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THE MARKOV BRANCHING RANDOM WALK
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(KOLMOGOROV-PETROVSKII-PISKUNOV) EQUATIONS

M.Ya. Kelbert! and Yu.M. Suhov?

Abstract. A general model of a branching random walk in R! is considered,
with several types of particles, where the branching occurs with probabilities deter-
mined by the type of a parent particle. Each new particle starts moving from the
place where it was born, independently of other particles. The distribution of the
displacement of a particle, before it splits, depends on its type. A necessary and
sufficient condition is given for the random variable

XO:sup max Xk
nZO lskSNn

to be finite. Here, X,, 1 is the position of the k-th particle in the n-th generation,
N, is the number of particles in the n-th generation (regardless of their type). It
turns out that the distribution of X° gives a minimal solution to a natural system
of stochastic equations which has a linearly ordered continuum of other solutions.
The last fact is used for proving the existence of a monotone travelling-wave solution
to systems of coupled non-linear parabolic PDE’s.
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solutions, continuum of solutions, reaction-diffusion equations, travelling waves
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The purpose of this paper is twofold. First, we extend (and make more pre-
cise) results concerning the asymptotics of the single-type branching random walk
obtained in [KKS 1 - 3] to the multi-type case. Secondly, and perhaps more impor-
tantly, we derive, from our results, a new theorem about the existence of monotone
travelling waves, for a general system of coupled reaction-diffusion equations (oth-
erwise known as Fisher or Kolmogorov—-Petrovskii-Piskunov equations (see [F] and
[KoPP]*). The connection between the reaction-diffusion equations and branching
random walk has been widely used since the papers by McKean [McK 1,2]. Namely,
it is the so-called branching diffusion process that figures in a formula for the so-
lution of the Cauchy problem for reaction-diffusion equations. However, in this
paper we use a different branching random walk model, called exponential, which
is directly related to travelling waves. The literature devoted to the problem of
existence (and uniqueness) of travelling wave solutions and of convergence to these
solutions is vast; a detailed reference list may be found, e.g., in a recent paper [VV]
and a forthcoming book [VV'V] ** Still, our method seems new: we believe that
the opportunities provided by this method are not at all exhausted by the present
result.

An alternative approach, also based on probabilistic ideas, was recently devel-
oped in [CHTWW]. [It is the case of two equations that was considered there.] The
classes of reaction-diffusion systems considered in [CHTW W] and in the present
paper are slightly different. Nevertheless, some comparison seems appropriate. In
both papers, the conditions proposed are only sufficient, for the existence of a mono-
tone travelling wave with a given velocity. [A necessary condition was established
in [VV], [VVV], but this condition is hard to check.] However, in [CHTWW] the
authors are able to prove the uniqueness of such a solution. We believe that the
uniqueness should also hold for our class of systems, but this question remains open.
Another important question left open in this paper is that of the convergence of a
solution of the Cauchy problem to a travelling wave, as time increases indefinitely.
This question was partially answered by the authors in [CHTWW] for their class
of systems.

1.1. A multi-type branching random walk: general results. Consider the fol-
lowing model of a discrete-time branching random walk in R!, with particles of
several types labelled 1, ..., M. A particle of type j created at time ¢ moves
randomly, from the point where it was created, to another point and splits, at time
t+1 (the time of its death), into a random collection of offspring particles described

* In their papers, Fisher and Kolmogorov, Petrovskii and Piskunov considered the
case of a single equation only; by the present time the theory of a single reaction-
diffusion equation is much more elaborated than the theory of reaction-diffusion
systems, where many basic questions remain open.

** Tt is worth noting that these publications contain many results previously pub-
lished in Russian and not widely available in the West.
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by a vector 1 = (l,...,lpr) where [l; is the number of type k offspring created.
The probability of creating a sample 1 = (I;,...,lp) where l; is determined by
the type of the particle and denoted by ¢(j; 1). Each newly born particle moves
independently of other particles, and the distribution P; of its random displace-
ment, {;, from the birthplace is determined by its type k and the type j of its
ancestor.

Given that the initial particle is, at time zero, at the origin and has a prescribed
type j, we can speak of the (absolute) positions of particles of the n-th generation
at the time of their deaths. These particles are naturally labelled by the paths of
distance n on a (random) oriented marked Cayley tree T', with a distinct initial
vertex O, which represents the structure of the descendants of the initial particle.
By orientation we mean that each edge of the tree is directed out of vertex O, and
the ‘marks’ assigned to the vertices are simply their types. The branching at each
vertex occurs independently and is described by distribution ¢(j; - ), where j is
the type of the vertex. To each edge e of tree I' we assign a random variable {(e)
that equals the displacement of the corresponding particle from its birthplace. Given
a realization of the tree, the random variables £(e) are (conditionally) independent
and have distributions Pj ;. If L is a (finite) path on I' initiated at O then the
position Xy of particle L is given by the sum » ., £(e). We are interested in
the behaviour of the supremum

X0 = sup X (1.1)
L
taken over all finite paths on the random tree which start at O. See Figure 1.
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Figure 1. A random process on a Cayley tree.
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The first question we address is: under what condition is the distribution of X°
proper (that is, X% < co with probability one)? Denote by II? the distribution
of X° in the case where the initial particle has type 7, j =1, ..., M. Vector IT°
is defined as (II9,...,11%,).

Denote by K(j,k) the expected occupation numbers:

K(j,k) =Y qG; 1), 1<3,k< M. (1.2)
1>0

Throughout the paper we assume that K(j,k) < co for any j,k =1, ..., M, and
moreover that there exist finite exponential moments

M
Zq(j; 1) exp (ROZlk> < 00, 1<j< M,
1>0 k=1

where Ry > 0. This means that the moment generating functions

L1 .
wi(z1y e zm) = Bygjoy 208 2gf, 1 <5 < M, (1.3)
are analytic in a poly-circle |z1], ... , |zm| < exp Ry.

Another standard assumption is that all distributions P;j possess exponential
moments

Eeik = _/ P; 1(dz)e®® < oo, a€(0,a°), (1.4)

for some a’, 0 < a® < co. [We always refer to a € (0,a’) while using these
moments.|

Sometimes we impose various additional conditions. For example,
K(j,k) >0, 1<jk<M, (1.5)

and

min K(j,k) >1. 1.6
; Ek: (4, k) (1.6)

Another condition: for any j,k=1,..., M and any z <0,
| Bl >0 (1.7

is also assumed at a certain point. Finally, when dealing with travelling wave solu-
tions, we introduce further conditions on ¢(j; - ) (see (1.28), (1.29)).
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An important role is played by the family of matrices A(a), with non-negative
entries

(A(a))jr = K(j,k) Ee®S%, 1<,k < M. (1.8)

According to the Perron-Frobenius Theorem (see [S]), A(a) has an eigenvector,
C = (Cy,...,Cn), with non-negative components C;, such that the corresponding
eigenvalue p > 0 is no less than any other eigenvalue of A(a). If condition (1.5)
holds, all entries of A(a) are strictly positive, and so are the components C; of
eigenvector C . Furthermore, eigenvalue p in this case is simple. [Matrix A(a) in
general may have other (non-negative) eigenvalues with non-negative eigenvectors.]

We sometimes write p(a), C(a) and Cj(a),1 < j < M, in order to stress the
dependence on a.

Theorem 1. The condition
there exists a with p(a) <1 (1.9)

18 sufficient for all distributions Hg, 1<j <M, tobe proper (that is H(Rl) =1).
Under assumptions (1.5) - (1.7) it s also necessary.

The sufficiency assertion in Theorem 1 was proved in an earlier paper by Biggins

[BJ.

