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Abstract. We prove theorems pertaining to periodic arrays of spherical obstacles which

show how the macroscopic limit of the mean free path depends on the scaling of the size of
the obstacles. We treat separately the cases where the obstacles are totally and partially
absorbing, and we also distinguish between two-dimensional arrays, where our results are
optimal, and higher dimensional arrays where they are not. The cubically symmetric
arrays to which these results apply do not have �nite horizon.

1. Introduction.

The idea of the \mean free path" for large ensembles of particles interacting among

themselves (or moving among obstacles or within an enclosure) is quite intuitive, and

lies at the foundations of kinetic theory as conceived by Maxwell and Boltzmann in the

late nineteenth century. For a given physical system, estimates of the mean free path

are important in determining the sort of dynamics that predominates. However, actually

calculating the mean free path|even in many simpli�ed models|is problematic, and it

is often necessary to resort to dimensional arguments that are not wholly rigorous. One

family of simpli�ed models that has played an important role in statistical mechanics

and kinetic theory is the so-called Lorentz gas in a plane dispersive billiard consisting

of a periodic array of circular obstacles, together with its higher dimensional analogues.

In kinetic theory, it is particularly interesting to study the behavior of particles in such

billiards in the macroscopic limit (i.e., as the size of the array is reduced to zero). In this

article, we prove theorems pertaining to periodic arrays of spherical obstacles which show

how the macroscopic limit of the mean free path depends on the scaling of the size of

the obstacles. We treat separately the cases where the obstacles are totally and partially

absorbing, and we also distinguish between two-dimensional arrays, where our results are

optimal, and higher dimensional arrays where they are not. The interesting aspect of these

results is that the (hyper-) cubically symmetric arrays to which they apply do not have

�nite horizon (i.e., the arrays have unbounded trajectories).

The Lorentz gas has been widely studied: in Refs. [4] and [5], Bunimovich and Sinai,

then Bunimovich, Sinai, and Chernov construct (analogues of) Markov partitions to an-

alyze the \hydrodynamic limit" (in this case a Brownian motion) of a Lorentz gas with

�nite horizon. But the hydrodynamic limit corresponds to cases where the mean free path
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tends to zero, something that is assured in [4] and [5] by the scaling and the geometric

hypothesis of �nite horizon. The \kinetic" regime (also known as the Boltzmann-Grad

limit) corresponds to cases where the limiting value of the mean free path is of the order

of the unit length: hence this limit appears for periodic Lorentz gases only in cases where

the �nite horizon hypothesis does not hold. The Boltzmann-Grad limit of the Lorentz

gas has been studied by many authors, but essentially only for random distributions of

obstacles; see Galavotti [9], Spohn [16], and Boldighrini, Bunimovich, and Sinai [3]. The

Boltzmann-Grad limit for clouds of interacting particles (leading to the nonlinear Boltz-

mann equation) was investigated on a rigorous basis by Lanford [12], and subsequently by

Illner and Pulvirenti [11] (in the two dimensional case), and by Pulvirenti [13].

However, as can be seen from the discussion below, the case of a square (or cubic, or

hypercubic) array of spherical obstacles involves number theoretic questions (essentially

rational approximation) in a structural way. Because of this, the results we �nd in (space)

dimensions higher than two are not as good as those we �nd in two dimensions. The

higher dimensional case involves \simultaneous rational approximation" (of several real

numbers by fractions with the same denominator), while the two-dimensional case entails

approximation of one real number by a sequence of rationals, where the algorithm of

continued fractions is known to be in some sense optimal. For discussions of these questions,

we refer the interested reader to Cassels [6] and Schmidt [14].

2. The n-Dimensional Dispersive Billiard and its Mean Free Path

The n-dimensional analogue of a periodic, planar array of circular scatterers with

square symmetry is simply the periodic array of spherical obstacles de�ned as follows.

First, denote by L" � a"Zn the (hyper-) cubic lattice in Rn with interstitial spacing a".

The billiard domain is then

Z" = fx 2 Rn
�� distfx;L"g > r"
g: (1)

Here " > 0 is a small parameter which controls the spacing between obstacles in the array,

while the exponent 
 controls the way the size of the obstacles scales with " (we assume

that 
 � 1 and 0 < 2r < a so that obstacles do not overlap in the macroscopic limit

"! 0).

Using dimensional arguments, it is possible to estimate the order of magnitude of

the mean free path for a population of point particles moving between the obstacles with

constant speed c (neglecting collisions between particles). To see this, note that for a

given geometry, the mean free path diminishes as the volume-density of obstacles|or as

the size of the obstacles|increases. It therefore seems plausible to suppose that the order

of magnitude of the mean free path is given by

1

N"S"
(2)

where N" is the density of obstacles per unit n-dimensional volume and S" is an n � 1-

dimensional volume element (so that the above expression has the dimension of length)
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measuring the size of the obstacles. For example, for S", one could take the n � 1-

dimensional volume (physically, the \surface area") of the obstacles, so that S" =

jSn�1jrn�1"
(n�1) (here jSn�1j denotes the measure of Sn�1 ; the only measure we con-

sider on Sn�1 is the Riemannian density associated to the metric induced on Sn�1 by the

Euclidean metric on Rn, so that jS1j = 2�, jS2j = 4�2, etc.). Using this ansatz together

with (2), we arrive to the following estimate of the order of magnitude of the mean free

path in Z":
an

jSn�1jrn�1 "
n�
(n�1): (3)

The same expression is found after a more detailed analysis using di�usive billiard dynamics

for Z" in the sense of \weak consistency" (see Golse [10]). Regardless of the process used

to obtain the estimate of the mean free path (3), it suggests that the value 
c =
n

n�1
of

the parameter 
 is critical in the following sense:

� For 1 � 
 < 
c, the mean free path tends to zero with ". Assuming specular

re
ection of particles from the obstacles, one expects the movement of the particles in Z"
to be given by an equation of hydrodynamic type (see Bunimovich-Sinai [4]).

