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1 Introduction

Consider the following very simple counting problems associated with a graph G.
(i) What is the number of connected subgraphs of G?7
(ii) How many subgraphs of G are forests?
(iii) How many acyclic orientations has G7

Each of these is a special case of the general problem of evaluating the Tutte poly-
nomial of a graph (or matroid) at a particular point of the (z,y)-plane — in other
words is a Tutte-Grothendieck invariant. Other invariants include:

(iv) the chromatic and flow polynomials of a graph;

(v) the partition function of a ()-state Potts model;
(vi) the Jones polynomial of an alternating link;
(vii) the weight enumerator of a linear code over GF(q).

It has been shown that apart from a few special points and 2 special hyperbolae, the
exact evaluation of any such invariant is # P-hard even for the very restricted class of
planar bipartite graphs. However the question of which points have a fully polynomial
randomised approximation scheme is wide open. I shall discuss this problem and give
a survey of what is currently known.

The graph terminology used is standard. The complexity theory and notation
follows Garey and Johnson (1979). The matroid terminology follows Oxley (1992).
Further details of most of the concepts treated here can be found in Welsh (1993).



2 Tutte-Grothendieck invariants

First consider the following recursive definition of the function T(G;z,y) of a graph
G, and two independent variables z,y.
If G has no edges then T'(G;z,y) = 1, otherwise for any e € F(G);

(2.1) T(Gsz,y) = T(GL;z,y) + T(GY;z,y), where G, denotes the deletion of the

edge e from G and G? denotes the contraction of e in G,
(2.2) T(G;z,y) = 2T(G.; z,y) e an isthmus,
(2.83) T(G;z,y) = yT(GZ;2,y) e aloop.

From this, it is easy to show by induction that T is a 2-variable polynomial in
x,y, which we call the Tutte polynomial of G.

In other words, 7" may be calculated recursively by choosing the edges in any
order and repeatedly using (2.1-3) to evaluate 7. The remarkable fact is that 7' is
well defined in the sense that the resulting polynomial is independent of the order in
which the edges are chosen.

Alternatively, and this is often the easiest way to prove properties of T', we can

show that 7" has the following expansion.
First recall that if A C E(G), the rank of A, r(A) is defined by

r(4) = [V(G)| - k(A), (2.4)

where k(A) is the number of connected components of the graph G': A having vertex
set V = V(G) and edge set A.

It is now straightforward to prove:

(2.5) The Tutte polynomial T'(G; z,y) can be expressed in the form

T(Gyz,y) = Y (x = 177 W@y — k=D,
ACE

This relates T' to the Whitney rank generating function R(G;u,v) which is a 2-
variable polynomial in the variables u, v, and is defined by

R(Gju,v) = Y u(E)=r(A)ylAl=r(4) (2.6)
ACE

It is easy and useful to extend these ideas to matroids.
A matroid M is just a pair (F,r) where E is a finite set and r is a submodular
rank function mapping 28 — Z and satisfying the conditions

0<r(4)<|A] ACE, (2.7)
AC B=r(A)<r(B), (2.8)
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r(AUB)+r(ANB)<r(A)+r(B) A,BCE. (2.9)

The edge set of any graph G with its associated rank function as defined by (2.4)
is a matroid, but this is just a very small subclass of matroids:- known as graphic
matroids.

Given M = (E,r) the dual matroid M* = (E,r*) where r* is defined by

r*(E\A) = |E| —r(E) — |A| + r(A). (2.10)
We now just extend the definition of the Tutte polynomial from graphs to matroids
by,

T(M;z,y)= >, (z— 1)rE)=r(A)(yy _ 1)HAl=r(4), (2.11)
ACE(M)

Much of the theory developed for graphs goes through in this more general setting
and there are many other applications as we shall see. For example, routine checking
shows that

T(M;z,y)=T(M";y,z). (2.12)

In particular, when G is a planar graph and G* is any plane dual of G, (2.12)
becomes

T(Gyz,y) =T(G";y,z). (2.13)

A set X is independent if r(X) = |X|, it is a base if it is a maximal independent
subset of E. An easy way to work with the dual matroid M* is not via the rank
function but by the following definition.