It appears that the random variable X° satisfies a natural system of (stochas-
tic) equations. More precisely, the equations involve vector II°. If we denote by
X; the version of the random variable X° under the condition that the initial
particle has type 7, then the equations may be written in the form:

X; ~ max[0, max (X{kl)—kf(kl)),...,

1<k, <11 () »t 110
max (X(kM)—I—f(-kM))] 1<;3<M (1.10)
1<ku<lu() M pM ) h =3 = A

Here, symbol ~ means the equality in law. The random numbers [(j), ...,
Im(j) indicate how many offspring of a given type were produced by the initial
j-vertex O. The distribution of vector 1(3) = (li(y), ..., Im(j)) is described
by the transition probabilities ¢(j; - ). Given a sample vector 1(j) = (l1(y), ..,
Im(7)) the random variables Xﬁrf’"), 1<kn <ln(j),1<m< M,in the jth
equation (1.10) are independent; for a fixed m they have the same distribution as
the random variable X,, in the Lh.s. of the m-th equation. [These distributions
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are the unknowns in (1.10).] Similarly, random variables §;-k"‘) 1 < km < Lu(y),

ym ?
1 <m < M, in the j-th equation (1.10) are (conditionally) independent and do not
depend on the & '")’s; ;f}’n") has distribution P ,,). If some numbers among

the [,,(j)’s are zeroes, the corresponding maximum is omitted.

Pictorially speaking, X% in the r.h.s. of the jth equation (1.10) represents a
random variable of type (1.1) ‘viewed’ from a type m vertex of the first generation
on the tree: altogether there are I, (j) such vertices labeled by k., =1,...,0,(J).

A solution to (1.10) is therefore a vector of (possibly improper) distributions,
IT = (IIy, ... , IIps). Speaking of an order between solutions, and in particular
of a minimal solution, we mean the standard distribution ordering between the
components of the corresponding vectors.

Theorem 2. Vector II° = (1Y, ..., II%,) always gives a (unigue) minimal
solution to (1.10). Therefore, condition (1.9) is sufficient for (1.10) to have a
solution where all distributions IIy, ..., IIps are proper. Under assumptions (1.5)
- (1.7) 1t s also necessary.

A surprising fact is that the solution to system (1.10), provided that it exists,
is non-unique. We denote bt = max [0,3], b € R'.

Theorem 3. Assume that conditions (1.5) and (1.6) are fulfilled and suppose
that the eigenvalue p(a) < 1 for some a € (0,a"). Denote by a the smallest
root of the equation p(a) = 1:

a =inf[a>0: p(a) = 1]; (1.11)

then a > 0. Denote by B the second smallest root of equation p(a) =1, so that
pla) <1 for a € (a,B). Then, for any v > 0, there exists a unique solution
(Hgv), - Hg\})) to (1.10) such that, as © — oo, the distribution functions F;W)(:c)

= H§-7)((—oo,w]) have the representations™®

+
F (@)= (1-1C(a)e®) " + O(e7%), 1< <M,  (112)

where p may be chosen arbitrarily close, from the left, to min [2a,(]. Therefore,
there exists a linearly ordered continuum of distinct solutions to (1.10). Further-
more, II° is precisely the minimal solution.

* Symbol O(e™P®) is used below for a function that does not exceed, in absolute
value, be P*, z > 0, where b >0 and p >0 are constants.
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The proofs of Theorems 1 — 3 are carried out in Section 2.

The question whether the set of solutions is exhausted by those listed in The-
orem 3 is one of the important open questions in the theory of branching random
walk. In some cases the set of solutions is much larger. For example, the structure
of set of the solutions is known for the case where ¢;; takes a finite number of
values (see [KKS 1], Propositions 4.5 and 4.6). Here we focus on two models where
;1 has continuous distributions. These models will later be used for analysis of
travelling wave solutions for systems of reaction-diffusion equations,

1.2. Ezponential branching random walk and branching diffusion. For the sake
of simplicity, we assume, up to the end of this section, that the distribution P;j of
the random displacement ¢; does not depend on ancestor type j. The notation
ér and Py is therefore used, instead of & and Pjj, and index j indicating
the ancestor type is systematically omitted.

The first model under consideration is where the distribution P of the ran-
dom variable ¢j is the difference of two independent exponentially distributed
variables, with means ,uk_l and /\;1, respectively. We call the corresponding
model exponential. It has important applications in queueing network theory (see

[KKS 1], [DKS]).

The second model is where £ 1is given by the displacement of a Brownian
particle at the end of its exponentially distributed lifetime. Here we denote by
w,?l the mean value of the lifetime distribution and by B; and X2/2 the
drift and diffusion coefficient for type k particles. In this model, &, is again
distributed as the difference of two independent exponentially distributed random
variables. The model may be easily set in continuous time (see below); we call it
the branching diffusion model.

In the case of the exponential model, a key instrument of investigation is a
non-linear dynamical system of ordinary differential equations. Distribution P} in
this model has the density

Akfbk
) = N

(e’\”(l —0(z)) + e_“’“”@(:c)>. (1.13a)

and the Laplace transform Ee%* reads as

Ak
Apr + (pk — Ar)a — a?’

Ee®* = (1.13b)

In Section 3 we prove the following result.
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Theorem 4. Let IT = (I3, ..., IIp) be an arbitrary solution to system
(1.10), in the exponential model. Denote by Gy the distribution function of the
convolution Py Iy, 1 <k < M. Then the pairs (U, V), where

Ui(e) = Gale), Vile) = - Gi(a),

satisfy the following system of ordinary differential equations:
Ui(z) = Vi(),

Vi(z) = —(u — M) Vi) + s (Uk(:c) — o (U (2), ..., UM(m))>, (1.14)
z>0, 1<k<M,

with the conditions

g’;((g)) = A, (1.15)
(Uk(z), Vi(z)) € (0,1) x (0,00), =z >0, (1.16)
zh_’n;o Ui(z) = 1. (1.17)

Here @; 1s the moment-generating function (1.4).

Furthermore, for = <0,

Gi(z) = Gr(0)exp (Axz). (1.18)

The correspondence between the solutions to (1.10) and the trajectories of prob-
lem (1.14) - (1.18) 1s one-to-one.

Theorem 4 allows us to state the results concerning solutions to system (1.10)
in terms of the phase portrait of system (1.14) in RM x RM. This is carried out in
Section 3 (see Lemma 3.1).

Passing to the branching diffusion model, we first note that the Laplace trans-

form Ee®* equals here
Wk

wi + Bra — (X3 /2)a?”

We can say no more about the solutions to system (1.10) for this model than was
said in Theorems 1 — 3, in a general situation. [It is partly caused by the fact that
system (1.10) leads, for the branching diffusion model, to a (non-linear) system of
ordinary differential equations with delay, rather than to a system of type (1.14).]

(1.19)
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However, the information we gain from our analysis allows us to answer the question
whether the particles in branching diffusion ultimately ‘reach’ + or —oo, or both
infinities, or neither. Another point is that the branching diffusion model has a
remarkable relation to reaction-diffusion equations.

The continuous-time setting of the branching diffusion model is as follows. At
time zero we have a type j particle, j = 1,...,M that splits into a sample
of offspring, according to distribution g¢(j; - ). An offspring particle of type k
moves along R!, according to the Wiener law, with drift B; and the diffusion
coefficient X, and independently of other particles. After an exponential lifetime,
with mean wgl, it splits, according to ¢(k; - ), and each new offspring then
proceeds according to the same rule. Under condition (1.9) it is easy to check that
the continuous-time supremum

X" =sup sup Xy(t) (1.20)

t>0 LeL(t)

(cf. (1.1)) is finite. Furthermore, X* gives the (unique) minimal solution to a
natural stochastic equation that again admits a continuum of other solutions. Here
L(t) denotes the set of paths on random Cayley tree I'(t) built by time ¢ > 0
(L£(t) is a random set). Furthermore, Xy (¢) stands for the position, at time %,
of the particle labelled by a finite path L € £(¢) (as before, we assume that after
splitting the parent particle is frozen at its final position).

The relations with the reaction-diffusion equations are given by Theorem 5
below which is a straightforward generalization of a result of McKean [McK 1,2].
In this theorem, we follow a particular branch corresponding to a single particle
produced at time zero. Correspondingly, E; denotes the expectation value in the
branching diffusion, following an initial offspring of type k, and Lj(t) stands for
the subtree, up to time ¢, along this branch. Furthermore, for a given L € L4(¢),
n(L) denotes the type of a particle at the end of path L.

