforming finite elements for Crystalline
	microstructures	
1197	Steven P. Lalley, Random serie	
1198	· · · · · · · · · · · · · · · · · · ·	l exercise time of a perpetual American option: A closed-form solution
$\frac{1199}{1200}$		American put catastrophe insurance futures option: A Martingale approach i & Mario Szegedy, Application of the crossing number
$\frac{1200}{1201}$	· · · · · · · · · · · · · · · · · · ·	Huang, Averaged motion of charged particles under their self-induced electric
1201 1202		conjecture via Talagrand's inequality
1203		ace results for Galerkin methods for wave propagation in various porous media
1204		le & Yuval Peres, When does a branching process grow like its mean? Conceptua
	proofs of $L \log L$ criteria	
1205	Robin Pemantle, Maximum var	iation of total risk
1206		es, Galton-Watson trees with the same mean have the same polar sets
1207	*	mixes sets of any fixed size much faster than it mixes the whole deck
1208	•	tle & Yuval Peres, Martin capacity for Markov chains and random walks in
1000	varying dimensions	and a Onlaw desirting of annitial and the Control of the Control o
1209	_	embo, On large deviations of empirical measures for stationary Gaussian processes om processes related to affine random walks
$1210 \\ 1211$	· · · · · · · · · · · · · · · · · · ·	M. Suhov, Ground states of a Boson quantum lattice model
1211		• Mason, Single phase energy minimizers for materials with nonlocal spatial
1212	dependence	1.12clocus, comque prime energy minimizate for maveriate with homeout operator.
1213	Bruce Hajek, Load balancing in	infinite networks
1214	Petr Klouček, The transonic flo	w problems stability analysis and numerical results
1215	· ·	of the entropic solutions for the transonic flow problem
1216	_	Lim, Full sign-invertibility and symplectic matrices
1217		Elisabetta Tessitore, Infinite dimensional Hamilton-Jacobi equations and
1919		problems of parabolic type
$\frac{1218}{1219}$		rithms for mixed methods for second order elliptic problems ed finite element methods for linear second order elliptic problems I
$\begin{array}{c} 1219 \\ 1220 \end{array}$		end infinite element methods for infear second order emptic problems in eness for an inverse diffraction problem
1440	Secretary and the control of the con	ALOUD LOL OIL ILLTOIDO GIILLOUVIOLE PLODICILL

Gang Bao, A note on the uniqueness for an inverse diffraction problem

- 1221 Moshe Fridman, A two state capital asset pricing model
- Paolo Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation
- 1223 Carl Dou & Martin Hildebrand, Enumeration and random random walks on finite groups
- 1224 Jaksa Cvitanic & Ioannis Karatzas, On portfolio optimization under "drawdown" constraints
- 1225 Avner Friedman & Yong Liu, A free boundary problem arising in magnetohydrodynamic system
- 1226 **Dominic Welsh**, Randomised approximation schemes for Tutte-Gröthendieck invariants
- 1227 Zhangxin Chen, Bernardo Cockburn, Carl L. Gardner, & Joseph W. Jerome, Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode
- 1228 E.G. Kalnins, G.C. Williams, & Willard Miller, Jr., Intrinsic characterisation of the separation constant for spin one and gravitational perturbations in Kerr geometry
- 1229 Zhangxin Chen, Large-scale averaging analysis of multiphase flow in fractured reservoirs
- 1230 Bruce Hajek & Babu Narayanan, Multigraphs with the most edge covers
- 1231 K.B. Athreya, Entropy maximization
- 1232 F.I. Karpelevich & Yu.M. Suhov, Functional equations in the problem of boundedness of stochastic branching dynamics
- 1233 E. Dibenedetto & V. Vespri, On the singular equation $\beta(u)_t = \Delta u$
- 1234 M.Ya. Kelbert & Yu.M. Suhov, The Markov branching random walk and systems of reaction-diffusion (Kolmogorov-Petrovskii-Piskunov) equations
- 1235 M. Hildebrand, Random walks on random regular simple graphs
- 1236 W.S. Don & A. Solomonoff, Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique
- 1237 D. Gurarie, Symmetries and conservation laws of two-dimensional hydrodynamics
- 1238 Z. Chen, Finite element methods for the black oil model in petroleum reservoirs
- 1239 G. Bao & A. Friedman, Inverse problems for scattering by periodic structure
- 1240 G. Bao, Some inverse problems in partial differential equations
- 1241 G. Bao, Diffractive optics in periodic structures: The TM polarization
- 1242 C.C. Lim & D.A. Schmidt, On noneven digraphs and symplectic pairs
- 1243 H.M. Soner, S.E. Shreve & J. Cvitanić, There is no nontrivial hedging portfolio for option pricing with transaction costs
- 1244 D.L. Russell & B-Yu Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation
- 1245 B. Morton, D. Enns & B-Yu Zhang, Stability of dynamic inversion control laws applied to nonlinear aircraft pitch-axis models
- 1246 S. Hansen & G. Weiss, New results on the operator Carleson measure criterion
- 1247 V.A. Malyshev & F.M. Spieksma, Intrinsic convergence rate of countable Markov chains
- 1248 G. Bao, D.C. Dobson & J.A. Cox, Mathematical studies in rigorous grating theory
- 1249 G. Bao & W.W. Symes, On the sensitivity of solutions of hyperbolic equations to the coefficients
- 1250 D.A. Huntley & S.H. Davis, Oscillatory and cellular mode coupling in rapid directional solidification
- 1251 M.J. Donahue, L. Gurvits, C. Darken & E. Sontag, Rates of convex approximation in non-Hilbert spaces
- 1252 A. Friedman & B. Hu, A Stefan problem for multi-dimensional reaction diffusion systems
- 1253 J.L. Bona & B-Y. Zhang, The initial-value problem for the forced Korteweg-de Vries equation
- 1254 A. Friedman & R. Gulliver, Organizers, Mathematical modeling for instructors
- 1255 S. Kichenassamy, The prolongation formula for tensor fields
- 1256 S. Kichenassamy, Fuchsian equations in Sobolev spaces and blow-up
- 1257 H.S. Dumas, L. Dumas, & F. Golse, On the mean free path for a periodic array of spherical obstacles
- 1258 C. Liu, Global estimates for solutions of partial differential equations
- 1259 C. Liu, Exponentially growing solutions for inverse problems in PDE
- 1260 Mary Ann Horn & I. Lasiecka, Nonlinear boundary stabilization of parallelly connected Kirchhoff plates
- 1261 B. Cockburn & H. Gau, A posteriori error estimates for general numerical methods for scalar conservation
- B. Cockburn & P-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach
- 1263 R. Spigler & M. Vianello, Convergence analysis of the semi-implicit euler method for abstract evolution equations
- 1264 R. Spigler & M. Vianello, WKB-type approximation for second-order differential equations in C^* -algebras
- 1265 M. Menshikov & R.J. Williams, Passage-time moments for continuous non-negative stochastic processes and applications
- 1266 C. Mazza, On the storage capacity of nonlinear neural networks
- 1267 Z. Chen, R.E. Ewing & R. Lazarov, Domain decomposition algorithms for mixed methods for second order elliptic problems
- 1268 Z. Chen, M. Espedal & R.E. Ewing, Finite element analysis of multiphase flow in groundwater hydrology
- 1269 Z. Chen, R.E. Ewing, Y.A. Kuznetsov, R.D. Lazarov & S. Maliassov, Multilevel preconditioners for mixed methods for second order elliptic problems