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Infinite Dimensional Hamilton—Jacobi Equations and Dirichlet
Boundary Control Problems of Parabolic Type

Piermarco Cannarsa & Maria Elisabetta Tessitore

1 Introduction

In this paper we study the existence and uniqueness of viscosity solutions to the infinite dimen-
sional Hamilton—-Jacobi equation

M(z)+ < Az + ®(x), Dv(z) > +H(APz, Dv(2)) =0, z € X, (1.1)

where X is a real Hilbert space, A > 0 and H : X x X — IR is continuous. Moreover, A : D(A) C
X — X is a closed linear operator with a compact and dense inclusion D(A) C X. Also, we
assume A to be positive and self-adjoint. We denote by A® the fractional power of A. Finally
® : D(AP) — D(AP) is Lipschitz continuous.

There is an increasing interest and a growing literature on Hamilton-Jacobi equations in
infinite dimensions. These equations were first studied by V.BArRBU & G.DA PRATO (see e.g.
[2]), setting the problem in classes of convex functions and using semigroup and perturbation
methods.

The viscosity solution approach was then adapted to infinite dimensional equations by
M.G.CrANDALL & P.L.LIONS in a sequence of papers [9]. This approach was introduced in [8],
(see also [7]), for finite dimensional problems. It allows to obtain uniqueness and comparison
results for weak solutions of nonlinear first order PDEs. Additional contributions to the viscosity
solution method were obtained by M.SoNERr [18], H.Isu1l [14] and D.TATARU [19], [20]. The
last two authors treated equations with a maximal monotone operator A, possibly multivalued.
On the other hand, due to the presence of the unbounded term A? inside the Hamiltonian H,
the results proved in these papers do not apply to equation (1.1) except for the case of 8 = 0.

In this paper we study the above equation for 8 € <%, 1]. We are interested in this prob-
lem because it is related to boundary control of parabolic equations under Dirichlet boundary
conditions. We now briefly describe such a problem, more details being given in Section 2.

It is well known that an abstract formulation modelling parabolic systems controlled at the
boundary is given by

{ 2'(1) + Az(t) + F(=(t)) = AP By(2) (1.2)
z(0) = zo '
where o € X and v : [0, +00) — U is measurable, U being another Hilbert space. Moreover,
B : U — X is a bounded operator, F' : X — X is Lipschitz, and A is maximal accretive. Several
kinds of boundary conditions are included in the above formulation: for example, Neumann type
boundary conditions allow to take 8 € (%, 1] in (1.2), whereas Dirichlet data restrict the range
of B to (%, 1].

Denoting by z(-; o, ) the mild solution of (1.2), one then seeks to minimize a suitable cost

functional over all controls «. In this paper, we consider the functional
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where A > 0 and L : X x U — IR is a given running cost.

Boundary control plays a central role in the theory of distributed parameter systems. There
is a vast literature dealing with Linear Quadratic problems, see for instance [1], [11], [15], [3].
In this theory, the main tool for constructing optimal boundary controls is represented by the
Riccati equation. The technique used to study this equation for Neumann boundary conditions
differs substantially from the one used for Dirichlet conditions. In particular, the way to solve
Riccati equations for Neumann data does not apply to Dirichlet data, see for instance [12], [13],
[10], [15]. In fact, the latter problem requires a much more careful choice of wheighted norms
and function spaces, see e.g. [3].

For boundary control problems that are not Linear Quadratic, the role of the Riccati equa-
tion is played by the Dynamic Programming equation

Mu(z)+ < Az + F(z), Du(z) > +H(z, APDu(z)) =0, z€X, (1.4)
where H : X x X — IR is defined as

H(z,p) = Slelg[— < By,p>—L(z,7)]. (1.5)

The value function of problem (1.3), defined as

u(zo) = inf {/Ooo e ML(x(t;20,7),7(t))dt| v : [0, 400) — U} , (1.6)

is characterized as the unique solution of equation (1.4).
In [5], the viscosity solution approach has been adapted to equation (1.4) for 8 € (%, —%)

Therefore the results of [5] yield an existence and uniqueness theorem for the Dynamic Program-
ming equation of boundary control problems of Neumann type. On the other hand, similarly to
the Linear Quadratic case, the method of [5] does not apply to (1.4) if B > % and, in particular,
to boundary conditions of Dirichlet type.

In this paper we transform the state equation (1.2) by the change of variable y = A~ Pz.
In this way, we obtain a state equation with continuous trajectories. Accordingly, the Dynamic
Programming equation (1.4) is tranformed into equation (1.1) with H defined as in (1.5) and

d(z) = APF(APz) .

Following the approach of [14], in Section 3 we give a definition of solution to (1.1) which
requires the equation to be satisfied in a suitable viscosity sense only on D(A). Using this
definition, we obtain a comparison result for Hélder continuous viscosity solutions of (1.1), see
Theorem 3.2. In Section 4 we prove a Holder continuity result for the function v(z) = u(APz).
Moreover, we show that v is the unique viscosity solution of (1.1), see Corollary 4.3. In particular,
our results characterize the value function w in (1.6) as well.

We conclude this introduction with some comments on possible extensions and applications
of our approach. First, we note that the method proposed in this paper applies to both Dirichlet
and Neumann boundary control problems. In fact, each of them can be written in the abstract
formulation (1.2) with g € (?—1, 1]. Second, the assumption that A = A* has been made just to
simplify the exposition. Using similar ideas one can treat systems governed by operators that
are not necessarly self-adjoint. On the other hand, to prove that the function v is a viscosity
solution of (1.1), we need to assume that —A generates an analytic semigroup of compact



operators. Therefore, the results of this paper concerning existence, typically apply to parabolic
boundary control problems in bounded space domains.

