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Abstract

We give general criteria for the finiteness or not of the passage-time moments for
continuous non-negative stochastic processes in terms of sub/supermartingale inequalities
for powers of these processes. We apply these results to one-dimensional diffusions and
also to reflected Brownian motion in a wedge. The discrete-time analogue of this problem
was studied previously by Lamperti and more recently by Aspandiiarov, lasnogorodski and

Menshikov [2]. Our results are continuous analogues of those in [2].
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1. Introduction

In this paper we consider the problem of finding general criteria for the finiteness or
not of the passage-time moments for continuous non-negative stochastic processes which
might not be Markov processes. (Here passage-time means time to hit a compact set
about the origin.) The discrete-time analogue of this problem was studied previously by
Lamperti [3] and recently Aspandiiarov, Iasnogorodski and Menshikov [2] have given more
general criteria than those of Lamperti [3]. In this paper we give continuous analogues of
the results in [2]. Specifically, in Section 2 we give conditions for the finiteness or not of
the p'* moments (p > 0, real) of the passage-times of a continuous non-negative process
in terms of sub/super-martingale inequalities for powers of the process. (Here we abuse

terminology and refer to the mean of the p'* power of a passage-time as the p** moment

T Research supported in part by a grant from the International Science Foundation
(SOROS).
* Research supported in part by NSF Grant GER 9023335.
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of that passage-time, thus extending the usual terminology from integer p > 0 to all real

p>0.)

In Section 3, to provide some intuition for the reader, we give a simple application of
our results to one-dimensional diffusion processes. This case may be viewed as a prototype
for the more general results presented in Section 2. The conditions given in Section 3
are analogues of results obtained by Lamperti [3] and Aspandiiarov et al. [2] for one-

dimensional discrete-time Markov processes.

A more substantial application is given in Section 4. In [2], Aspandiiarov et al. give
explicit criteria for the finiteness or not of passage-time moments for driftless reflected
random walks in a quadrant. In [1], using an approximation by these reflected random
walks, Aspandiiarov and lasnogorodski obtain analogous criteria for reflected Brownian
motion in a wedge (henceforth abbreviated as RBM). Their results are in terms of a
parameter o which depends in an explicit way on the geometric data of the RBM. In
Section 4, we give a direct proof of the results of [1] for RBM (in all except the critical
case p = a/2) using the criteria of Section 2. In addition, we are able to prove finiteness
of the p* passage-time moments in the case 0 < p < a/2 < 1 which was not covered
in [1]. Throughout Section 4 (as well as in [1, 2]), a martingale function of the reflecting
Brownian motion plays a crucial role. This function appeared first in the work of Varadhan
and Williams [4] where in particular it was used to obtain conditions for the finiteness or not

of the first passage-time moment for reflected Brownian motion in a wedge (see Corollary

2.3 of [4]).

We feel the criteria in Section 2 are natural and quite general, and might be usefully
applied beyond the applications of Sections 3 and 4. Furthermore, comparison of the results
here and in [1, 2] indicates that there is an intimate connection between the discrete and
continuous results. These points will be further illustrated in a separate work where we
apply the results of [2] and Section 2 to obtain explicit criteria for the finiteness or not of
pt* passage-time moments for reflected random walks and reflected Brownian motions in
wedges with an additional skew reflection on an interior radial line. It would be interesting

to find further applications of the results of Section 2 and [2].

Acknowledgements. The authors would like to thank Sanjar Aspandiiarov and Rudolph
Iasnogorodski for kindly providing access to preliminary versions of [1] and [2]. We also

thank these authors and Vadim Malyshev for helpful discussions during the progress of



this work. Finally, but not least, we thank the IMA at the University of Minnesota, and
INRIA, Rocquencourt (in particular, Guy Fayolle), for their hospitality and support during

the conduct of the research for this paper.