(2.15) M* has as its bases all sets of the form E\B, where B is a base of M.

We close this section with what I call the “recipe theorem” from Oxley and Welsh
(1979). Its crude interpretation is that whenever a function f on some class of ma-
troids can be shown to satisfy an equation of the form f(M) = af(M!) + b(M]) for
some e € E(M), then f is essentially an evaluation of the Tutte polynomial. More
precisely it says:

(2.16) Theorem. Let C be a class of matroids which is closed under direct sums
and the taking of minors and suppose that f is well defined on C and satisfies

f(M) =af(M])+bf(M]) e€ E(M) (2.17)
f(My & M) = f(My)f(M,) (2.18)

then f is given by

f(M) = alEI—T(E)bT(E)T(M. To Yo
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where z¢ and yo are the values f takes on coloops and loops respectively.

Any invariant f which satisfies (2.17)-(2.18) is called, a Tutte-Gréthendieck (TG)-

mvariant.

Thus, what we are saying is that any T'G-invariant has an interpretation as an
evaluation of the Tutte polynomial.

3 Reliability and flows

We illustrate the above with two applications.

Reliability theory deals with the probability of points of a network being connected
when individual links or edges are unreliable. Early work in the area was by Moore
and Shannon (1956) and now it has a huge literature, see for example Colbourne
(1987).

Let G be a connected graph in which each edge is independently open with prob-
ability p and closed with probability ¢ = 1 — p. The (all terminal) reliability R(G;p)
denotes the probability that in this random model there is a path between each pair
of vertices of G. Thus

R(G;p) = Y_pI(1 — p)P\ (3.1)
A

where the sum is over all subsets A of edges which contain a spanning tree of G, and
E = E(G).

It is immediate from this that R is a polynomial in p and a simple conditioning
argument shows the following connection with the Tutte polynomial.

(3.2) If G is a connected graph and e is not a loop or coloop then

R(G;p) = qR(G,; p) + pR(GY; p).
where ¢ = 1 — p.

Using this with the recipe Theorem 2.16 it is straightforward to check the following
statement.

(3.3) Provided G is a connected graph,

R(G;p) = ¢PFVIHVITT (G 1, 47Y).

We now turn to flows. Take any graph G and orient its edges arbitrarily. Take
any finite Abelian group H and call a mapping ¢ : E(G) — H\{0} a flow (or an
H-flow) if Kirchhoff’s laws are obeyed at each vertex of ¢, the algebra of course being
that of the group H.

Note: Standard usage is to describe what we call an H-flow a nowhere zero

H-flow.

The following statement is somewhat surprising.
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(3.4) The number of H-flows on G depends only on the order of H and not on its
structure.

This is an immediate consequence of the fact that the number of flows is a T'G-
invariant. To see this, let F(G; H) denote the number of H-flows on G. Then a
straightforward counting argument shows that the following is true.

(3.5) Provided the edge e is not an isthmus or a loop of G then
F(G; H) = P(GY; H) — P(G; H).

Now it is easy to see that if C, L represents respectively a coloop (= isthmus) and
loop then
F(C;H)=0 F(L;H)=0(H) -1 (3.6)

where o( H) is the order of H.
Accordingly we can apply the recipe theorem and obtain:

(3.7) For any graph G and any finite abelian group H,

F(G; H) = (=1)EFVHKOT(G,0,1 — o(H)).

The observation (3.4) is an obvious corollary.

A consequence of this is that we can now speak of G having a k-flow to mean that
G has a flow over any or equivalently some Abelian group of order k.

Moreover it follows that there exists a polynomial F/(G; A) such that if H is Abelian
of order k, then F(G; H) = F(G; k). We call F' the flow polynomial of G.

The duality relationship (2.12) gives:

(3.8) If G is planar then the flow polynomial of G is essentially the chromatic poly-
nomial of G*, in the sense that

MO (G N) = P(G ).
A consequence of this and the Four Colour Theorem is that:

(3.9) Every planar graph having.no isthmus has a 4-flow.