Theorem 5. In the branching diffusion model, let fr(t,z) denote the ezpec-
tation value

fr(t,z) = Ek[ H Fay (@ + Xﬂ-(t))]
LeLlx(t)
where f2 : R — R! 4s a C'-function, 1 < k < M. Then functions fi(t,z)
satisfy the following system of partial differential equations:

8 o 1., 02
afk(tam) = _ﬂk%‘fk(t,w) + Ezkamz fr(t, z)

t>0,zeR, 1<k<M,
+ @ (er(filtro),- o fur(t,2) = fult,2)),

(1.21)



with the Cauchy data

fu(0,2) = fi(z), ze€RY, 1<k<M. (1.22)

1.3. Travelling waves for reaction-diffusion equations. System (1.21) is called
a system of reaction-diffusion (or Fisher — Kolmogorov-Petrovskii-Piskunov) equa-
tions. See, e.g., [Bri], [R], [Sm]. One of the main problems in the theory of
reaction-diffusion equations is that of the convergence, of the solution fi(¢,z), as
t — oo. One would expect that, if the initial date fp(z) is reasonably chosen,
the solution converges to a (generalized) travelling wave. This means that, for some
choice of (real) constants cg, 1 < k < M,

lim - fi(t,z — cxt) = Wi(e), z € R', 1<k <M. (1.23)

Here functions Wy, : R! — R, 1 <k < M, determine the ‘profile’ of the travelling
wave; they should have the property that

(t,z) — Wi(z +cext), 1<k< M,

is a solution to (1.21).

The last property means that Wj,..., Wy give a solution to a system of
ordinary differential equations which differs from (1.14) only notationally:

Wi(e) = Vi(a),
V!(z) :( —2(Bi + ck)/zz) Vi(z)

—l—(Zwk/Ei) <Wk(m) — o (Wi(z),. .. ,WM(.’I}))>,£B eR', 1<k< M.

(1.24)
We call system (1.24) (and equivalent system (1.14)) the travelling-wave system.

In the sequel, speaking of a travelling wave profile, for system (1.21), we refer
to a vector-function W = (Wi,...,Wps). Vector c is called the (generalized)

travelling wave velocity vector. The case ¢; = ... = ¢y = ¢ corresponds to a
‘regular’ travelling wave; the regular travelling waves are important in the situation
where the drift coefficients vanish: £; = ... = By = 0.

Remark. A natural conjecture (motivated by results from [VV], [VVV]) is that,
under a certain non-decomposability condition on functions ¢ in (1.21) (and for
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B1 =...=pBm = p), the convergence in (1.23) is always to a proper travelling wave.
An opposite example is where ¢ depends on the k-th argument only: in this
case system (1.21) is decomposed into isolated reaction-diffusion equations, and the
convergence in (1.23) is valid, in general, for different constants c;. Our interest in
this paper is focused on properties of system (1.24) (with general A}), not on the
convergence in (1.23), and we consider all possible vectors c.

The simplest case where the convergence (1.23) is expected to hold is where
the travelling wave profile W consists of probability distribution functions. That
is, one must have

Vi(z) >0, lim Wi(z) =0, lim Wi(z)=1, 1<k < M; (1.25)

—00

bound Vj > 0, or equivalently, the monotonicity of the travelling wave profiles
Wy, , is the most important property here. This is suggested by results obtained in
the case of a single equation in (1.21).

In the case of several equations, under the condition that ¢; is the moment
generating function of a probability distribution, and for ¢; =...= ¢ = ¢, it was
established in [VV], [VVV] that the set of values of ¢ for which there exists a

proper travelling wave is an interval [c?,00). In our Theorem 6 (see below), we give

a simple characterization of the value c°.

We adopt the point of view that properties (1.25) are included in the definition
of a travelling wave solution. Thus the question we address in this paper is:

Given c¢ € RM  does there exist a travelling wave profile
’ g P

W  (obeying (1.25)), with velocity vector c?

In terms of system (1.24), the question is: does there exist a trajectory in the
phase space RM x RM which goes, over infinite time, from point

SN wlz___:’u)M:'U]:...:'UM:O (1.26@)

to point
Trw=...=wpy=1,v; =...=vp =0, (1.26b)

and is confined to the strip

0<wp<1, v,>0, 1<k<M? (1.27)
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We use here the notation wy, for the co-ordinate in R™ x RM corresponding to
Wy, and vy for that corresponding to Vj.

To state our Theorem 6, we need a few basic definitions and facts from the
theory of dynamical systems. The reader is referred for the detail to [H], [Ar] or
[AAr]. We also need two more conditions on probability distributions q(j; - ): for
eachj=1, .., M,

q(j; 0, ... ,0) =0, 1ie. ;(0,...,0)=0 (1.28)
and

a(d =1, =0 for k#j}) < 1. (1.29)

Under condition (1.28), (1.29), the origin S is a saddle equilibrium point for
system (1.24), with stable and unstable manifolds of dimension M. Point T is
another equilibrium point for (1.24), but its status is related to the behaviour of
functions ¢ near point 23 =...= 2zp = 1, and it depends on the choice of vector
c. System (1.24) has no other equilibrium points in strip (1.27) (see Proposition
4.3). Geometrically, conditions (1.25) mean that the corresponding trajectory must
lie down on the intersection of three sets: 1) U(S), the unstable manifold of point
S, 2) S(T), the stable manifold of point T, and 3) strip (1.27).

Given a vector ¢ = (c1,...cpr) € RM and a value a € (0,a!), consider an
M x M matrix B(a)( = Bc(a)) with the elements

(B@);0 = K6:¥) o T ene (/e

Here, a; is the smallest positive root of the equation

(1.30)

M

H (wk + (Br + ck)a — (Zi/2)a2) = 0.

k=1
[Matrix B(a) resembles A(a) from (1.8), in the case of an exponential model; in
fact, both matrices coincide, modulo the change of variables that transforms system
(1.24) into (1.14).] Under condition (1.5), B(a), a € (0,a;), as a matrix with
positive elements, possesses an eigenvector L = (Li,...,Lp) with positive com-
ponents such that the corresponding eigenvalue « is positive; the second eigenvalue
is strictly less, in the absolute value, than k, and L is the unique vector of B(a)
with non-negative components. As before, we use the notation «(a), L(a) and
Li(a),j=1,...,M, to stress the dependence on a.

Theorem 6. Assume conditions (1.5), (1.6), (1.28) and (1.29) to hold. Also
suppose that
cr>—Br, 1<k<M, (1.31)

12



Then the condition
there exists a > 0 with x(a) <1 (1.32)

i sufficient for the existence of a generalised travelling wave profile W satisfying
(1.25), with the velocity vector c.

Remarks. 1. It is interesting to compare the situation described in Theorem 6
with the case where function ¢(21,...,2p) depends only on 23, k=1,..., M
(that is, system (1.21) is decomposed into independent single equations). This case
is not covered by Theorem 6, since condition (1.5) is violated. In the case of a
decoupled system, matrix B(a) is diagonal and hgs M eigenvectors with non-
negative components. The corresponding eigenvah;es ki(= kjla), 3 =1,...,M,
are positive. The necessary and sufficient condition for the existence of a travelling

wave profile W in this case is inf max kj(a) <1 (in an explicit form,
a>01<;<M

air;fo . Sn}:a; MK(k’k)EPk exp (aér) < 1. See [U], [Br], [VVV] and the refer-

ences therein, and also [KKS 1]. Under this condition the travelling wave profile
with velocity vector ¢ is unique, and one can write down conditions on initial func-
tions fp, k = 1,...,M, which are necessary and sufficient for convergence (1.23)

(see again [U], [Br] and [VVV]).