2. Passage-time moments for continuous non-negative stochastic processes

In this section we give analogues of the discrete-time theorems developed in Part I of
[2]. Some proofs in [2] carry over to the continuous situation without much change whilst
others (most notably the p > 1 finite moments case and the proof of Lemma 2.2 for the
infinite moments case) need some non-trivial modification. An analogue of Corollary 2.4
is not in [2]. For the convenience of the reader, we give complete proofs below indicating

which proofs are substantially different from those in [2].

Throughout this section, (2, F,{F:}, P) will be a filtered probability space on which
is defined a continuous adapted process {X;,¢ > 0} which takes values in the non-negative

real numbers. For each r > 0, let
o, =inf{t > 0: X, <r},

and

Xt - Xt/\a,. .

Here the term adapted will mean adapted to the filtration {#;} and all (local) (sub/super)
martingales referenced here will be defined relative to this filtration, unless stated other-
wise. Here a continuous local sub/super martingale is defined to be the sum of a continu-
ous local martingale and a non-decreasing/non-increasing continuous adapted process that

starts from O.
2.1 Finite Moments

Theorem 2.1 Let p > 0, 7 > 0 and Xy = z > r. Suppose that there is ¢ > 0 such that
{Xfp + efot/\a" X2r=2ds,t > 0} is a supermartingale. Then for any 0 < ¢ < p and also for
g=pif p > 1, we have

E[o%] < c12%P + ¢o,

where ¢y, cy are positive constants that depend on €,p and q.

Remark. The proof of this result for p < 1 is very similar to that in [2]. For p > 1,
- P
we start with the same idea, namely, to show that the quantity (th + ﬂ?}”—”) is a
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supermartingale. However, because we are working with continuous time we need to
develop and use Taylor expansions obtained via It6’s formula and so our proof is different

from that in [2].

Proof. We first consider the case 0 < ¢ < p < 1. Let
Y, = X + (t Aop)? for all ¢ > 0.

Observe that since € > 0, X?? is a supermartingale and hence EY;] < z?? + 17 < oo for

each ¢t > 0. Furthermore, using the assumption of the theorem, for 0 < s < ¢t < co we

have,
tho, tAo,
ElY; -Y, )< —¢FE [/ Xﬁp_zdu] + E [/ quq_ldu]
SAo, SN\o,
— (1) + (1)
where for 3 a fixed constant such that L <8 < 2(1—1__91,—),
tAo, _ quq—l ~
(I) = —¢eF [/A (Xip_z — . ) l[r,uﬁ](Xu)d'u,]

and

tAC,
(II) = qE [/ uq_ll(uﬂ,m)(Xu)du} .

No,.

Now, if X, < uP, then because 0 < p < 1 we have

Xip—Z > w2(P—1)B

and since 2(p—1)B > ¢ —1, there is an sy > 0 such that the right member above is greater

than or equal to Zu?™! for all u > s9. Thus,

(I) <0 for all s> sg.

Now for (II), note that
t ~
(I1) < q/ w7 P (%, > o) du,

where by Chebychev’s inequality and since X?? is a supermartingale we have

E [Xﬁp] 22P

uzpﬁ - uzpﬁ )

P(Xu>uﬂ> <



Combining the above, we have for t > s > s,
t
EY; - Y, < qmzp/ T du,
3
where g — 2pB < 0 by the choice of 8. Hence, since ¢ = qf:)o ud7172P8 dy < o0 and
sup E[Y,] <z? + sd,
0<3<39

it follows that
sup E[Y;] < mzp(l +¢) + si.
>0

Then by monotone convergence we have

E[O'g] = sup E[(t A O'T-)q] < supE[Y’t] < ClmZp T ey
¢ ¢

where ¢; = (1 + ¢) and ¢y = s§.