What is much more surprising is that the following statement is believed to be
true:

(3.10) Tutte’s 5-Flow Conjecture: Any graph having no isthmus has a 5-flow.

It is far from obvious that there is any universal constant k such that graphs
without isthmuses have a k-flow. However Seymour (1981) showed:

(3.11) Theorem: Every graph having no isthmus has a 6-flow.

For more on this and a host of related graph theoretic problems we refer to Jaeger

(1988a).



4 A catalogue of invariants

We now collect together some of the naturally occurring interpretations of the Tutte

polynomial. Throughout G is a graph, M is a matroid and £ will denote E(G), E(M)

respectively.

(4.1) At (1,1) T counts the number of bases of M (spanning trees in a connected
graph).

(4.2) At (2,1) T counts the number of independent sets of M, (forests in a graph).

(4.3) At (1,2) T counts the number of spanning sets of M, that is sets which contain
a base.

(4.4) At (2,0), T counts the number of acyclic orientations of (. Stanley (1973) also
gives interpretations of 7' at (m,0) for general positive integer m, in terms of
acyclic orientations.

(4.5) Another interpretation at (2,0), and this for a different class of matroids, was
discovered by Zaslavsky (1975). This is in terms of counting the number of
different arrangements of sets of hyperplanes in n-dimensional Euclidean space.

(4.6) T(G;—1,—1) = (=1)/EI(—2)4®B) where B is the bicycle space of G, see Read
and Rosenstiehl (1978). When G is planar it also has interpretations in terms
of the Arf invariant of the associated knot.

(4.7) The chromatic polynomial P(G; \) is given by

P(G;\) = (=1)"ENKAT(G; 1 — A,0)
where k(G) is the number of connected components.

(4.8) The flow polynomial F(G;)) is given by

F(G;\) = (~1)E BTG 0,1 - A).
(4.9) The (all terminal) reliability R(G : p) is given by

R(G;p) = " EpBIT(G;1,1/4)
where ¢ =1 — p.

In each of the above cases, the interesting quantity (on the left hand side) is given
(up to an easily determined term) by an evaluation of the Tutte polynomial. We shall
use the phrase “specialises to” to indicate this. Thus for example, along y = 0, T
specialises to the chromatic polynomial.

It turns out that the hyperbolae H, defined by
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Hy = {(z,9): (z - 1)(y — 1) = o}

seem to have a special role in the theory. We note several important specialisations
below.

(4.10) AlOIlg H17 T(G,:L‘,y) = :1,‘|E|(;1; — ]_)"'(E)_lEl

(4.11) Along H,; when G is a graph T specialises to the partition function of the
Ising model.

(4.12) Along H,, for general positive integer ¢, T specialises to the partition function
of the Potts model of statistical physics.

(4.13) Along H,, when ¢ is a prime power, for a matroid M of vectors over GF(q), T
specialises to the weight enumerator of the linear code over GF(q), determined
by M. Equation (2.12) relating T'(M) to T'(M*) gives the MacWilliams identity
of coding theory.

(4.14) Along H, for any positive, not necessarily integer, ¢, T specialises to the parti-
tion function of the random cluster model introduced by Fortuin and Kasteleyn

(1971).

(4.15) Along the hyperbola zy = 1 when G is planar, T specialises to the Jones
polynomial of the alternating link or knot associated with G. This connection
was first discovered by Thistlethwaite (1987).

Other more specialised interpretations can be found in the survey of Brylawski

and Oxley (1992).