� For 
 > 
c, the mean free path tends to in�nity as "! 0. It is then trivial to show

that the motion of the particles in Z" is governed by a free-transport equation.

� For 
 = 
c, the mean free path is of order 1 as "! 0, and one expects the motion

of the particles in Z" to be described by a kinetic equation.

Nevertheless, no rigorous calculation of the mean free path in Z" exists, in part because

of the presence of unbounded trajectories (e.g. some trajectories parallel to the axes of the

lattice L" are unbounded), and the presence of arbitrarily long trajectories. In the sequel,

we shall substantiate the intuition of formula (3) with explicit calculations.

3. Transport Equation Formalism.

We shall consider two types of problems: Case A, where particles are totally absorbed

at the boundary of Z"; and Case B, where, upon reaching the boundary of Z", particles are

partially absorbed, then re
ected with coe�cient of re
ection � (0 < � < 1; our methods

unfortunately do not apply to the case of total re
ection � = 1).

Let f"(t; x; !) be the density of particles at the point x, at time t, moving in the

direction ! 2 Sn�1. We write

�+" = f(x; !) 2 @Z" � Sn�1
�� ! � nx > 0g ; (4)

where nx is the inward normal at the point x 2 @Z". (Here \inward" means toward the

interior of Z"; away from the centers of the balls Zc
" .) The equation satis�ed by f" is

@tf" + c! � rxf" = 0 ; x 2 Z" (5)

with initial data

f"(0; x; !) = �(x; !) ; x 2 Z" (6)

and with either the condition of totally absorbing boundaries (Case A):

f"(t; x; !) = 0 ; (x; !) 2 �+" ; (7A)

3



or the condition of partially absorbing/partially re
ecting boundaries (Case B):

f"(t; x; !) = �f"(t; x;R(nx)!) ; (x; !) 2 �+" : (7B)

Here R(nx)! represents specular re
ection: R(nx)! = !� 2(! �nx)nx; and � is a nonneg-

ative function de�ned on the whole of Rn � Sn�1.

We may write the solution of (5)-(6)-(7A) using the method of characteristics. Let

�"(x; !) be the time of exit from Z", in other words

�"(x; !) = infft > 0
�� x � tc! 2 @Z"g : (8)

For �xed x 2 Z", �"(x; !) is �nite for almost every ! 2 Sn�1. (In fact, for \irrational"

!; that is, ! such that 8k 2 Zn n f0g, k � ! 6= 0 it is well known that the trajectory of

every point of the torus Tn � Rn=Zn is dense in Tn; in other words, the linear 
ow in

the direction ! on Tn is topologically transitive.) The solution of (4)-(5)-(6A) is given by

f"(t; x; !) = 10�t<�"(x;!)�(x � tc!; !) (9)

and this formula shows that if �"(x; !) ! 0 as " ! 0, then f"(t; x; !) ! 0. On the other

hand, if, for any initial data � bounded on Rn we had f" ! 0 as "! 0, this would mean

that the equivalent e�ective cross section of absorption (as "! 0) of the array of obstacles

Z" is in�nite, or, what amounts to the same thing, that the mean free path tends to 0 with

". Formula (8) therefore shows that in order to establish that 
 < 
c, it su�ces to show

that f" ! 0 for the initial data � = 1.

4. Principal Results.

We give several results a�rming formula (3). For two-dimensional arrays, we state

theorems implying 
c = 2. For higher dimensional arrays, we state similar but slightly

weaker theoremswhich show that n
n�2=3 � 
c � n

n�1 . As before, we divide these statements

into those for totally absorbing obstacles, and those for partially absorbing obstacles.

A.The Case of Total Absorption

As mentioned above, the best result concerns the case where the dimension of the

space is two.

Theorem 1A. Let n = 2, and choose 1 � 
 < 2, T > 0, and a compact \observation
set" K � R2. Then given any number s with 1 < s < (
 � 1)�1, there exists a constant A

such that for any initial data � 2 L1(R2 � S1), the family f" of solutions of the problem
(5)-(6)-(7A) satis�es

����
Z T

0

Z
K\Z"

Z
S1

jf"(t; x; !)jd!dxdt
���� � A"(1+s�
s)=2k�kL1:

The proof of this theorem (as well as the proofs of those below) relies on certain

estimates of the \ergodization time for linear 
ows on tori" which we discuss (and prove
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in the two-dimensional case) in Section 5. These two-dimensional estimates are optimal

in a sense which is clari�ed in Section 5. However, for tori of dimension greater than

two, the estimates available on ergodization times are less precise. This is because in two

dimensions, they are obtained using a continued fraction expansion of the slope of the

direction vector, which is known to be an optimal approximation. In higher dimensions,

this method no longer works, as it leads to a problem of simultaneous approximation of

several irrationals by rational numbers.