Now we turn to the case p > 1. For 0 < ¢ < p, E[c%] < E[¢?] + 1 and so it suffices to
prove the desired result for ¢ = p. Since {thp,t > 0} is a supermartingale and p > 1, it
follows from Holder’s inequality for conditional expectations that so too are {X;, ¢ > 0}

and {X2, ¢ > 0}. (Recall that X is a non-negative process.) Let
(21) Xt - Mt - At

be the Doob-Meyer decomposition of X into a continuous local martingale M and a con-

tinuous non-increasing process —A with Ay = 0. Then by It6’s formula,
(2.2) X=X+ 2/ X,dM, — 2/ X,dA, + [M]s,
0 0

where [M] denotes the quadratic variation process for M. We note here in passing that it

follows from the above that the quadratic variation process [X?2] for X2 is given by
~ t o~

(2.3) (X2, = 4/ X2 d[M],.
0

Since X2 is a supermartingale, it follows from (2.2) that
t o~

U, = z/ X, dA, — [M],

0
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is a non-decreasing process. Similarly,
_ 3 t t t
X? =X +2p / X2t dM, — 2p / X2V dA, +p(2p —1) / X224 M),
0 0 0
and since {X2? + efot/\a" X2r=2ds,t > 0} is a supermartingale, it follows that
t ~ t 5 tAC, ~
(2.4) V; = 2p/ X271 dA, — p(2p — 1)/ X2 24[M], — e/ X2 (s
0 0 0

is a non-decreasing process. Now we shall prove that (th + e(t;—ar))p is a supermartingale.

For this we simply compute using It6’s formula. Here we let t =t A o, and § = s A ..

=9 6{ P 2p ¢ 59 Eg p-1 59 Eg
Xt+— :XO +p Xs+_ d Xs+_
p 0 P p

t . €3 p—1 ~ €
+P/ <X; + —) (d[M}s —2X,dA, + —d§>
0 P 4

e s\ .
+2p(p — 1)/ (X? + —) X; d[M].,
0 p
where we have used (2.2) and (2.3). The integral with respect to dM in (2.5) defines a

continuous local martingale N. The second last integral in (2.5) may be rewritten using

the definition (2.4) of V as

ts. e5\P?! € 1, €
p/ (X§ + —) (d[M]s —(2p — 1)d[M], — —d5s — ~X27?PdV, + —d.'s')
0 p p D

Inserting this in (2.5) we obtain
A 2p Y/, €5 P2 5
Xi+ ) =X Ne=2p(p=1) |\ X+ ) dM],
0

p
t ~\ p—1
_ / (X+i) £2-204y,.
0 p



Since V; and [M]; are non-decreasing processes and p > 1 it follows that (X’f + %.)p is a

local supermartingale. But since it is non-negative, it is in fact a supermartingale. Hence,

(2 9Y ] < (2o

for any t > 0,

E[(t A ov)?] < (B)pE

€

Letting ¢ — oo yields

2.2 Infinite Moments

Lemma 2.2 Let » > 0 and Xy = z > 7. Suppose that there are positive constants A and
B, and v > 1, such that for any 0 < s < ¢,

(2.6) E[X}|F,] > X2 AE [t Aoy — s n oy | )]
and
. _ tAC,
(2.7) E [Xt27|.7:3] < X? + BE [/ Xi'y_z dulfs ,
SN\O,

where it is implicit here that all conditional expectations are well defined and finite a.s.
(In particular, the random variables inside the conditional expectations are integrable.)
Then for any v € (0,1), there are positive constants € = ¢(v,v, A, B) and § = §(v,v, 4, B)
such that for any s > 0,

(2.8) Plo, > s+ eX?|F,]>v on {X,>r(1+6)}.
Remark. This lemma is a continuous analogue of Lemma 2 of [2] and our proof is a

modification of the argument given there. The use of a Gronwall-type inequality to obtain

a useful bound on E [th 7] is an innovation here.

Proof. Fix s > 0. To simplify notation, we set
T =(0r—s)", Yi=2X},, Gi=Fuy, foral t>o0.

It suffices to show that for any v € (0,1), there are €¢,6 > 0 such that on {7 >0} N {Y, >
7'2(1 + 5)2}, the following holds

P(r > €Yy|Go) > v.
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For this note that X is X stopped at ¢, and so
(2.9) P(1 > eY4|Go) = P(Yey, > r*|Go).