5 The complexity of the Tutte plane

We have seen that along different curves of the z,y plane, the Tutte polynomial
evaluates such diverse quantities as reliability probabilities, the weight enumerator
of a linear code, the partition function of the Ising and Potts models of statistical
physics, the chromatic and flow polynomials of a graph, and the Jones polynomial of
an alternating knot. Since it is also the case that for particular curves and at particular
points the computational complexity of the evaluation can vary from being polynomial
time computable to being # P-hard a more detailed analysis of the complexity of
evaluation is needed in order to give a better understanding of what is and is not
computationally feasible for these sort of problems. The section is based on the
paper of Jaeger, Vertigan and Welsh (1990) which will henceforth be referred to as
[JVW].
First consider the problem:

m[Cl: TUTTE POLYNOMIAL OF CLASSC
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INSTANCE: Graph G belonging to the class C.
OUTPUT: The coefficients of the Tutte polynomial of G.

We note first that for all but the most restricted classes this problem will be
#P-hard. This follows from the following observations.

(5.1) Determining the Tutte polynomial of a planar graph is # P-hard.

Proof. Determining the chromatic polynomial of a planar graph is #P- hard and
this problem is the evaluation of the Tutte polynomial along the line y =0. O
It follows that:

(5.2) If C is any class of graphs which contains all planar graphs then m[C] is #P-
hard. ‘

However it does not follow that it may not be easy to determine the value of
T(G;z,y) at particular points or along particular curves of the z,y plane. For ex-
ample, the evaluation of the Tutte polynomial at (1,1) gives the number of spanning
trees of the underlying graph and hence the Kirchhoff determinantal formula shows:

(5.3) Evaluating T'(G;1,1) for general graphs is in P.
We now consider two further problems.

wo[C : L] TUTTE POLYNOMIAL OF CLASS C ALONG CURVE L
INSTANCE: Graph G belonging to the class C.

OUTPUT: The Tutte polynomial along the curve L as a polynomial with rational
coefficients.

73[C : a,b] TUTTE POLYNOMIAL OF CLASS C AT (a,b)
INSTANCE: Graph G belonging to the class C.
OUTPUT: Evaluation of T'(Gj;a,b).

Note: There are some technical difficulties here, inasmuch as we have to place some
restriction on the sort of numbers on which we do our arithmetic operations, and also
the possible length of inputs. Thus we restrict our arithmetic to be within a field F
which is a finite dimensional algebraic extension of the rationals. We also demand (for
reasons which become apparent) that F' contains the complex numbers i and e*"i/3,
Similarly we demand that any curve L under discussion will be a rational algebraic
curve over such a field F' and that L is given in standard parametric form. For more
details see [JVW] and for more on this general question see Grotschel, Lovasz and
Schrivjer (1988).

Now it is obvious that for any class C, if evaluating 1" at (a, b) is hard and (a,b) € L
then evaluating T along L is hard. Similarly if evaluating T along L is hard then
determining 7' is hard. In other words:



(5.4) For any class C, curve L and point (a, b) with (a,b) € L,

73[C; a, b] o m2[C; L] o< m[C].

Two of the main results of [JVW] are that except when (a,b) is one of a few very
special points and L one of a special class of hyperbolae, then the reverse implications
hold in (5.4).

Before we can state the two main theorems from [JVW] we need one more def-
inition. Call a class of graphs closed if it is closed under the operations of taking
minors and series and parallel extensions. That is C shall remain closed under the
four operations of deletion and contraction of an edge together with the insertion of
an edge in series or in parallel with an existing edge.

The first result of [JVW] relates evaluations in general with evaluation along a
curve.

(5.5) Theorem. If C is any closed class then the problem m[C] of determining
the Tutte polynomial of members of C is polynomial time reducible to the problem
mo[C; L] for any curve L, except when L is one of the hyperbolae defined by

Hy=(-1)y—-1)=a a#0,

or the degenerate hyperbolae

We call the hyperbolae H, special hyperbolae and an immediate corollary of the
theorem is:

(5.6) Corollary. If L is a curve in the z,y plane which is not one of the special
hyperbolae, and 7;(C) is #P-hard then m(C; L) is # P-hard.

The second main theorem of [JVW] relates the complexity of determining the
Tutte polynomial along a curve with determining its value at a particular point on
the curve.