Despite the lack of sharpness of the higher-dimensional estimates due to H.S. Dumas

[8], our result based on them is as follows:

Theorem 2A. Let n > 2, and choose 1 � 
 < n
n�2=3

, T > 0, and a compact set K � Rn.

Then given any number s with 1 < s < (
 � 1)�1, there exists a constant A such that for

any initial data � 2 L1(Rn�Sn�1), the family f" of solutions of the problem (5)-(6)-(7A)

satis�es ����
Z T

0

Z
K\Z"

Z
Sn�1

jf"(t; x; !)jd!dxdt
���� � A"(1+s�
s)=2k�kL1 :

B. The Case of Partial Absorption/Re
ection

We next state theorems for partially absorbing obstacles which closely parallel those

for totally absorbing obstacles. However, the proofs of the theorems below are considerably

more complicated, and lead to less precise estimates of the rate of decay of the mean free

path.

Theorem 1B. Let n = 2, and choose 1 � 
 < 2, 0 � � < 1, T > 0, and a compact set
K � R2. Then there exist constants b > 0, B > 0, and "0 > 0 such that for any initial
data � 2 L1(R2 � S1), and for 0 < " � "0, the family f" of solutions of the problem
(5)-(6)-(7B) satis�es

����
Z T

0

Z
K\Z"

Z
S1

jf"(t; x; !)jd!dxdt
���� � B"bk�kL1 :

Theorem 2B. Let n > 2, and choose 1 � 
 < n
n�2=3 , 0 � � < 1, T > 0, and a compact

set K � Rn. Then there exist constants b > 0, B > 0, and "0 > 0 such that for any initial
data � 2 L1(Rn � Sn�1), and for 0 < " � "0, the family f" of solutions of the problem
(5)-(6)-(7B) satis�es

����
Z T

0

Z
K\Z"

Z
Sn�1

jf"(t; x; !)jd!dxdt
���� � B"bk�kL1 :

Remark 1. These results partly correct the errors that appear in the Note [1].

Remark 2. Theorems 1A and 2A (total absorption) apply to a more general class of

scatterers than the spheres described in Eq. (1). In fact, Theorems 1A and 2A clearly

apply to any class of scatterers which contains the scatterers de�ned as the complement

of Z" in Eq. (1).
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Remark 3. Using elementary distributional calculus, it is not di�cult to show that for

any dimension n, 
c � n
n�1

. It therefore follows from Theorems 1A and 1B that, in 2

dimensions, 
c = 2, as predicted by dimensional analysis (2), (3). On the other hand,

Theorems 2A and 2B show that n
n�2=3

� 
c � n
n�1

in higher dimensions.

To see that 
c � n
n�1

, �rst note that if � = 1 (total re
ection) is allowed in Eq. (7B),

then by the Maximum Principle, nonnegative initial data � � 0 give rise to nonnegative

solutions f" � 0 with kf"kL1 � k�kL1 for all t � 0. In fact, the same inequality holds for

any � (0 � � � 1), since, for �xed � and �xed t, kf"kL1 is monotone decreasing with �.

Let f g denote the operator which nulli�es functions over obstacles; in other words,

ff"g(t; x; !) = 0 for x =2 Z", and ff"g agrees with f" otherwise. It not di�cult to see that

@tff"g = f@tf"g and @xff"g = f@xf"g + nx
�
f"
��@Z+"

�
�@Z" ; (10)

where nx is the inward unit normal to @Z" at x, �@Z" is the Dirac delta density concentrated

on @Z", and f"
��@Z+" is the \jump," or exterior limit, of f" at @Z" (see, e.g., Schwartz [15],

Ch. 2, x3, Ex. 1). Therefore f@tf"g+ c! � f@xf"g = 0 leads to

@tff"g + c! � @xff"g = c! � nx
�
f"
��@Z+"

�
�@Z" : (11)

Now integrating the right hand side over [0; T ]�K � S1, we �nd

Z T

0

Z
K

Z
S1

c! � nx
�
f"
��@Z+"

�
d!�@Z"dt � 2�ck�kL1T

Z
K

�@Z" �

2�ck�kL1T
�diamK

a"

�n
jSn�1j(r"
 )n�1 = O("
(n�1)�n) (12)

from which it follows that, for every 
 > n
n�1 , we have @tff"g + c! � @xff"g ! 0 in the

sense of distributions as "! 0. In other words, 
 > n
n�1 leads to a free transport equation

in the macroscopic limit, so that 
c � n
n�1 .

5. Ergodization Rates for Linear Flow on the Torus.

This section is a self-contained discussion of the ergodization rates for linear 
ow on

the torus developed in Dumas [8] and used in the proofs of the principal results announced

above. We also derive an ergodization rate in the two-dimensional case which is mentioned

in Remark 3.2 of [8], but is not explicitly calculated there.

5.1 Linear Flow on Tn : De�nitions and Notation.

Given a direction vector ! 2 Sn�1, we de�ne the linear 
ow on Tn � Rn=Zn associ-
ated to ! as the family of maps

!t : T
n ! Tn given by � 7! � + t! ; t 2 R : (13)

The maps !t are well de�ned: if y�y0 2 Zn, then clearly (y+t!)�(y0+t!) 2 Zn; moreover,

since the translations by the vector t! form a one-parameter group of C1 transformations
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of Rn, by passing to the quotient, we deduce that !t de�nes a one-parameter group of C1

transformations of Tn.