First we show that E[Yy, ] < oco. It follows from (2.7) that {Y,” — B fOMT Y 1du, Gy t >
0} is a supermartingale. For each positive integer n, let 7, = inf{t > 0 : |V;| > n}. Fix n
and let V; = Yinn,. Then by Doob’s stopping theorem, {}7;7—3 fOtA""AT Y1 du, Gi,t > 0}
is a supermartingale. Hence, for each ¢ > 0,

. AN AT .
E¥7\Go] < Yy + BE [ [ v el
(2.10) 0

-1

t
<Y+ B/ E[Y)|Go]™™ du.
0
Setting 9; = E[Y;'|Go], the above may be rewritten a.s. as
t
(2.11) B, < Bo +B/ bn 7 du,
0

where the integral on the right is finite a.s. because }A’u < Yy, Vn for all u. Then a
Gronwall-type inequality yields that

(2.12) b, < (f)g +o

1-1
(To prove this, let w; = [0, ” du and use (2.11) to obtain the inequality w; < (99 +
Bwt)l_i. “Solve” this by separation of variables to obtain the desired result.) Since the
right member of (2.12) does not depend on n, we can let n — oo and use Fatou’s lemma

to conclude that

Bt\"”
(2.13) E[Y,."|Go] < <Y0 + —) forall ¢t > 0.
Y

Since €Yy is Go-measurable, it can be deduced from the above that

(2.14) B[Y3,160] < (Yo + 2227,

where in particular, [Yg,o] < 00, since Yy = XSZ‘Y is integrable, by assumption. Now, by

Hélder’s inequality for conditional expectations, since v > 1 we have

(2.15) E[Yey,|Go] < 72 + (E[Y, |Go]) ¥ (P(Yer, > 7%]Go))* ™.
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By (2.6),

E[Yev,|Go] —r* > Yo — AE[eY, A 7|Go] — r?
> Yy — AeYy — 2.

Then, substituting (2.14)—(2.16) into (2.9) yields:

(2.16)

2\ 71
E[Y. - -
P(r > €Yy|Go) > Yeto G0l ;)
E[Y,|G0]
o [ -4 —r) v\
SAACEE D
(2.17) ] J
(1—Ae—3)VvOo)"*
B 14 &€
1—Ae— ~L)vo\7T
62
> ( (j;)) on {¥ > r2(1 + 6)%).
1+7

Clearly, given v € (0,1), we can choose € and § depending only on A4, B, v and v such that

the last member above is > v. |

Theorem 2.3 Suppose that {X;,t > 0} satisfies the hypotheses of Lemma 2.2 and p > 0
such that {X?, F;,t > 0} is a submartingale. Then E[0¢] is infinite for all g > p.

Remark. This theorem is a slightly simpler analogue of Theorem 2 of [2].

Proof. If P(o, = o) > 0, then obviously E[cl] = co. Hence we may assume that o, < co
a.s. For a proof by contradiction, suppose that ¢ > p and E[¢]] < co. Then by applying

Lemma 2.2 with v = % we have for all s > 0,

0 > E[ol] > E[Ug; X,>r(1+ 5)]
> %E[(s + 6)232)(1; X, > r(1+ 5)]
€l ooy o
> EE[Xj; X,>r(1+ 5)]
e =s el 9
> EE{qu] - 5(7‘(1 +6))™.

In the above we have used the semicolon notation as an abbreviation: E[Y; A] = E[Y14]. It
follows from the above that {X;“’q, s > 0} is uniformly bounded and hence that {Xfp, s >0}

is uniformly integrable and so by the submartingale convergence theorem,
E[X?) = E[X:%, ] — E[X?] ass— oo.
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Note that the right member here is less than or equal to 7?’. On the other hand. since
b}

{X 2P s> 0} is a submartingale we have
E'[Xfp] >z’ for all s,
which yields the contradiction » > z. |

Corollary 2.4 Let p> 0,7 >0 and Xy =z > r. Suppose there are positive constants 4
and B such that {X2 + A(t A or),t > 0} and {X}?, t > 0} are local submartingales and
for some v > (1V p), {X27 — Bj:AUT X224 ¢ > 0} is a local supermartingale. Then,
E[c?] is infinite for all ¢ > p.