2. Theorem 6 gives only a sufficient condition for the existence of a travelling
wave solution with property (1.25). A natural conjecture is that, in the situation of
Theorem 6, possibly under additional mild ‘non-degeneracy’ assumptions, condition
(1.32), with the bound x(a) <1 instead of k(a) < 1, is necessary and sufficient
for the existence of a travelling wave profile W satisfying (1.25). It is also expected
that, under the condition (1.32), there exists a unique travelling wave profile W
with velocity c.

3. In the case of a proper travelling wave, with ¢ = (c,...,c), the values of ¢
for which condition (1.32) holds form an interval (c”,00). We believe that our c°

coincides with the value indicated in [VV], [VVV].

The proof of Theorem 6 is carried out in Section 4, together with some other
results concerned with system (1.21).

2. An analysis of branching random walk:
the proof of Theorems 1 — 3.
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Proof of Theorems 1 and 2. By using the distribution functions Fj(z) =
II;((—o0,z]) and setting

(Fes Pal(@) = [ [Balld) Ptz —v), 2.)
we can re-write equations (1.10) as
Fi(z) = O(z)p;([F1 * Pj1)(z),...,[FM* Piml(z)), z € R, 1 <j <M. (2.2)

Here, and below, © is the indicator function of the non-negative half-axis R} =
[0,00). Denote by A; the non-linear operator representing the r.h.s. of (2.2):

Aj i u=(ur,...,um) — Op;(uy * Pj1,...,upm*Pjp), 1<j<M. (2.3)
Operator A; acts on vector-functions (v1,...,up) where each wuj is a non-

decreasing, left-continuous function R' — [0,1] vanishing on (—00,0). The image
Aju is again a function of this type. Equations (2.2) take the form

F = AF, (2.4)
where F = (Fy,...,Fy) and A = (Ay,...,Am).

First, note that operators A; are monotonic, in the sense that if uj > u},1 <
k < M, then Aju> Aj;u’',1 <j < M. Therefore, the sequence A"®,n =1,2,...,
where © = (0,...,0), converges pointwise to a limit u’ = (u},...,u$;) which
is a fixed element for A. Any other fixed point u = (u1,...,up) is majorized by
u’ in the sense that ul(z) > uj(z), z € R, 1 < j < M (which is equivalent to the
inverse relation between the corresponding probability distributions).

Another obvious remark is that u{(z) is nothing but the distribution function
of random variable X° from (1.1), under the condition that at time zero we have
a particle of type k. That is, ul(z) = II}((—o0,z)), = € R*. This distribution
function may still be improper ( zh_'n;o ul(z) may be <1).

To check if u® is proper, we assume that condition (1.9) holds. We take a
special initial vector
- + .
v = (viy...,om), vi(z) =0O(z)(1—-Cje * )", 1<j<M, (2.5)
where value a > 0 is chosen so that p(a) < 1 and the eigenvector C(a) is
normalized so that Cy < 1,1 < k < M. Denote b, = a !logC; and write

e+ Pial(@) = [ (Pel(@)®le —v) (1 = Cuemo )

N /_Lbk [Pj.k)(dy) (1~ Cre™=7)

(2.6)

=1 /o_ob [Pjvk](dy) — C exp (——a.’l:)

o« (/ [P 1] (dy)e™ — /:bk [Pj,k](dy)eay) :
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Since
(o)

Cuexp(~az) |

—by

1Py )(dy)e™? > / Psldn),
we have

[vk * Pjyk](a:) > 1—Crexp (—az)E ek, (2.7)

Furthermore,
(A;v)(z) = O(z)[1 + (pj([vs * Pja](2), ..., [var * Pinml(2)) — 1)]

M
0|1+ 30 (G201 * Pisl@) 5ty one P ()

k=1

) (2.8)

2z = U
x ([vk « P l(z) — 1)]

where 9} is an intermediate point between [vj * P;;](z) and 1. The r.h.s. of
(2.8) is

> O(z) [1 — exp(—az) Z K(j,k) E e“ﬁf”‘Ck]
k=1

> O(z)[l - Cj exp(—az)];
in the last inequality we used the fact that C is an eigenvector of A(a) with the
eigenvalue p(a) thatis <1.

We conclude that for any 7 =1,..., M, (A;v)(z) > vj(z). Therefore, there

exists a pointwise limit v® = lim A"v giving a fixed point for A. Furthermore,
for the components v?, ..., v, of vector v’ we have the bounds
v (2) > O(z)(1 - Cje )T, 1< <M. (2.9)

This proves Theorem 1 and the sufficiency of condition (1.9) in Theorem 2.

Let us prove the necessity. We now assume that conditions (1.5) — (1.7) are
valid. Suppose that the minimal solution II° to (1.10) is composed of proper
probability distributions, (or, equivalently, vector u® is composed of proper distri-
bution functions), but condition (1.9) fails, i.e. p(a) > 1 for all a > 0. The first
remark is that, without loss of generality, we can assume that distributions P;
are supported on finite sets with some specific properties. More precisely, we shall
assume that there exist a positive §, a positive integer N, and a one-to—one map
n: 73— n(j), 1 <j,n(j) < M, such that (a) for any j,k =1,..., M, with j # k,
the distribution P,;) 1 is supported on a set

S = {—o0, (N +1)5, ..., N6} (2.10)
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in the sense that [Py;)x](§6 € S) =1 and [Py x](é = s6§) > 0 for any
s =—-N+1,...,, N, and (b) for any j =1, ..., M, the distribution P, ; is
supported on

S = {—oc0, —N§, ... , N6} (2.11)

in the same sense as before. In fact, choosing 6§ > 0 small enough and N large
enough, we can always diminish the distributions P; 1 , in the sense of stochastic
ordering, so that the new distributions possess the property indicated, and condition
(1.9) still fails (assumption (1.7) is important here). Obviously, for the new P;}’s,
the distributions II;, ..., IIps are also proper.

Note that, under our assumptions about P;, distributions II; are concen-
trated on subsets of the set {né, n € Z1}.

Denoting
(Pjx](&j = 86) =pjr(s), s€ Z' or s = —o0, (2.12)
and

1 —ul(né) = y;(n), neZ, (2.13)

we can write

N
[ud * P ) (n6) = pjn(—00) + D> pin(s) (1 —y(n —s))
s=—N+1
N (2.14q)
=1- Z pj,k(s)yk(n - s)a nc Zla ])k = 1""’M’ k 3£ U(j),
s=—N+1

and

[ul * Pji](n8) = pjx(—00) + D pjx(s) (1 —yx(n —s))
s=—N

N
1= Y pirlshyrln —5), ne B, k=n(j), j=1,..., M.
s=—N

(2.14b)
Note that, by the assumption, lim,y;j(n) =0,1 <3 < M.
Equation u’ = Au® now takes the form
yi(n) =1 - 0O(n)p; (1 — ij,l(sl)yl(n —81)yenns
o (2.15)

1- pjm(sn)ym(n — 3M)), necZ, 1<j<M;

SM
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The sum in the r.h.s. of (2.15) is over set S for sy(j) and over set S for all other

sx’s. Pictorially speaking, variables y,;y(n+ N) form a ‘future propagation front’
in equations (2.15).

Denoting ¢; = ¢,(;), Wwe now observe that functions ¢;, 1 < j < M, admit
the following representations, near points z; = 1:

M
Bi(21y.r2m) =14+ (21 — DK (n(5),k) + ¥j(21,- .., 2m), (2.16)
k=1

where |¢;(z1 ...,2m)| = O(maxy, |z, — 1|?). More precisely, there exist ¢, v > 0
such that, for any j = 1, ..., M, the following holds. For any values =z, ..., zp
with maxy |2x — 1| < {, function %;(z1,...,2m) admits a bound

(21,5 2m)] < (. (2.17)

Since K(n(j),k) > 0 for any j,k, it means that functions ¢{; are invertible,
in any of the variables 2zj, in a circle about 2z; = 1. Moreover, the inverse
functions, as functions of the whole collection of the complex variables, are analytic
in a poly-circle in CM about point z; = ... = zpr = 1.