(5.7) Theorem. The problem =3[C;a,b] of evaluating T'(G;a,b) for members G
of C (a closed class) is polynomial time reducible to evaluating T' along the special
hyperbola through (a,b) except when (a,b) is one of the special points (1,1),(0,0),(-
1,-1),(0,-1),(- 1,0),(3, =), (—,%) and (j,72), (5%, 7) where i> = —1 and j = €?"/3,

In other words unless a point is one of these 9 special points evaluating the Tutte
polynomial at that point is no easier than evaluating it along the special hyperbola
through that point.



As an illustration of the applicability of these results we state without proof the
following theorem from [JVW].

(5.8) Theorem. The problem of evaluating the Tutte polynomial of a graph at a
point (a,b) is #P-hard except when (a, b) is on the special hyperbola

H=@-1)(y-1)=1

or when (a,b) is one of the special points (1,1),(-1,-1),(0,-1), (-1,0),(¢, —1),
(=i,1), (5,72 and (j%,5), where j = €*/3. In each of these exceptional cases the
evaluation can be done in polynomial time.

As far as planar graphs are concerned, there is a significant difference. The tech-
nique developed using the Pfaffian to solve the Ising problem for the plane square
lattice by Fisher (1966) and Kasteleyn (1961) can be extended to give a polynomial
time algorithm for the evaluation of the Tutte polynomial of any planar graph along
the special hyperbola

Hy=-1){y-1)=2.

Thus this hyperbola is also “easy” for planar graphs. However it is easy to see that
Hj3 cannot be easy for planar graphs since it contains the point (- 2,0) which counts
the number of 3-colourings and since deciding whether a planar graph is 3-colourable
is N P-hard, this must be at least N P-hard. However it does not seem easy to show
that H, is hard for planar graphs. The decision problem is after all trivial by the four
colour theorem. The fact that it is # P-hard is just part of the following extension of
Theorem (5.8) due to Vertigan and Welsh (1992)

(5.9) Theorem. The evaluation of the Tutte polynomial of bipartite planar graphs
at a point (a,b) is #P-hard except when ,

(a,b) € Hy U Hy U{(1,1),(~1,-1),(j,5%), (% 5)}

when it is computable in polynomial time.

6 Approximating to within a ratio

We know that computing the number of 3-colourings of a graph G is #P- hard. It is
natural therefore to ask how well can we approximate it?

For positive numbers a and r > 1, we say that a third quantity a approzimates a
within ratio r or is an r-approzimation to a, if

“la<a<ra. (6.1)

In other words the ratio @/a lies in [r~1,r].
Now consider what it would mean to be able to find a polynomial time algorithm
which gave an approximation within r to the number of 3-colourings of a graph. We
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would clearly have a polynomial time algorithm which would decide whether or not a
graph is 3-colourable. But this is N P-hard. Thus no such algorithm can exist unless
NP =P.

But we have just used 3-colouring as a typical example and the same argument
can be applied to any function which counts objects whose existence is N P- hard to
decide. In other words:

(6.2) Proposition. If f: ¥* — N is such that it is NP-hard to decide whether
f(2) is non-zero, then for any constant r there cannot exist a polynomial time r-
approximation to f unless NP = P.

We now turn to consider a randomised approach to counting problems and make
the following definition.

An e-6-approzimation scheme for a counting problem f is a Monte Carlo algorithm
which on every input (z,¢,6), € > 0, § > 0, outputs a number Y such that

Pr{(l-of(z) <Y <(1+e)f(z)} >1-6.
It is important to emphasize that there is no mention of running time in this definition.

Now let f be a function from input strings to the natural numbers. A randomised
approzimation scheme for f is a probabilistic algorithm that takes as an input a string
z and a rational number ¢, 0 < € < 1, and produces as output a random variable Y,
such that Y approximates f(z) within ratio 1 + € with probability > 3/4.

In other words,

1 Y 3
Pr{lﬂgﬂx)gue}zz. (6.3)

A fully polynomial randomised approzimation scheme (fpras) for a function f :
¥* — N is a randomised approximation scheme which runs in time which is a poly-
nomial function of n and €.