Proof. It suffices to verify that the hypotheses of Lemma 2.2 and Theorem 2.3 are satisfied.
Consider the Doob-Meyer decompositions of X 2, X27 and X?»;

X7 = 2> + M, + U, — A(t A o),

tAo, ~
th‘/ — 227 +N, -V, -I-B/ ng—zds,
0

thp = $2P+Rt+ Wt,

where M, N, R are continuous local martingales and U, V, W are continuous adapted non-

decreasing processes that start from zero.

Let {n,,n > 0} be an increasing sequence of stopping times that converges a.s. to

: v 2 2 v 2
+oo such that for each n, M.Ay,, N.ay,, R.Ay, are martingales and X2 X s X0

./\"’n7
Unnws Viagns Woan, are bounded. Then, for 0 < s < ¢,

t
(2.18) E [Xf;,,n |]-'S] < X2, +BE [ / 10,0 ana) (@) X272 du J-‘s} :
By the same reasoning (cf. (2.11)) as in the proof of Lemma 2.2, we obtain
- Bt\"
(2.19) E[%2,.] < (mz N 7) .

Note that the right member in the above does not depend on n. In particular, by Fatou’s
lemma, E[X}7] < co. Furthermore, since (1 V p) < 7, it follows from (2.19) and Hélder’s
inequality that {th/\nn ,n >0} and {th/{)"'ln ,n > 0} are uniformly integrable for each fixed
t > 0. Now for X2 we have for 0 < s < ¢,

(2.20)
E [XEA% IJ-}] = X2+ B [Uny, = Usrna|Fs] = AE [(EA 07 Amn) — (5 A op A )| F]
> Xf,\nn — AFE [(t Nor Ang) — (s ANor A nn)lfs] .
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Using the uniform integrability stated above on the left and pointwise plus monotone
convergence on the right, we canlet n — oo in (2.20) to conclude that (2.6) holds. Note that
E[X?] < co by the uniform integrability of {th,\n",n > 0}. In (2.18) we can use Fatou’s
lemma on the left and pointwise plus monotone convergence on the right to conclude
that (2.7) holds. Note that the conditional expectations in (2.7) are well defined and
finite a.s. (in particular, their arguments are integrable), by virtue of (2.19) and Holder’s
inequality. Finally, we can use the uniform integrability of {X? an.s T > 0} to conclude

that {X;?,¢ > 0} is not just a local submartingale but it is in fact a submartingale.

3. Passage-time moments for one-dimensional diffusions

In this section we apply the criteria of Section 2 to the simple case of a one-dimensional
diffusion. This case may be viewed as a prototype for our general results developed in Sec-
tion 2. Of course, the results presented here may be known to experts and they can at
least be approximately conjectured from the results for discrete-time Markov processes (cf.
(2, 3]). However, we were not able to find a reference that gives these results in the simple
form presented here. The closest reference seems to be a paper by Yamazato [5] which
gives behavior of the tails of passage-time distributions for some diffusions in terms of tail
behavior of the speed measure. In any event, our main aim in this section is simply to
illustrate the ease of applying our general results in Section 2 to obtain meaningful con-
ditions for the finiteness of passage-time moments for one-dimensional diffusions, without
using a lot of special structure. In particular, note that we do not use the Markov property

per se.