We want to re-write (2.15), by expressing the ‘front’ variables in terms of other
variables taking part in the equation, for which we need to invert the corresponding
functions ¢;. By the above remark, we can do so while all values y;(-) taking part

in (2.15) are confined to a small interval (O,Z) ( ZS ¢ ), which may be achieved,

for n large enough: n > ng, since yg(n) monotonically decrease to zero when
n — 00.

Hence, for n > ng, equations (2.15) may be written in the equivalent form
yj(n) = fj(yl(n - 2N)’ K] yl(n - 1)’
y2(n - 2N)’ veey y2(n - 1)7

.y ceey ceeey

yM(n_ZN), (EXE) yM(n"]')), 1<j< M.

(2.18)

Note that functions f; are analytic in an open poly-circle about the origin and
have there non-zero first derivatives.

We are interested in linearizing (2.18), by taking the linear parts of functions
f; near the origin. In fact, we can do so by linearizing (2.15), i.e., by taking the
linear parts of functions ¢j(21,...,2Mm), near point 23 = ... = zpy = 1. The
linearized equations (2.15) read as

yitn)= Y. Y Jik(s)wi(n—s), 1< < M. (2.19)

1<k<M 1<s<2N
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where

Tik(s) = K(j, k)pj,n(s)- (2.20)

As to the linearization of (2.18), it takes, in the matrix notation, the following
form:

Y*(n) = QY*(n-1), n € Z, (2.21)

where Y*(n) denotes a real (column) vector, of dimension M(2N — 1), namely:

(V)T = (yi(n — 2N +1),..., (),
y;(n —2N + 1))' .. 7y;(n)7

M

y}kw(n—zN—}—l),..,,y}ka(n)),

and Q is areal (M(2N —1)) x (M(2N — 1))-matrix.
Matrix Q has a specific ‘block’ structure: it contains M blocks B, ., Bps
of size (2N —2) x (2N —1), intermitted with M ‘full-length’ rows by, ., bas.

All entries of by, ., bys are strictly positive; the total number of these entries is
M?(2N —1). See Figure 2a.

( .
E. h

& ]

Figure 2a. The block structure of matrix Q.

Each block B; contains 2(NN —1) unit elements, just above the main diagonal;
all other entries of matrix Q are zeros. See Figure 2b.
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Q1

Figure 2b. A single block B;.

It is worth noting that the MZ?(2N — 1) entries of rows by, ..., by are the
only elements of martrix Q which vary when distributions P;; vary (with N

remained fixed). Pictorially speaking, matrix Q may be considered as a point in
RMZ(ZN—l)_

At this point we use a version of Siegel’s Fundamental Lemma, for real-analytic
transformations of a Euclidean space (see [Ar]) In our situation it guarantees that,
unless the entries of matrix Q belong to a set B of the Lebesgue measure zero (in

RM*(2N-1) ), the following holds true. The fact that the system of equations (2.18)
(or equvalently, (2.15)) possesses a bounded non-negative solution y;(n), n > no,
1 < 7 < M, implies that the linearized system (2.19) (or equivalently, equation
(2.21)) also possesses a bounded non-negative solution, yj(n), n >ng, 1 <j < M.
Another remark is that, unless the entries of Q belong to another set, D, again
of the Lebesgue measure zero, matrix Q has M(2N — 1) linearly independent
eigenvectors, and its eigenvalues satisfy the following conditions: (i) none of the
eigenvalues has the absolute value one, (ii) for any r > 0, there are at most two
(complex-conjugate) eigenvalues with the absolute value 7, (iil) any pair of the
complex-conjugate eigenvalues has an irrational argument (modulo 27 ).

It is clear that we can avoid both sets B and D, again by diminishing
the distributions Pjj, without violating our original assumptions (and actually
without changing sets S and S).

But once we are out of these sets, the fact that there exists a bounded non-
negative solution to (2.18) means that there exists an eigenvalue Ao € (0,1), and the
corresponding eigenvector e = (e1,...,epm(2N—1)) has non-negative components.

In terms of equation (2.19) it means that there exists a non-negative solution
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Y O(n),n € Z,1<j<M, of the form

yi(n) = Aiyl?, (2.22)

where y(®) = (ygo), .. ,ygol)) is a fixed non-negative vector. Substituting (2.22) into

(2.19) yields

0 — .
= 3 Y Qe 1< < M,

1<k<M 1<s<2N

or equivalently,

y= 3 Y Qi u (2.23)

1<k<M1<s<2N

Now set ag = —§ *logAg and recall (2.20). We obtain that y* (%) is an eigenvector
of matrix A(ag) with eigenvalue one. This completes the proof of the necessity.

The above analysis shows that a condition weaker than (1.9) guarantees the
existence of a solution IT to (1.10) with at least one proper component II;.

Theorem 2.1. System (1.10) has a solution, with at least one component II;
being a proper distribution, if matriz A(a) has, for some a, an eigenvector C,
with non-negative components and with an eigenvalue p < 1.

The meaning of Theorem 2.1 is that p(a) may be > 1; eigenvectors C and
C do not need to coincide. We omit the proof of Theorem 2.1: it simply repeats
the above argument.

Proof of Theorem 3. It is convenient to introduce, for any v > 0, a class F(v)
consisting of vectors F = (F1,...,Fu), where each Fj is a distribution function
admitting the asymptotics

Fj(z) =1 —+4Cj(a)e™ " 4+ O(eP%) (2.24)

with some p = p(F) > a. Recall that o was introduced in (1.11) so that the
eigenvalue of p(a) equals one. The assertion of Theorem 3 is that class F(v)

contains exactly one solution, F(¥) = (Fl(v), cee I(V;’)), to (1.10).
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We shall prove more: class F(v) is actually attracted to F("), in the course
of iterating operator A. This fact is proved in two steps. Step one is to check that
if two vectors, F = (Fy,...,Fy) and F' = (Fj,..., Fy,), satisfy

|Fj(z) — Fj(z)|exp (p°2) < hCj(p°), (2.25)
where p® >, and p(p°) <1, then

[(A;F)(2) — (A;F')(z)|exp (p°z) < p(p")RC;(p"). (2.26)

Step two is to prove that for F = (Fy,...,Fu) € F(v),
(A;F)(z) = Fj(2) + O(e™'") (2.27)

where p! = p(F), if p(F) < min [2a,a"], and p' may be chosen arbitrarily close
to min [2a,a’] from the left, if p(F) < min [2¢,a’].

To check the first step, we use (2.8) and write
|(A;F)(z) — (A;F)(=)]
= 0(2) s (P % Pjal(@), s Fa * [Pral(2) ) -

03 (IFL * Pial(@), s Fig * [Piaal(2) )|

M
< O(z) Z (8—90]— ([Fl * Pj‘l](:c), ooy [Fr—1* Pjr—1](2), 2k, (2.28)

)

[Flay * Pigtal(®), - [Fhg * Pinal(a))

zr = U

1)

% |[F + Pia(=) - [Ff  Pyil(a)

where ) is an intermediate point between [F} * P;](z) and [F} * Pji(z). By
using an immediate bound

8 .
223 ([Fy # Pial(e)s s [Fema * [Pip-al(®), 21,y
Oz

Fiy # Prieyal(e)s - [Fhg * Pind(@)) < K(j, k),

zp = Uy
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we can estimate the r.h.s. of (2.28) by

h@(-’v)ZK(J',k)/[Pj,k](dy)e_”o("_y)Ck(p")

k=1

M
= hO(z)exp (—p’z) Z K(j,k)Eepofj’ka(PO)
k=1

= ho(z)exp (—p'z) (A(p")C(p")),
= hO(z)exp (—p°z)C;(p’)p(p°).