A rectilinear orbit segment of Tn starting at � is a parametrized curve of the form

[
a<t<b

!t(�) (14)

where a and b are real numbers. Of course, the complete orbit of � is obtained when

a = �1 and b = +1.

Given � 2 Tn, there is an open neighborhood U of � in Tn di�eomorphic to an open

set V in Rn; we equip U with the pull-back metric of the Euclidean metric on V . In fact,

it is the unique metric on Tn which is invariant under all transformations !t for all t � 0

and every ! 2 Sn�1. Tn equipped with this metric is a complete Riemannian manifold

called the 
at torus of dimension n. Its geodesic curves are the rectilinear orbit segments

de�ned above. The associated geodesic distance is

distf�; �0g = inffjx� x0j
�� � = xmod1 ; �0 = x0mod1g : (15)

Fix 1 � R > 0 and let BR=2(�) be the ball of diameter R centered on � 2 Tn. We say

that the 
ow !t with direction vector ! 2 Sn�1 ergodizes Tn to within R after time T if

and only if [
0�t�T

!t
�
BR=2(�)

�
= Tn (16)

for every � 2 Tn. This condition is clearly independent of �: for all �, � 2 Tn,

[
0�t�T

!t
�
BR(�)

�
=

[
0�t�T

!t
�
BR(�)

�
+ f� � �g (17)

so that

if
[

0�t�T

!t
�
BR(�)

�
= Tn; then

[
0�t�T

!t
�
BR(�)

�
= Tn: (18)

5.2 The Special Case of Linear Flow on T2.

OnT2, we restrict ourselves to the class of 
ows with directions ! = (!1; !2) \between

0� and 45�"; i.e., directions belonging to the eighth-circle F de�ned as

F = f(!1; !2) 2 S1
�� p2=2 < !1 < 1 and 0 < !2=!1 < 1g: (19)

(Note: We use !1, !2 to denote the components of the direction !, even though the

subscript t appears in our use of !t to designate the 
ow with direction !. Since we never

consider the time-1 or time-2 maps of !t, this should not cause confusion.)

Since we are only interested in directions with irrational slope (directions with rational

slope do not generate ergodic 
ows), we have eliminated the directions ! = (1; 0) and
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! = (
p
2=2;

p
2=2). The entirety of linear 
ows on T2 is then obtained by considering the

seven remaining open sectors of directions in S1 which we reduce to F by symmetry.

5.3 The Correspondence Between Rotations of T1 = R=Z and Linear Flows on T2.

For 0 < � < 1, we de�ne the rotation R� : T1 ! T1 by R�(x) = x+� mod1. We say

that R� �lls T1 to within R (0 < R < 1) after N iterations if and only if for every x 2 T1

N[
k=1

Rk
�(IR(x)) = T1; (20)

where IR(x) designates the closed interval of length R centered at x 2 T1.

There is a one-to-one correspondence between rotations on T1 and linear 
ows on T2:

� For ! = (!1; !2) 2 F , the Poincar�e map of !t induced on a vertical section of T2 is

the rotation R!2=!1 .

� Conversely, given a rotation R� : T1 ! T1 with 0 < � < 1, the linear suspension

of R� on T2 is the linear 
ow !t : T
2 ! T2 with direction ! = (

1p
1 + �2

;
�p

1 + �2
).

This correspondence also establishes a link between the ergodization time for linear


ows of T2 and the number of iterations of the corresponding rotation necessary to �ll T1:

Lemma 1. Let ! = (!1; !2) 2 F (cf. (11)) and set � = !1=!2. If R� �lls T1 to within R

after N iterations, then !t ergodizes T
2 to within !1R after time T = N=!1.

Proof. (Elementary geometry)

Remark 4. In particular, Lemma 1 shows that !t ergodizes T
2 to within R after time

T =
p
2N , since

p
2=2 < !1 < 1.

5.4 The Ergodization Time for Flows in Two Dimensions

We now introduce the set Dn(s;C) of \highly irrational" direction vectors satisfying

Diophantine conditions:

Dn(s;C) = f! 2 Sn�1
�� j! � kj � Cjkj�s 8k 2 Zn n f0gg : (21)

We recall that, for s > n � 1, Dn(s;C) is nonempty for small enough C > 0, and in fact

measfDn(s;C)
cg ! 0 as C ! 0 (here the superscript c denotes the complement in Sn�1).

The main results here are the following theorem and its corollary.

Theorem 3. Let 0 < R < 1, ! 2 F (cf. (9)) and set � = !2=!1. If ! 2 D2(s;C), then R�

�lls T1 to within R after [(3
p
2)s=(CRs)] iterations. (Here [x] is the integer part of x.)

The result we use to prove Theorems 1A and 1B is the following

Corollary 1. ! 2 D2(s;C) =) !t ergodizes T
2 to within R after time T =

3s(
p
2)s+1

CRs
.