In this section, {X;,t > 0} will be a one-dimensional diffusion satisfying the stochastic

differential equation:

t ¢
X =z +/ w(Xs)ds -I—/ b(X,)dBs,
0 0

where o € R and B is a standard one-dimensional Brownian motion. For simplicity we
suppose that u and b are uniformly Lipschitz continuous on IR, which guarantees pathwise
existence and uniqueness for the above equation. We take F; = o{B, : 0 < s < t}. The
process X will be adapted to this filtration because of the Lipschitz assumptions on the

coefficients. Let v = b2, r > 0 and Xy = =9 > r. We use the same notation o, and X as

11



in Section 2. By It6’s formula we have for any p > 0,

iAo,
X2P =22 4+ 2p / X21y(X,)dB,
(3.1) 0

tAo,
+ / <2PX§p_1M(Xs)+p(2p— 1))23?—2,/()23)) ds.
0

The following results (Theorem 3.1 and Corollary 3.3) are analogues of the results of Lam-
perti [3] and Aspandiiarov et al. [2] on the finiteness or not of passage-time moments for
discrete-time Markov processes on IR;. We do not require higher than second moment
conditions, though such are required in some cases by [2] and [3] to control jumps. Fur-
thermore, in place of the second moment p, that appears in the conditions of [2] and [3]
we have the variance v of the process X. In the case of finite moments, ours is a slightly
weaker condition, but for infinite moments it is the same because of the assumption that

the drift u is asymptotically of order at most 1/z as ¢ — oo.

Theorem 3.1 Let p > 0. Suppose that € > 0 such that
(3.2) 2zpu(z) + (2p — 1)v(z) < —e forall z > 7.
Then for any 0 < ¢ < p and also for ¢ = pif p > 1, we have

Elc?) < c12.? + ¢»

where ¢1, ca are positive constants that depend on €,p and gq.

Proof. By (3.1) we have
- tAo, . iAo, _ ~
X7 4ep / X2~ ds = )P +2p / X?2r1p(X,) dB,
0 0
tAo, _ ~ _ _
+p / X272 (2Run(X.) + (20— VUK, +€) d.
0

In the above, the integral with respect to dB defines a continuous local martingale and the

last integral defines an adapted non-increasing process by (3.2). Thus,

tAo, _
{thp - ep/ X272 ds, t > 0}
0

is a positive local supermartingale, and hence is a supermartingale. The desired result

then follows immediately from Theorem 2.1. I
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Theorem 3.2 Let p > 0. Suppose
(3.3) 2zpu(z) + (2p — 1)v(z) >0 forall z > r,
and assume that zu(z) and v(z) are bounded on {z : ¢ > r}. Then E[c?] = +co for all
q>p.
Proof. By (3.1) with p=1,
tAo,

iAo, ~ B _ _ _
R =al 2 / £,b(X,)dB, + / (2Xu(X.) 4+ v(£0)) s
0 0

Now by the boundedness assumptions on zu(z) and v(z), there is a positive constant
A such that 2zu(z) + v(z) > —A for all ¢ > r. It then follows from the above that
{X2 + A(t Ao,),t > 0} is a local submartingale. Similarly, for v > (1 V p), by choosing
B to be a fixed positive constant such that B > v|2zu(z) 4+ (27 — 1)v(z)| for all z > r,
we see from (3.1) with v in place of p that {X27 — Bfot/\o'r X272ds, ¢t > 0} is a local
supermartingale. Condition (3.3) together with (3.1) implies that {X;?,¢ > 0} is a local
submartingale. Thus, the hypotheses of Corollary 2.4 are satisfied and we may conclude

that E[of] = o0 for all ¢ > p. §

Corollary 3.3 Let p > 0. Suppose there is € > 0 such that

(3.4) 2cpu(z) + (2p— 1)v(z) > € forall =z >r,

and assume that zu(z) and v(z) are bounded on {z : > r}. Then E[o¥] = +oco for all

q 2 p.

Proof. Since v is bounded, we can find 0 < p < p such that (3.4) still holds with p in place
of p and a slightly smaller, but still positive, € in place of e. It then follows immediately
from Theorem 3.2 that E[c%] = +oo for all ¢ > p and hence for all ¢ > p. I

4. Passage-time moments for reflected Brownian motion in a wedge
Let ¢ € (0,27). In polar coordinates, let
S={(r,0):r>0,0<0<¢},

881 = {(r,0) : 7 > 0,6 = 0} and 853 = {(r,6) : » > 0,0 = {}. The origin, which is the
corner of the wedge S, will be denoted by 0. For : = 1,2, let v; be a vector defined on
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95;\{0} whose inward normal component is of length one, and let §; denote the angle that
v; makes with the inward normal to 85;\{0} where 0; is positive if and only if v; points

towards the origin.