To check step two, take F = (Fi,...,Fnr) € F(y) and assume for definiteness
that p(F) < min [2a,a’] (the opposite case is treated similarly). Having in
mind that ¢;(1,...,1) =1 and (8/8zk)<pj(1,...,1,zk,1,...,1)‘ = K(3,k),

2=
1<j,k <M, write, using Taylor’s expansion,

(A,F)(2) = O(@)p; ([Fr * Psl(2), -, [Far + Pial(2))

M T
= 0(z) [1+ZK(j,k)<—1+/ [P} 1)(dy)
k=1 —00
i) [ ) [ + o))
M o
+ Z (9Zk15'zk2 (,0](1, 1y 28151 »Zkay by ) 2k, = 191:1
e Rk, = 19kz (229)

x ( 1+ /; [Pj.k](dy)

— o0

X (— 1+ /z [P,k ](dy)

— o0

1@ [ Bl [+ o) ).

Here p = p(F) and 9%, ¢ = 1,2, are intermediate points between 1 and

/I [P kn)(dy) = 7Chi() /;[P(j,ki)](dy) [e—a(z—w n o(e—p(z—y))].

— o0
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To analyse the structure of the r.h.s. of (2.29), write

1-— /z [Pj k)(dy) = /oo[Pj,k](dy)

— 00 xz

= (2.30)
< / [Pjyk](dy)eﬁ(y—z) < exp (—ﬁw)EeﬁEj”‘ _ O(e_ﬁz);

these relations hold for any $ < a’. Furthermore,

/ [Pjyk](dy)e_a(z_y) = exp (—aw)Eeaffv" —/ [Pj,k](dy)ea(y_z). (2.31)

— o0 z

Observe that, owing to the bound p > «, the second term in the r.h.s. of (2.31)
does not exceed, in the absolute value,

/ [Pj'k](dy)ep(”“”’) < e PEEePSk
i.e. is of the order of magnitude O(e™?%).

It is plain that, because of the bound a < p < 2a, the second-derivative terms
in the r.h.s. of (2.29) also give the contribution of the order of magnitude O(e™?%).
Hence, the r.h.s. (2.29) may be written as

M
o () [1 — 4 Y K(j, k)Ee* Ci(a) + O(e #7)]

k=1

= 0(2)|[1 ~ 7(e)03(e) + O(c77)] = 0(2)[1 - 70(e) + O]

the last equality holds due to the choice of a. This means that AF € F(v), which
completes the proof of Theorem 3.

We conclude this section with two auxiliary results that are used below, in the
analysis of the travelling wave solutions. We assume here that the conditions of
Theorem 3 are valid.

Theorem 2.2. Suppose that II = (II1,...,Ipr) s a solution to (1.10), with
the distribution functions Fj(z) = II;((—oo,z]) of the form

Fi(z) = 1— D; e™®® 4+ O(e™?%), 1<j< M, (2.32)
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where constants D; >0, o < «, and p; > aj, 1 < 3 < M. Then the following
properties are valid: (i) aj =a, 1 < j < M, (ii) matric A(a) possesses a non-
negative eigenvector C(a) = (Ci(a), ..., Cum(a)) with eigenvalue one, and (iii)
D; =4Cj(a), 1 <j < M, for some constant 5 > 0.

Theorem 2.3. Solutions IV, from Theorem 3, depend continuously on =,
in the sense that for any = > 0,

veRL » F (), 1<k<M,

are continuous functions.

Proof of Theorem 2.2. We use (2.4). Representation (2.29) yields

Fi(z) = O(z) [1 + kZA:IK(j,k)(l _ /

z

[P} x](dy)

- Defan) [ 1Pl e + o))

+ terms O<exp (—mkinpkw)>, 1<53< M.

Picking max aj, gives (i), and subsequently (ii) and (iii).

Proof of Theorem 2.3. We use the fact that

FOY — lim Anv(‘v),

where (cf. (2.5)) v(¥ = (v:(lv), e ,'vg\})), and
—az\t
vgd)(:c) = (1—-7Cj(a)e™*")".
More precisely, write

FO) = v(M 4 Z (AMv) — ATy, (2.33)
n>1

As previously shown, for any € > 0, the series may be truncated, uniformly in
~ within an a priori fixed compact set, so that the remainder does not exceed e.
Finite sums from (2.33) depend on v continuously. Hence the result.
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3. Proof of Theorems 4 and 5. Geometric properties
of the travelling-wave system.

Proof of Theorem 4. The proof is simple and essentially repeats that of Theorem
4 from the paper [KKS 1]. First, we derive (1.14) — (1.18). Let X, be a random
variable with distribution II;. Then the random variables Y; = ¢; + X;, with
probability distribution P; *II;, satisfy the following stochastic equation

(k1)
Y; ~ £; + max [0’15151112%(]') Yi U, ..., 6
yEo iy '
<k <) M holsis

( & stands for the displacement of a particle of type j). Here, as in (1.10), the
random numbers I1(j), ..., Im(j) are distributed according to ¢(j; - ), and,
given a sample vector 1 (j) = (li(3), ..., Im(5)), the random variables Y#Lkm),
1 <km <Iln(-),in the jth equation (3.1) are independent; for a fixed m, Y,,(lk"‘)
has the same distribution as the random variable Y,, in the lL.h.s. of the m-th
equation. This specifies the joint distribution of all random variables in the r.h.s
of (3.1), and hence the distribution of the whole sum. Symbol ~ , as in (1.10),

I
means equality in distribution. In terms of distribution functions G; and moment
generating functions ¢;, (3.1) takes the form

Gi(@) = [P+ 0i((G1)4s- s (Gu)1 )| (=), weR,1<i<M.  (32)
Here and below, (Gi)+(z) = O(z)Gy(z).

According to the definition of the exponential model, the probability density
function of the random variable ¢ is of the form

Akfbk

) = 3

((1 — @(a:)) exp (Arz) + O(z) exp (-—,u,km)> , ¢ €R? (3.3)
For z # 0 we have

Pr(@) + (pr — Ae)pk(z) = Arprpr(z), (3.4)

and for z =0
Pe(0+) — Pi(0—) = = Apps. (3.5)

Taking the second derivative of (3.2) for z > 0 and using (3.3) and (3.4), we get
(1.14). Taking the first derivative at z = 0 yields (1.15). Relations (1.16), (1.17)
reflect the fact that G} are distribution functions. Finally, (1.18) is valid by direct
inspection.
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Conversely, suppose that (1.14)-(1.18) hold. Equations (1.14) and (1.18) may
be written in the form

d? d
102 Gk(a:) + (;Lk — )\k)ﬂGk(m)

— Akftk (Gk(-'b') —@r((G1)45- - ,(GM)+)(93)>, z #0.

(3.6)

Taking the convolution of both sides of (3.6) with the probability density function
pr from (3.3), integrating twice by parts and using (1.16) and (1.17), leads to (3.2)
and (3.1). The latter is obviously equivalent to (1.10).

We provide some auxiliary assertions about the exponential model which are
used in our analysis of travelling waves. A dynamical system (1.14) is said to have

an even saddle point at S € RM x RM if § is an equilibrium point, and the
linearized system, around S, has M real eigenvectors with positive eigenvalues
and M with negative ones.

Lemma 3.1. Under the condition pr > Ay, 1 <k < M, system (1.14) always
has an even saddle eqilibrium point at the origin S.

Proof of Lemma 3.1. Linearising (1.14) at S yields
Ul(z) = Vi(z),
’f(m) ) . >0, 1<k<M.  (3.7)
Vi(z) = —(ur — Ax) Vi(z) + Aepra U(),

Here,

q}c:1—q<k; (ly=1, I, =0 for r#k}), 1< k< M;

in view of (1.29), ¢} > 0. Observe that system (3.7) is decoupled into M two-
dimensional systems, each involving a single pair of variables Uj, V. Therefore,
the eigenvalues of the matrix of system (3.7) are precisely the roots of the following
equation:

M —0 1
det = 0; 3.8
kl;[l © ( Aprgy  — (k= k) — 0) (3.8)

o is the unknown here. The roots are given by

1 1
oE = —g (e = Ak) £ 54/ (e = Ae)? + pprgg, 1<k<M. (3.9)
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This completes the proof of Lemma 3.1.

Observe that 0'2' < Ap.