Suppose now we have such an approximation scheme and suppose further that it
works in polynomial time. Then we can boost the success probability up to 1 — § for
any desired ¢ > 0, by using the following trick of Jerrum, Valiant and Vazirani (1986).
This consists of running the algorithm O(log §~!) times and taking the median of the
results.

We make this precise as follows:

(6.4) Proposition. If there exists a fpras for computing f then there exists an € — 6
approximation scheme for f which on input (z,€,6) runs in time which is bounded

by O(log 6~ !)poly(z,e™1).

It is worth emphasising here that the existence of a fpras for a counting problem
is a very strong result, it is the analogue of an RP algorithm for a decision problem
and corresponds to the notion of tractability. However we should also note, that by
an analogous argument to that used in proving Proposition (6.2) we have:
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(6.5) Proposition: If f : ¥* — N is such that deciding if f is nonzero is N P-hard
then there cannot exist a fpras for f unless NP is equal to random polynomial time

RP.

Since this is thought to be most unlikely, it makes sense only to seek out a fpras
when counting objects for which the decision problem is not N P-hard.
Hence we have immediately from the N P-hardness of k-colouring that:

(6.6) Unless NP = RP there cannot exist a fpras for evaluating T'(G; —k,0) for any
integer k > 2.

Recall now from (4.12) that along the hyperbola, Hg, for positive integer @), T
evaluates the partition function of the ()-state Potts model.

In an important paper, Jerrum and Sinclair (1990), have shown that there exists a
fpras for the ferromagnetic Ising problem. This corresponds to the ¢) = 2 Potts model
and thus, their result can be restated in the terminology of this paper as follows.

(6.7) There exists a fpras for estimating T' along the positive branch of the hyperbola
H,.

However it seems to be difficult to extend the argument to prove a similar result
for the @-state Potts model with ¢) > 2 and this remains one of the outstanding open
problems in this area.

A second result of Jerrum and Sinclair is the following:

(6.8) There is no fpras for estimating the antiferromagnetic Ising partition function

unless NP = RP.

Since it is regarded as highly unlikely that NP = RP, this can be taken as evidence
of the intractability of the antiferromagnetic problem.

Examination of (6.8) in the context of its Tutte plane representation shows that
it can be restated as follows.

(6.9) Unless NP = RP, there is no fpras for estimating 7' along the curve
{(xvy):(x_l)(y_l):2v O<y<1}'
The following extension of this result is proved in Welsh (1993b).

(6.10) Theorem. On the assumption that NP # RP, the following statements are
true.

(6.11) Even in the planar case, there is no fully polynomial randomised approximation
scheme for T' along the negative branch of the hyperbola Hs.

(6.12) For @ = 2,4,5,..., there is no fully polynomial randomised approximation
scheme for T" along the curves

Hy n{z < 0}.
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It is worth emphasising that the above statements do not rule out the possibility
of there being a fpras at specific points along the negative hyperbolae. For example;

(6.13) T can be evaluated exactly at (—1,0) and (0, —1) which both lie on Hj .

(6.14) There is no inherent obstacle to there being a fpras for estimating the number
of 4-colourings of a planar graph.

I do not believe such a scheme exists but cannot see how to prove it. It certainly is
not ruled out by any of our results. 1 therefore pose the specific question:

(6.15) Problem. Is there a fully polynomial randomised approximation scheme for
counting the number of k-colourings of a planar graph for any fixed k£ > 47

I conjecture that the answer to (6.15) is negative.

Similarly, since by Seymour’s theorem, every bridgeless graph has a nowhere zero
6-flow, there is no obvious obstacle to the existence of a fpras for estimating the
number of k-flows for £ > 6. Thus a natural question, which is in the same spirit is
the following.

(6.16) Show that there does not exist a fpras for estimating 7" at (0, —5). More gener-
ally, show that there is no fpras for estimating the number of k-flows for £ > 6.

Again, although because of Theorem 6.10, a large section of the relevant hyperbola
has no fpras, there is nothing to stop such a scheme existing at isolated points.