Let Z, defined on some filtered probability space (Q, F,{F:}, P), be a reflecting Brow-
nian motion in S with absorption at the origin and directions of reflection on the boundary
given by v; on 85;\{0}, 1 = 1,2. We assume that Z, = z € S\{0}. Heuristically this pro-
cess behaves like Brownian motion in the interior of the wedge and prior to hitting the
origin, it is confined to the wedge by instantaneous reflection (or pushing) at the bound-
ary, where the direction of reflection on 85;\{0} is given by v;, ¢ = 1,2. For the precise
definition of this process see Varadhan and Williams [4].

Define
o = (91 +62)/€

We assume that o > 0 since this ensures that Z hits the origin with probability one (see
(4, Theorem 2.2]). We define

é(r,0) = r* cos(afd — 01),

for (r,8) € S\{0}. It can be verified (see Varadhan-Williams [4]) that ¢ € C?(S\{0}) and

(4.1) A¢ =0 in S\{0},

(4.2) Vg V¢ =0 on 851'\{0}, 1= 1,2,
(4.3) Vé|? = o?r? 7% = ¢*"«h on S\{0},
where

h(r,0) = o®(cos(ab — 6;))= 2.
There are positive constants a;,as such that for all 6 € [0,¢],
(4.4) 0 < a; <cos(af —6) < as,
and hence there are positive constants b;,bs such that for all (r,60) € S\{0},
(4.5) 0 < b; < h(r,0) < bs.
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Let
Xy = ¢'*(2,), t>o.

For r > 0, let
T =inf{t > 0:|Z, < r},

and

or =inf{t >0: X, <r}.

Then it follows from (4.4) and the definition of ¢ that

(4.6) Or, <7p < 0Opy,

1/e 1/

where 75 = ra,’”, r1 = ra;’”. Thus, for p > 0,

(4.7) E[t?] < 0o forall r >0,
if and only if

(4.8) E[of] < oo forall r > 0.

Note also that 79 = ¢y and that if E[o}] < co then E[¢?] < oo for all 7 > 0.

Theorem 4.1 If p < /2, then E[7?] is finite for all » > 0. If p > «/2, then E[7?] is
infinite for all 0 < r < |z| (al/ag)i.

Remark. For all except the case 0 < p < a/2 < 1, this result can be found in [1].
Furthermore, the authors in [1] obtain that the critical case p = /2 is like the p > /2
case. Our methods are not sharp enough to recover this result, though one might be able

to obtain it by proving analogues of the fine tail estimates in [1].

Before proving Theorem 4.1, we shall develop some preliminary properties of Z and

powers of ¢(Z).

Fix » > 0 and for all ¢ > 0, let
Z~t — ZtAa'r

and

Xt = Xt/\a,. - ¢1/a(Z~t)°

15



The process Z defined on (2, F,{F:}, P) has a semimartingale decomposition:

Zt = B; + 1)1Yt(1) + vzyt(z), t>0

)

where B is a two-dimensional Brownian motion martingale starting from z and stopped at
or,and fori=1,2, Y isa continuous, adapted, non-decreasing, one-dimensional process
such that Y(¥(0) = 0 and Y? can increase only when Z is on 95;\{0}. Note that for all
t>0,, By =B, and V) = V{9 i=1,2.