The eigenvectors €] corresponding to the positive eigenvalues 0'2' are given,

in the co-ordinates uj,v;, correspondingto U; and Vj, respectively, 1 <j < M,
by

up =1, vy =07, uj=v; =0, j#k. (3.10)

We define the unstable (—)-manifold Z_(S), of system (1.14) at point S, as

the set of points in RM x RM obtained by integrating (1.14) from S, along the

cone C_(S) generated by linear combinations of vectors e:, 1<k < M, with

non-negative coefficients. Cone C_(S), in a natural sense, is tangent to U_(S) at

S.

The mutual ‘position’ of the trajectories of system (1.14) and cone C_(S) is
characterized in the following Lemma 3.2:

Lemma 3.2. Let (Uj(z),Vj(z), 1 <j < M) be a trajectory of (1.14), with
lim Uj(z)=1,1 <3 < M. If, for some zo € R' and k = 1,...,M, point

(Uk(:co),Vk(:co)), in the up,vi-plane, has Ug(zo), Vi(zo) > 0 and lies below line
vp = Mpug (ice., Vi(zo) < AUi(zo) ), then point (Uk(z),Vi(z)) ULes below this

line for any © > zg.

Proof of Lemma 3.2. The proof of Lemma 3.2 follows the construction used in
the proof of Proposition 5.1 from [KKS 1]. For the sake of brevity, we consider in
detail a particular case (which may be described as the ‘worst’ one), where g} =1,
and thus a';'; = A, 0, = — k-

We start with some definitions. In the argument that follows, speaking of a
codimension one manifold given by an equation vy = ®(uy,...,upm; v1,...,9Mm),
we refer to the domains vy, > ®(u1,...,un; v1,...,v0m), and vi < B(ug,...,uns;
V1,...,UM), as ‘above’ and ‘below’ the manifold, respectively.

For any trajectory (Uj(ac),Vj(:c), 1<5< M), of system (1.14), the zeros of
the derivative V/(z) lie down on a (2M — 1)-dimensional manifold M}, given by
Ak

= ————— (U — P, . 3.
v, #k__‘kk(Uk er(u1,. .., unm)) (3.11)
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Below this manifold the derivative is positive and above negative. If we form the
function

Zy iz €R = Vi(z) — ApUg(z), (3.12)

then the zeros of the derivative Z;(z) lie down on another (2M — 1)-dimensional
manifold, M2, given by

vp = A (ur — @r(u, ... unm)). (3.13)

[This follows from the formula

Zi(e) = —mVi(e) + Mo (Un(2) = @1 (U (a),. ., Un()) ),

which in turn is obtained from (1.14). Observe that manifolds Mj and M2 are
homothetic.]

Define the (plain) cone C_ (S) as the intersection of the hyperplane v; =
Arur with the non-negative orthant in RM x RM. Cone C_ 1(S) intersects M}
at the origin S. Observe that C_ ;(S) is tangent to M2 at the origin and has
no other intersection with M:2.

Apart from the origin, cone C_ ;(S) intersects AM; along the 2(M — 1)-
dimensional manifold A} given by

Ak
Vi = }‘kuk, U = 'U‘_(Pk(ul')"' ,’LLM),
k

the ortogonal projection of N to the (u1,...,upr)-space RM forms a compact
(M —1)-dimensional manifold A} in RM. [It is worth noting that this projection is
one-to—one.] More precisely, we consider the connected component of N situated
in the non-negative orthant R of RM and use for it the same notation .
Observe that A} partitions IRQ_/I into two connected regions, one of which is
compact and contains the origin. We denote this region by Int M. See Figures
3a), 3b) where the case M =2 and k =1 is considered, and the (non-essential)
va-direction is omitted.
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Now suppose that, in a trajectory (Uj(z),Vj(z), z € R, 1 < j < M), of
(1.14), we have Ug(zo), Vi(zo) > 0 and Vi(zo) < ApUk(zo), for some z, € R.
We can assume that (Ui(zg),...,Unm(zo)) belongs to Int M. Assume that this
trajectory reaches cone C_ ; at some point z; > zy and assume that z; is the
first such point. It means that

Vi(z) < ApUr(z) for zo <z < 21,

and

Vk(ml) = )\kU(wl)

We conclude that the tangent vector to the curve (Uk(m), Vi(z), z € Rl), at
r = z1, obeys
dvy, Vi
doy iz
dUk Uk(iltl)
up = Ur(z1)

v = Vi(z1)

Vi(z1)
Up(z1)
Vi(e1),1 <3< M) must lie down on M3, i.e., must coincide with the origin S.]
So,

[In fact, equality

A is impossible, because then the point (U;(z1),

Vi(z1) > ApUg(z1) > 0.
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Thus, point (Uj(ml),Vj(wl), 1 <j < M) isbelow M}, that is, point
(Ul(ml), . UM(wl)) € Int M. But in our solution, the curve (Uk(:c), Vi(z),
x € Hl) eventually reaches point w; = 1, vy = 0; it means that this curve
intersects the line v, = Apujp at least once after z,. If x5 > z; is the next point
of intersection, then

vp(z) > AMUr(z) for 2y < z < z,. (3.14)

Our function Zj (see above) vanishes at both z; and =z;. Therefore,
Z(2) = 0 for some & € (z1,z2). That is point (U;(2),V;(%),1 < j < M) lies
down on M:Z. But this contradicts (3.14), wich completes the proof of Lemma 3.2.

One of the consequences of lemma 3.2 is that the integral curves of problem
(1.14) — (1.17) are ‘correctly’ parametrized by their initial points on the M-
dimensional plain manifold Z in RM x RM, given by the linear equations
vy = Apup and the inequalities 0 < uy < 1,1 < k < M. [By an integral
curve we mean, here and below, a trajectory as a locus in RM x RM, without
taking into account the ‘time’ variable z € R'.] We essentially use this fact in our
analysis of travelling wave solutions (see Section 4). In particular, the intersection
U_(S)NS(T) lies below any cone C_ x(S),1 <k < M, and hence does not reach
T.

We now pass to the branching diffusion model.

Proof-of Theorem 5. The proof of Theorem 5 essentially repeats the argument
from Section 2 of paper [McK 1]. We give it here for the sake of completeness. See
also [CHTWW]. Following [McK 1], denote by 7 the first time, after time zero,
when a particle splits in the course of the branching diffusion. Then, according to
whether 7 <t or 7 >t, we decompose

Fu(t,z) =P(r > t)/ Pry(wi(t) + = € dy)fi (y)

v "Pu(r € dt) [ Prutntt) +2 € dy
X k) H( = t)” (3:15)

l=(l1,...,lju)EZ{:'_!

e (WP £ ) (2)

o G ST (™ (-t 0" @t

Here P denotes the probability distribution of the branching diffusion process
started with a type k offspring particle (our use of this distribution is reduced to
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the exponential law with mean @; '), Pry is the distribution of the Wiener process
wi( - ) with drift B and diffusion coefficient X, and Dy is the generator of
process wi( - ). Asin [McK 1], system (1.21) emerges after the change ¢t —¢' — ¢
in the integral in the r.h.s. of (3.15) and differentiation.

4. Proof of Theorem 6

It is convenient to preface the proof of Theorem 6 with a lemma summarizing
the information gained from our analysis of the exponential model.

Lemma 4.1. Under condition (1.5), (1.6), (1.28), (1.29) and (1.32), there
ezists a map

Y:60€[0,00) — (Y1(h),...,Tm(6)) €[0,1] x -+ x [0,1] (4.1)

such that

(I) For any 6 >0, there ezists a (unigue) solution, (Wi(z;0),Vi(z;0); k=
1,...,M),>to the problem

I

Wi(z) = Vi(z),

Vi(e) = (= 2(8x + c)/Z3) Vi(2)

) (4.2)

+ (2w1/2]) [Wi(e) — er(Wa(e),- .., Wi (2)) ],

>0, k=1,..., M,
with the initial-boundary value

Wi(0) = Yi(0), Vi(0) = AxYk(6), (4.3)
0<W;<1 and Vi(z) >0, z>0, (4.4)
Wi(z) =1 — Libexp (—az) + ni(z), (4.5)

where ni(z), ni(z) = O(e™P*), as © — oo, for some p > a. Here (i) A 1is the
positive root of the quadratic equation

2(Br +ck) _ 2w
SE 52

._)\k,
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(ii) a s the smallest positive root of the equation

k(a) =1 (4.6)

and (iii)

= ( ,Ly(a)) >0 is the eigenvector of matriz Be(a) with
ezgenvalue f‘&( )=

(II) Solutions (Wi(z;6),... Wa(z;6)) are monotone decreasing in : for any
z >0, the inequality 0 < 0' < 8" implies

Wi(z;6') > Wi(z;60"), k=1,...,M.