Proof. Apply Lemma 1 to Theorem 3.
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5.5 The Ergodization Time for Flows in Higher Dimensions

Before proceeding to the proof of Theorem 3, for comparison we next state the best

ergodization time known to us in higher dimensions n > 2, then follow with a simple

conjecture and a remark on how the class Dn(s;C) may be enlarged while maintaining the

ergodization time.

Theorem 4. ! 2 Dn(s;C) =) !t ergodizes T
n to within R after time T =

�

CRs+n=2
.

The constant � appearing in Theorem 4 depends only on n and s, and involves the

Sobolev norm of a certain \smoothest test function." It is given explicitly in [8], where

complete proofs of Theorem 4 (called Theorem 1 in [8]) and related results appear.

Remark 5. Based on the way this estimate enters into the proofs of Theorems 2A and 2B,

we note that it would be consistent with 
c =
n

n�1
if the optimal ergodization time appear-

ing above in Theorem 4 were of the form T = �=(CRs). In fact Remark 3, above, together

with the proof of Theorems 2A and 2B show that this is the best possible ergodization

time.

Remark 6. Although we do not make use of it in this article, it is worth noting that the

class of direction vectors ! 2 Sn�1 whose ergodization times are comparable to those of

Theorems 3 and 4 is in fact larger than Dn(s;C). This is because given a �xed R > 0,

even ! 2 Sn�1 with rationally related components will �ll Tn to within R, provided the

rational relations occur at su�ciently high order. This can be quanti�ed by de�ning the set

of \nearly highly irrational" direction vectors satisfying Diophantine conditions truncated

at order N :

Dn(s;C;N) = f! 2 Sn�1
�� j! � kj � Cjkj�s 8k 2 Zn with 0 < jkj � Ng : (22)

It is easy to see thatDn(s;C) is a Cantor set in S
n�1, and that for eachN <1, Dn(s;C;N)

is an approximating superset of Dn(s;C) consisting of �nitely many connected components

with nonempty interior. In higher dimensions n > 2, it is possible to show that there

exists a \critical cuto�" Ncrit such that N � Ncrit ensures that 
ows with direction vectors

! 2 Dn(s;C;N) retain the ergodization time of Theorem 4 up to a factor depending on N .

Details and an estimate of Ncrit may be found in [8]. In two dimensions, the situation is

considerably simpler: the proof of Theorem 3 which we give below shows that Ncrit � 3=R.

5.6 Proof of Theorem 3.

Proof.

Part 1. A bound on the growth of the denominators in the continued fraction expansion
of � = !2=!1.

Let the rational number pn=qn be the nth convergent in the continued fraction ex-

pansion of � = !2=!1. We use the following properties of the sequence of convergents

fpn=qng1n=1 of � =2 Q, 0 < � < 1 (cf. for example Arnold [2] or Schmidt [14]).

(i) (rational approximation) 8k;
���� � pk

qk

��� <
1

qkqk+1

<
1

q2k
(ii) (growth of denominators for � =2 Q) q1 = 1, qk < qk+1, and qk !1
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(iii) (convergents not greater than 1) 8k, 1 � pk � qk

According to (ii), we may choose an index k so that qk � 3=R < qk+1. Fixing this

value of k, and multiplying the �rst inequality of (i) by !1qk, we obtain

1

qk+1

>
!1

qk+1

> j!2qk � !1pkj = j! � (�pk; qk)j � Ck(�pk; qk)k�s

= C(p2k + q2k)
�s=2 � C(2q2k)

�s=2 � CRs

(3
p
2)s

(23)

From this we deduce that qk+1 <
h(3p2)s
CRs

i
.

Part 2. Shadowing of the (periodic) orbits of Rpk+1=qk+1 by orbits of R�.

Set r = pk+1=qk+1, which is rational in lowest terms. The sequence fRj
r(x)g � T1

is clearly periodic with period qk+1 for all x 2 T1. In fact, Rr �lls T1 to within exactly

1=qk+1 < R=3 after qk+1 iterations. It is easy to see that the �rst qk+1 iterations of Rr

are shadowed by those of R�.

More precisely: for every 1 � j � qk+1 and all x 2 T1, we have:

distfRj
r(x);Rj

�(x)g � jj(pk+1

qk+1

� !2

!1
)j < qk+1

1

q2k+1

=
1

qk+1

< R=3 (24)

Now, since Rr �lls T
1 to within R=3 after qk+1 iterations, and since each iterate Rj

r(x)

is shadowed to within R=3 by Rj
�(x) (1 � j � qk+1), it follows that R� �lls T1 to within

R after qk+1 <
h (3p2)s
CRs

i
iterations. //

Remark 7. In Part 1 above, whether � = !2=!1 is rational (so that its continued fraction

expansion terminates) or irrational, it is still possible to choose k so that qk � 3=R < qk+1

provided ! 2 Dn(s;C;N) with N � 3=R, as the reader may easily check. This establishes

the last part of Remark 6, above (since the rest of the proof goes through unchanged).

6. Proofs of Principal Results.

The proofs of Theorems 1A,B and 2A,B above di�er only in the estimate of the

ergodization time, which in turn depends on the dimension of the ambient space. We

therefore give complete details of the proofs in the two-dimensional cases only (Theorems

1A and 1B).