We shall need the semimartingale decompositions of various powers of (,zS(Z ). We de-

velop these using Itd’s formula, the semimartingale decomposition of Z, and the properties

of ¢ described above. For ¢t > 0, P-a.s.,

t 2 t tAo,
$(Z1) :¢(Zo)+/0 qu(Zs)-clBerZ/0 'vi'V¢(Z8)dY8(i)+%/0 AP(Z,)ds.
=1

The first integral in the right member above is a continuous local martingale, the second
integral is zero by equation (4.2) and the property that Y can increase only when 7 is

on 85;\{0}, and the third integral is zero by equation (4.1). Thus,
(4.9) M, = ¢(Z;) for all t >0,

is a continuous local martingale with quadratic variation process

(4.10)
_ tAC, ) tAo, g tAC, g_2
Ml =D = [ VeRZas = [ @iz = [ iz as
0 0 0
where we have used (4.3). Then by It&’s formula for X? = ¢ (Z4) = M; we have P-a.s.
for all t > 0,
oy og 2 [P 2.4 1 [*2 /2 2 _q
X, =Xy+— | My dM, + — | ——1) Mg “d[M],
@ Jo 0

5 a o

~2 __1
=X2+ —/ Mg dM, +/ - (— - 1) h(Z,)ds,
& Jo 0

a 64

where we have used (4.10). The quadratic variation process of the semimartingale X2 is
given by:
4 iAo,

2 4 [ 2(2-1),2-2 o2
[(X?]; == i M; M; *h(Z,)ds = — X:h(Z,)ds.

a” Jo

16



- 2
Similarly to (4.11), by It6’s formula for X? = Mt{_ and p > 0, we have P-a.s. for
0<s<t:

. . 2p [t 2 1 [*2p (2 2p-2
(4.12) X2 =X 4 Zp / M ldM, 5 / £ (—p = 1) Voo (W) M & h(Z,)du.

a a

The first integral in the right member above is a continuous local martingale. Let {n,,n >
0} be a localizing sequence for it (i.e., {n,,n > 0} is an increasing sequence of stopping
times which converges a.s. to infinity and is such that when the local martingale is stopped
with any one of these times, it becomes a martingale). Taking conditional expectations in

(4.12) stopped at 7, we obtain
~ ~ p [ 2p K S op—
@13) B, 7] = X+ 2 (2 1) B | [t a) X2 *hZ)al 7).

where we have replaced Ma by X in the last member above. On letting n — oo, using
Fatou’s lemma on the left and monotone convergence for the last term on the right, we
obtain:

5 _. 2 i = op_2
(4.14) E[X?|F,) < X2 4 g (—p - 1) E [/ 10,0, (w) X222 1(Z,,)du

e’

fs] :

Proof of Theorem 4.1. We consider conditions for the finiteness of the p** moments
first. Recalling the inequality (4.5) for h and (4.14), we see that for 0 < p < a/2, there is
€ > 0 (not depending on r) such that

tAo, _
BlE|E) < X - ep| [ R,

NO
and hence the hypotheses of Theorem 2.1 are satisfied for 0 < r < z = qS%(z). Now for
0 < ¢ < a/2 we can always find a p such that ¢ < p < @/2. Then by Theorem 2.1,

Elol] < c12?? + ¢,

where ¢, ¢y do not depend on r because € does not depend on it. Then, since o¢ = lim,|o o,
we can let 7 — 0 to conclude that E[of] < co. This, together with the comment just before

Theorem 4.1, concludes the treatment of the finite moments case.

We now turn to proving infiniteness of the p** passage-time moments for p > /2 and

r sufficiently small. Observe that Xy = =z = ¢%(z). We suppose that r > 0 is such that

17



r < |z|alé and so r < z (cf. (4.4)). Let p > a/2 and v > 1V p. By (4.12) with p replaced
successively by 1,7, p, we see that the hypotheses of Corollary 2.4 are satisfied with 4 = 1
fa<2 A=-2(2_-1)ifa>2 and B = Y(2Y — 1)b,. Hence it follows by applying
the result with ¢ > p > a/2 that E[o%] = +oo for all ¢ > a/2 and r < |z|a1£. Then by
(4.6), E[r%] > E[c}] = 4o for all ¢ > a/2 and r < |2|(a1/as)= where 7 = ra;/a. |
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