(III) For any z > 0, the functions 0 — Wi(z;0), 1 <k < M, are continuous
in 6 € (0,00).

Proof of Lemma 4.1. For definiteness, assume that g; =1 (cf. proof of Lemma
3.2). Under condition (1.32), we have the family of trajectories of problem (1.14) —
(1.17) (in the notation that matches the one in (1.24)), {(Wi(=;6), Vi(z;6), z > 0,
E=1,... ,M), 6 > 0}, figuring in Lemma 3.1. These solutions have all but one
properties we need: they do not reach the origin S. Our aim is to check that, as
§ — oo, the corresponding integral curves approach manifold #/(S). A limiting
curve will then give a travelling wave profile. [By a limiting curve we mean a limit
point, not necessarily the limit.] The main step here is to check that the initial
points (Ux(0), Vi(0), k = 1,... ,M) converge,as 6 — oo, to S along manifold
7 = {(uk,vk, k=1,...,M):0 < up <1,v = )\kuk}. See Figure 4, where the
projection of the integral curves under consideration is drawn, to a two-dimensional
u,v-plane. [Warning: Figure 4 does not give a ground for a conjecture that point
T is an attracting node for system (1.24): it only suggests that T ‘acts’ as an
attracting node along a direction that ‘points’ to the strip 0 < up <1, vy > 0,
k=1,...,M]
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Figure 4. Projection of the integral
curves (Wk(w;e),Vk(m;G), z>0,k=1,... ,M)

onto plane Hi:{wj:vj:m 1§j§M}

The formal statement is provided in Lemma 4.2 below.

Lemma 4.2. Trajectories (Wy(z;6),Vi(z;0), = >0, k =1,...,M) con-
verge, as 6 runs along an indefinitely increasing sequence, to a curve K that (a)
joins S and T, (b) lies down in the intersection of W(S)NS(T') with the strip
0< W, <1,V,>0,1<k <M, and (c) is an integral curve for system ({.1). The
convergence s in the following sense: for any fized y € (0,1) and any z € R,
there exists an indefinitely increasing sequence {6;, t = 1,2, ..., } such that there
ezist the limits

tlirrgo Wi(2(y, 0:) + z;6:) = Wi(y; z), (4.7)
and

tlingo Vi(Z(y, 0:) + z;6;) = Vi(y; z); (4.8)

the locus (Wi(y;z), Vi(y;z), z € R,k =1,... M) forms curve K. Here z(y,0)

is defined as a unique solution to the equation

Wi(z(y,6);6) = y. (4.9)

Proof of Lemma 4.2. We first note that, according to assertions (I) and (II) of
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Lemma 2.1, we have, for each z > 0,

Wi(z) = inf W (2;6) = lim Wi(z;6) > 0. (4.10)

We want to show that the limits Wk(O), 1 <k < M, are equal to zero.

Clearly, all functions Wl(w), very WM(SB), z > 0, are smooth in , and setting

~

Vie(z) = oli_{I;o Vi(z;6), 1<k< M, (4.11)

yields
Vi(z) =Wi(z), 1<k<M, z>0.

Moreover, (Wk(m),‘?k(w), x>0, k=1,...,M) gives a solution to (1.24), with
the initial-value condition

V(0) = A Wi (0), (4.12)
and with the bounds Vj, > 0,k=1,...,M.

At this point we use the following simple assertion*

Proposition 4.3. Under assumption (1.5), system (1.24) does not have equilibrium
points in strip (1.27) other than S and T.

Proof. Recall, any equilibrium point (wi,...,wp;v1,...,v0) must have v; = ...
=uvpy =0 and
wi = @r(wi,...,wm), 1<k <M. (4.13)

We have two equilibrium points, § and T. Assume that there exists an equilibrium
point, (w',0), with w' = (w},...,w},) and 0 < wj <1, different from S. We
want to show that there is no other equilibrium point (W,O), w = (w1,...,wnm),
with wj > wj; it will imply that this equilibrium point coincides with T.

The idea is to use the (strict) monotonicity and convexity of functions
er(z1,---,2m), 1 <k < M. More precisely, we use two properties: (i) the restric-
tion, of any of these functions, to an interval (finite or infinite) contained in the
orthant {zk >0,1<k<M } is a strictly convex function (of one variable), and
(ii) apart from the origin, there is no equilibrium point (w,0), w = (w1,...,wn),
with 0 <wj <1 and min wy = 0. [The last property follows easily if we take w;,

* Qur attention to this fact was pointed by Vitaly Volpert.
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= max wy : equality ¢; ((w1,...,wpm) = w;, is impossible under the condition
min wy = 0.]

Hence, our equilibrium point w' = (w},...,w),;) must lie in the interior of
the unit cube 0 <wj <1, 1<k <M.

For definiteness, assume that w' is one of the ‘closest’ equilibrium points to
S, in the sense that, apart from S, there is no other equilibrium point (W,O),
w = (wi1,...,wp), with 0 < wp < w). Now take an equilibrium point (w",0),
w' = (wf,...,w},), with w} > w} (point T is an example of such an equilibrium
point). Then functions ¢} restricted to an interval that joins w' and w' are
convex and, at the end points of this interval, they coincide with their ‘associated’
linear functions obtained by joining the corresponding values wj) and wj). Hence,
on the prolongation of this interval, they strictly exceed their linear ‘associates’. But
this leads to a contradiction because the same functions are convex on the interval
joining the origin and w'. This completes the proof of Proposition 4.3.

We now can complete the proof of Lemma 4.2. Since system (1.24) has no
equilibrium pointsin 0 <wuy <1,vr >0,k =1,...,M, other than S and T, we
have e

lim Wi(z)=...= Lm Wp(z) = 1. (4.14)

r—0o0 r—0o0

Furthermore, relations

Vi
Vil@) o ko, (4.15)

must hold. By Theorem 2.2, the limit in (4.15) equals «. Furthermore, matrix
B(a) has no eigenvectors with positive components other than L(a). This means
that solution (Wk,vk, k= 1,...,M) belongs to F() for some v > 0. But

this contradicts the fact that F(®) contains, for every 6 > 0, a unique solution,
(Wi(-56),Ve(-30); k=1,... ,M). Hence, all limits in (4.10) must be zero.

Therefore, the initial points of the integral curves under consideration approach
S as 6 — oco. Now fix y € (0,1). The points (Wi(Z(y,9);6), Vi(2(y,0);0),
E=1,... ,M) vary in a compact set, separated from S and T. Hence, there
exists an indefinitely increasing sequence of values of 6 along which limits (4.7) -

(4.10) exist for z = 0. The limit point (Wk(y;O), Vi(y;0), k = 1,...,M) must

lie down on (S), otherwise it will contradict the foregoing conclusion. Since the
vector field determining system (1.24) is analytic and has no equilibrium points in
the strip 0 < up <1,k =1,..., M, it is easy to see that limits (4.7) - (4.9)
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exists for any z € R' and the limit point (Wk(y;:c), Vi(y;z), k = L..., M)

€ U(S). Furthermore, z ¢ R! — (Wk(y;m), Vk(y;w), k=1,..., M) is a solution

to (1.24). It also lies down in the intersection of S(T) with the above strip. This
completes the proof of Lemma 4.2 and hence of Theorem 6.
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