6.1 Proof of Theorem 1A.

Proof. We begin by estimating the measure of the complement of D2(s;C) in S1 (with

respect to the uniform measure � on S1). From elementary geometry, we have

�fD2(s;C)
cg = �fS1 n D2(s;C)g � K1

X
06=k2Z2

C

jkjs+1
= CK1�(s + 1) (25)
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for some constant K1 > 0, and where �(s + 1) =
P

06=k2Z2 jkj�(s+1) converges for s > 1.

It is clear (see the de�nition) that if the 
ow !t with direction vector ! ergodizes

T2
a" � R2=(a"Z)2 to within 2r"
 after time T", then 8x 2 Z" the collision time �"(x; !) �

T". We showed in the previous section (see Corollary 1) that every 
ow with direction

! 2 D2(s;C) ergodizesT
2 = R2=Z2 to within 2r

a
"
�1 after time 3s(

p
2)s+1C�1(2r

a
"
�1)�s.

Consequently, every vector ! 2 D2(s;C) ergodizes T
2
a" = R2=(a"Z)2 to within 2r"
 after

time

T" = a"
3s(
p
2)s+1

C(2r
a
"
�1)s

= a1+(
�1)s3
s(
p
2)s+1

C(2r)s
"1�(
�1)s : (26)

Now let s be such that 1 < s < (
 � 1)�1. According to the formula above, at any

x 2 Z", directions ! belonging to D2(s;C) have collision times �"(x; !) which we estimate

as

(x; !) 2 Z" �D2(s;C) =) �"(x; !) � K2

C
"1�(
�1)s; (27)

where

K2 = a1+(
�1)s3
s(
p
2)s+1

c(2r)s
(28)

and we see that �" vanishes together with " on Z"�D2(s;C). We therefore decompose the

initial data � into the disjoint sum

� = �1D2(s;C) + �1D2(s;C)c (29)

and we consider the corresponding decomposition of the solution of (5)-(6)-(7A)

f" = g"1D2(s;C) + h"1D2(s;C)c : (30)

It follows that Z T

0

Z
K\Z"

Z
S1

jf"(t; x; !)jd!dxdt =

Z T

0

Z
K\Z"

Z
D2(s;C)

jg"(t; x; !)jd!dxdt +

Z T

0

Z
K\Z"

Z
D2(s;C)c

jh"(t; x; !)jd!dxdt �

K2

C
"1�(
�1)smeasfKg2�k�kL1 + TmeasfKgCK1�(1 + s)k�kL1 �

A

2

�
C +

"1�(
�1)s

C

�
k�kL1 (31)

where

A = 2measfKg �max
�
TK1�(1 + s) ; 2�K2

	
: (32)

The bound on the right-hand side of (31) is minimized by choosing C = "(1+s�
s)=2 (the

so-called \distinguished limit"), in which case the integral on the left-hand side of (31) is

bounded by A"(1+s�
s)=2k�kL1 , as desired. //

11



Remark 8. If, instead of Theorems 1A and 2A as stated (with their order estimates of

the rate of decay of the integral with "), one wishes to prove only that

lim
"!0

Z T

0

Z
K\Z"

Z
Sn�1

jf"(t; x; !)jd!dxdt = 0; (33)

it su�ces to note (see the �rst part of the proof above for n = 2) that

meas
\

s>n�1

C>0

(Dn(s;C))
c = 0 (34)

from which it follows that for almost every (x; !) 2 Z"�Sn�1, the time to collision �"(x; !)

vanishes with ".

6.2 Proof of Theorem 1B.

Because it is somewhat longer than the proof just given, we break the proof of Theorem

1B into Parts a) through f).

Proof.

a) Solution of the Transport Equation

We denote by (X"(t; x; !);
"(t; x; !)) the \reverse broken 
ow" of the system (5)-(6)-

(7B) on Z" � S1. More explicitly, using the method of characteristics we may write this


ow as the solution of the system

dX"

dt
= �
";

d
"

dt
= 0; X" 2 Z" (35)

X"(0; x; !) = x; 
"(0; x; !) = ! (36)

X"(t+ 0) = X"(t � 0); 
"(t + 0) = R(nX"
)
"(t� 0); X" 2 @Z": (37)

We denote by N"(t; x; !) = cardf0 � � < t
�� X"(�; x; !) 2 @Z"g the number of

collisions experienced by a particle with initial condition (x; !), moving backward in Z"

for a time t > 0. The value of f" after time t is then

f"(t; x; !) = �N"(t;x;!)�(X"(t; x; !);
"(t; x; !)) : (38)

b) Decomposition of the Solution

As in the proof of Theorem 1A, we decompose the solution f" into a disjoint sum of

Diophantine and non-Diophantine directions:

f" = g" + h" ; where g" = f"1D2(s;C0); h" = f"1D2(s;C0)c ; (39)

and where C0 > 0 will be determined later.

12



c) Decomposition of the Integral

As in the proof of Theorem 1A, we write

���
Z T

0

Z
K\Z"

Z
S1

jf"(t; x; !)jd!dxdt
��� �

Tk�kL1measfKgC0K1�(1 + s) +

Z T

0

Z
K\Z"

Z
D2(s;C0)

jg"(t; x; !)jd!dxdt �

Tk�kL1measfKgC0K1�(1 + s) + k�kL1
Z T

0

Z
K\Z"

Z
D2(s;C0)

�N"(t;x;!)d!dxdt: (40)

Now we know that (x; !) 2 Z" � D2(s;C0) =) �"(x; !) � K2C
�1
0 "1�(
�1)s � T 0

" (cf.