Another point of special interest is (0, —2). Mihail and Winkler (1991) have
shown, among other things, that there exists a fpras for counting the number of ice
configurations in a 4-regular graph. This is equivalent to the statement:

(6.17) For 4-regular graphs counting nowhere-zero 3-flows has a fpras.
In other words:
(6.18) There is a fpras for computing 7" at (0, —2) for 4-regular graphs.
The reader will note that all these ‘negative results’ are about evaluations of 7" in
the region outside the quadrant > 1, y > 1. In Welsh (1993) it is conjectured that

the following is true:

(6.19) Conjecture: There exists a fpras for evaluating T at all points of the quadrant
z>1,y>1

Some further recent evidence in support of this is given in the next section.
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7 Denseness helps

One mild curiosity about quantities which are hard to count is that the counting
problem seems to be easier when the underlying structure is dense. A well known
example of this is in approximating the permanent. Less widely known is the result
of Edwards (1986) which shows that it is possible to exactly count the number of
k-colourings of graphs in which each vertex has at least (k —2)/(k — 1) neighbours.

More precisely, if we let G, be the collection of graphs G = (V, F) such that each
vertex has at least « |V| neighbours then we say G is dense if G € G, for some a.
Edwards shows:

(7.1) For G € G,, evaluation of T'(G;1 — k,0) is in P provided a > (k—2)/(k —1).

As far as approximation is concerned, a major advance is the recent result of

Annan (1993) who showed that:
(7.2) There exists a fpras for counting forests in dense graphs.

Now the number of forests is just the evaluation of T' at the point (2.1) and a
more general version of (7.2) is the following result, also by Annan.

(7.3) For dense G, there is a fpras for evaluating T'(G; z, 1) for positive integer z.

The natural question suggested by (7.3) is about the matroidal dual - namely,
does there exist a fpras for evaluating T' at (1,2)? This is the reliability question,
and in particular, the point (1,2) enumerates the number of connected subgraphs. It
is impossible to combine duality with denseness so Annan’s methods don’t seem to
work.

It turns out that I can obtain the following result:

(7.4) For dense G there exists a fpras for evaluating T'(G;z,y) for all (z,y) in the
region

f<ain{l<yini-1-1)<1).
An immediate corollary is:

(7.5) There exists a fpras for estimating the reliability probability in dense graphs.

The proof of (7.4) hinges on a result of Joel Spencer (1993). In its simplest form
it can be stated as follows:

(7.6) For G € G,, if G, denotes a random subgraph of G obtained by deleting edges
from G with probability 1 — p, independently for each edge, then there exists
d(a,p) < 1, such that

Pr{G,is disconnected} < d(a, p).
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At this meeting, | have discovered that Alan Frieze has also obtained a result
which is very similar to (7.5), and since the meeting, using some ideas of Noga Alon,
together we have been able to eliminate the constraint (z — 1)(y — 1) < 1 in (7.4).
We aim to write this up in the near future.

I close with three open problems related to (7.4).

(7.7) Does there exist a fpras for counting (a) acyclic orientations, (b) forests of size
k, or (c) connected subgraphs of size k, in dense graphs?

Two of these problems are particular instances of the problem of estimating the
number of bases in a matroid of some class. For example the question about forests
is just counting the number of bases in truncations of graphic matroids.

A very interesting new light on such problems is outlined in the recent paper of
Feder and Mihail (1992) who show that a sufficient condition for the natural random
walk on the set of bases of M to be rapidly mixing is that M and its minors are
negatively correlated. That is, they satisfy the constraint, that if B denotes a random
base of M and e, f is any pair of distinct elements of E(M), then

Pr{e € Br| f € Br} < P.{e € Br}.

This concept of negative correlation goes back to Seymour and Welsh (1975). This
was concerned with the Tutte polynomial and the log-concave nature of various of
its evaluations and coefficients. It was shown there that not all matroids have this
property of negative correlation; however graphic and cographic ones do, and it is
mildly intrigueing that this concept has reappeared now in an entirely new context.
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