Eqns. (26){(28)). We shall later choose C0 so that T 0
" ! 0 as " ! 0, so we may assume

that "0 is small enough to ensure that 2T 0
" � T for 0 < " � "0. We then split the last

integral into an integration over the time intervals [0; 2T 0
" ] and [2T 0

" ; T ] as follows:

Z T

0

Z
K\Z"

Z
D2(s;C0)

�N"(t;x;!)d!dxdt =

Z 2T0"

0

Z
K\Z"

Z
D2(s;C0)

�N"(t;x;!)d!dxdt +

Z T

2T0"

Z
K\Z"

Z
D2(s;C0)

�N"(t;x;!)d!dxdt: (41)

The �rst integral on the right hand side of (41) is easily bounded by 2T 0
"measfKg2� =

2K2C
�1
0 "1�(
�1)smeasfKg2�. As for the second integral on the right hand side of (41),

we modify the argument of N" in two ways which do not increase N".

First, for all (x; !) 2 (K \ Z") � D2(s;C0), we have �"(x; !) � T 0
" ; in particular,

for such (x; !) and for all t 2 [2T 0
" ; T ], we have t > �"(x; !), so that on the interval of

integration [2T 0
" ; T ], we may shift the time by �"(x; !) and particles along their trajectories

a distance c�"(x; !) to obtain

N"(t; x; !) � N"(t� �"(x; !); x � c�"(x; !)!;!): (42)

Second, for all t 2 [2T 0
" ; T ] and all (x; !) 2 (K\Z")�D2(s;C0), we have t=2 � �"(x; !).

Since N" is monotone increasing in its �rst argument, it follows that for such (t; x; !),

N"(t� �"(x; !); x � c�"(x; !)!;!) � N"(t=2; x � c�"(x; !)!;!): (43)

The right hand side of Eq. (41) is therefore bounded by

2T 0
"measfKg2� + I" = 2

K2

C0

"1�(
�1)smeasfKg2� + I" ; (44)

where

I" =

Z T

2T0"

Z
K\Z"

Z
D2(s;C0)

�N"(t=2;x�c�"(x;!)!;!)d!dxdt: (45)

13



d) Passage Through Re
ection

We introduce the periodicized (or punctured toroidal) domain Y" associated to Z" by

writing Y" = Z"=(a"Z)
2. We note that Y" has compact closure, and that its boundary

is a single circular obstacle of radius r"
 . We also de�ne the boundary domains �+
" and

�+
" (s;C) by

�+
" = f(y; !) 2 @Y" � S1

�� ! � ny > 0g ; (46)

�+
" (s;C) = �+

" \
�
@Y" �D2(s;C0)

�
; (47)

where ny is the inward normal at the point y 2 @Y".

Now let

Q" = f(y; !) 2 @Y" � S1
�� 9k 2 Z2 n f0g s:t: R(ny)! � k = 0g : (48)

The set Q" is clearly of dyd!-measure 0. On the other hand, linear 
ows on the torus

with irrational slope are topologically transitive (i.e. the orbit of each point is dense). It

follows in particular that for all (y; !) =2 Q", one has �"(y;R(ny)!) < +1. We may then

de�ne the boundary (or re
ection) map

T : �+
" n Q" ! �+

" by T (y; !) =
�
y � �"(y;R(ny)!)R(ny)!;R(ny)!

�
(49)

and the \nice" set

EN" (s;C) =

N\
k=0

T �k(�+
" (s;C)) (50)

consisting of elements (y; !) 2 �+
" (s;C) n Q" whose �rst N iterates under T belong to

�+
" (s;C).

Now consider the measure d�" = j! � nyjdyd! on �+
" . We have

�"(EN" (s;C)c) = �"(�
+
" n EN" (s;C)) = �"

� N[
k=0

T �k(�+
" (s;C)

c)
�
�

NX
k=0

�"
�
T �k(�+

" (s;C)
c)
�
= (N + 1)�"(�

+
" (s;C)

c) � (N + 1)2�r"
CK1�(s+ 1) ; (51)

where we have used the fact that T preserves the measure �" (see, e.g., Bunimovich-Sinai

[4]).

e) Further Estimates

We return to the problem of estimating the integral I" in Eq. (45). First, we de�ne

the \lift" AN
" (s;C) � Z" � S1 of the nice set EN" (s;C) by

AN
" (s;C) = f(x; !) 2 Z" � S1

�� [(x; !)] 2 EN" (s;C)g ; (52)

where [(x; !)] is the equivalence class of (x; !) for the relation (x; !) � (x0; !)() x�x0 2
(a"Z)2.
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We introduce an "-dependent order parameter C1 > 0 (to be chosen later so that

C1 ! 0 as "! 0), and we separate I" into an integral over initial conditions giving rise to

trajectories whose directions after one collision belong to the nice set AN
" (s;C1), and an

integral over the complement of those initial conditions. In other words,

I" � J" + L"; (53)

where

J" =

Z T

0

Z
K\Z"

Z
D2(s;C0)

�N"(t=2;x�c�"(x;!)!;!)1f(x�c�"(x;!)!;!)2AN" (s;C1)gd!dxdt ; (54)

L" =

Z T

0

Z
K\Z"

Z
D2(s;C0)

�N"(t=2;x�c�"(x;!)!;!)1f(x�c�"(x;!)!;!)2(AN" (s;C1))cgd!dxdt: (55)

In order to estimate J", we introduce yet another "-dependent order parameter �", to be

chosen shortly, and we write

J" = J"1 + J"2 ; (56)

where

J"1 =

Z �"

0

Z
K\Z"

Z
D2(s;C0)

�N"(t=2;x�c�"(x;!)!;!)1f(x�c�"(x;!)!;!)2AN" (s;C1)gd!dxdt (57)

and

J"2 =

Z T

�"

Z
K\Z"

Z
D2(s;C0)

�N"(t=2;x�c�"(x;!)!;!)1f(x�c�"(x;!)!;!)2AN" (s;C1)gd!dxdt: (58)

We set �" = 2K2NC�11 "1�(
�1)s, where N and C1 will be chosen later so that N ! 1,

C1 ! 0, and �" ! 0 as "! 0. We restrict "0 > 0 so that 0 < " � "0 =) �" � T . We have

J"1 � �"measfKg2� = 2K2NC�11 "1�(
�1)smeasfKg2�: (59)

On the other hand, if t � �" and if (x; !) 2 AN
" (s;C1), then because of the way �" is de�ned,

at least N collisions occur on the interval [0; t=2]; i.e., (t; x; !) 2 [�"; T ] � AN
" (s;C1) =)

N"(t=2; x; !) � N . Therefore

J"2 � T�NmeasfKg2�: (60)

In order to estimate the integral L" in Eq. (54), we are going to de�ne a new compact

set K 0 which is slightly bigger than K, and which encompasses the �rst collisions of all

particles emanating from K in the directions D2(s;C0). By restricting "0 such that 0 <

" � "0 =) cT 0
" � 1, we ensure that no particle travels more than unit distance on the

time interval [0; T 0
" ]. We may then take

K 0 = fx 2 R2
��distfx;Kg � 1g: (61)
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Let d�" be the image measure of dxd! under the map (x; !) 7! (x � c�"(x; !)!;!).

In other words, d�" is the measure on �+" given by d�" = �+" (x; !)(nx � !)dxd!, where
�+" (x; !) = �"(x;�!) is the \forward" time to collision, and nx is the inward unit normal

to @Z" at x. Below we shall also denote �+" (s;C0) = �+" \
�
(@Z" \ K 0) � D2(s;C0)

�
.

With these conventions, we see that the image of (K \ Z") � D2(s;C0) under the map

(x; !) 7! (x � c�"(x; !)!;!) is contained in �+" (s;C0), and we may therefore write

L" �
Z T

0

Z
�
+
" (s;C0)\(A

N
"
(s;C1))c

�N"(t=2;x;!)d�"dt: (62)

Rewriting L" in this way amounts to a change of variables that is well known in the theory

of neutron transport; see Cessenat [7]. Since the compact set K 0 contains no more than

(diamK 0=a")2 obstacles, it follows that

L" � T
K2

C0

"1�(
�1)s
�diamK 0

a"

�2
(N + 1)2�r"
C1K1�(s + 1): (63)

f) Order Parameters and Final Estimate

In view of the inequalities and Eqs. (40) { (63), we have shown that the following

bound holds: ���
Z T

0

Z
K\Z"

Z
S1

jf"(t; x; !)jd!dxdt
��� �

k�kL1
�
K3C0 + K4C

�1
0 "1�(
�1)s + J"1 + J"2 + L"

�
�

k�kL1
�
K3C0 + K4

"1�(
�1)s

C0

+ K4

N"1�(
�1)s

C1

+ K5�
N + K6

NC1

C0

"(
�1)(1�s)
�
; (64)

where

K3 = TK1�(s+ 1)measfKg; K4 = 4�K2measfKg
K5 = 2�TmeasfKg; K6 = 4�rTK1K2�(s + 1)(diamK 0=a)2: (65)

We now choose the order parameters and constants C0, C1, N , b, B, s and "0 so

that the integral in (64) vanishes with ", and the conclusion of Theorem 1B holds. By

hypothesis, 1 � 
 < 2. First, choose b > 0 such that 0 < b < (2 � 
)=9 < (2 � 
)=8.

For 
 = 1, the desired inequalities below hold for any s > 1; for 1 < 
 < 2, set s =

(2b + 
 � 1)=(
 � 1) > 1. Finally, take

C0 = "2�
�8b; C1 = "2�
�4b; N = "�b; (66)

and restrict 0 < "0 < 1 so that 0 < " � "0 =) �N = �"
�b � "b. Then, taking all

restrictions on "0 into account, for 0 < " � "0 it is not di�cult to verify that C0 ! 0,

C1 ! 0, N !1, T 0
" ! 0, �" ! 0, as "! 0, and that

���
Z T

0

Z
K\Z"

Z
S1

jf"(t; x; !)jd!dxdt
��� � B"bk�kL1 (67)
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where

B = K3 + 2K4 + K5 + K6: (68)

//

Remark 9. In order to carry out the proofs of Theorems 2A and 2B, it su�ces to repeat

the proofs just given, replacing as appropriate the estimate of the ergodization time in

two dimensions (Section 5, Corollary 1) with the estimate in higher dimensions (Section

5, Theorem 4).
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