Finally, the techniques of this paper can also be used to study boundary control problems
of Dirichlet type with finite horizon. In this case, the Dynamic Programming equation is an evo-
lution equation. For the corresponding Cauchy problem one can prove existence and uniqueness
results. The analogous equation for Neumann boundary control is treated in [6].

2 Preliminaries

Let X and U be two real Hilbert spaces and let U C U be closed and bounded. We set
R = sup |y|.

~eU

Let 2o € X and consider the problem of minimizing the functional

Iaoi) = [ e MLt 20,7), (1)) dl (2.1)

over all measurable functions v : [0,00) — U (usually called controls). Here z(-;zq,7) is the
mild solution of

2’ (t) + Az(t) + F(z(t)) = AP By(t) (2.2)
z(0) = zo '
that is the solution of the integral equation
¢ t
2(1) = e~z + / e~ (=4 p(a(s))ds + AP / e~ (=4 By(s)ds | (2.3)
0 0

In (2.2), AP denotes the fractional powers of the operator A, see [17]. The discount factor A is
positive and L satisfies the following assumptions

(i) LeC(XxU), |Lz,7)|<Cp, ¥(e,7)€eX xU;

(24)
(i) |L(z,7) - Ly, M < Kple -y, ¥y e U, z,ye X,
for some Cf, > 0 and K, > 0. Moreover we assume
(1) A:D(A)C X — X is a closed linear operator
such that A = A* and < Az,z >> wlz| for some w > 0 and all z € D(A);
(#7)  the inclusion D(A) C X is dense and compact ;
(11) F: X = X, |F(z) - F(y)| < Krlz —y|, |F(z)| < CFr (2.5)

Ve, y € X;
() pe(31);

(v)  there exists p > 0, such that B € L(U, D(A?)).

for some constants Kr, Cg > 0.



We note that (i) and (i) imply that —A is the infinitesimal generator of an analytic
semigroup satisfying |le *4|| < e~ for some w > 0 and all ¢ > 0. In assumption (v) above, we
have denoted by £(U, D(A*)) the Banach space of all bounded linear operator B : U — D(A*),
where D(A”) is equipped with the graph norm.

It is well known that, under the above assumptions, problem (2.3) has a unique solution in
L%(0,T; X) for any 7' > 0. We define the value function of problem (2.1)-(2.2) as

u(zp) = inf {/ e_’\t[/(:c('t;aso,'y),'y(t))dt ‘ v :{0,4+00) — U measurable} (2.6)
0

Control processes as above are very important for applications. In fact, (2.2) describes the
evolution of a system which is governed by a parabolic PDE and controlled by Dirichlet type
boundary data. We explain this fact below. Let Q@ C IR™ be open and bounded with smooth
boundary. Consider the following problem

%21,6) = Acx(L,€) 4 J(x(1.E)) in (0,00)x O
2(0,€) = zo(§) on (2.7)
z(t,€) = v(t,€) on (0,00) x 9N

where zo € L?(Q), v € L2(0,00; L2(09)), and f : R — IR.
Problem (2.7) may be rewritten in abstract form as follows. Let X = L?(Q),U = L?(8Q)
and define an unbounded operator A4 in X by

D(A) = HY(Q)n H3(Q)
Ar = —Az.

Next, we define the Dirichlet map D : U — X as

Az =0 inQ
Dy=2 &
Tz =y on 9}

Formally, equation (2.7) may be written as

{ 2'(1) + Az(t) + F(x(t)) = AD(t)
lt(to) = X9

where
F(z)(€) = —f(z(€)), Vz € X.

The right-hand side of equation (2.8) is not well defined because the range of D is not contained
in D(A). However, we note that D has some regularizing effect. Indeed, by classical results (see

e.g. [16]), D : L%(69)) — H%(Q), which may be expressed in abstract form using the fractional
powers of A. In fact,

H¥(Q) fo<o<i

D(A%) =
{cer®Q): c=0mon} ifl<o<l.



Hence D : U — D(A®) for all « € [O, %) Consequently, having fixed g € (%’, 1] equation (2.8)
can be written as
2'(t) + Az(t) + F(z(t)) = APDgy(t) (2.9)
z(to) = ®o h
where Dg = A'"PD € L£(U, X'). Moreover Dy satisfies (2.5) (v) for any p < 8 — 2.

Using the same technique described above, one can show that Neumann type boundary
control problems may be formulated in the same abstract form (2.2). In this case # may be
taken in the interval (%, 1].

We now return to the analysis of problem (2.6). We note that equation (2.2) has discontin-
uous trajectories. Therefore, we transform (2.2) by the change of variable

y(t) = A a(t). (2.10)

More precisely, let yo € X and denote by y(-; yo, ) the solution of

V(1) + Ay(t) + APF(APY(1)) = By(t) 2.11)
v(0) =y € X '
Again the above equation has to be understood in mild form
t t
y(t) = e Ay + A‘ﬁ/ e~ (DA R (APy(s))ds +/ e~ (=) By(s)ds . (2.12)
0 0

The solution of (2.12), turns out to be continuous, as we show below.
We recall that, since operator —A is the generator of an analytic semigroup in X, for every
6 € [0,1] there exists a constant My > 0 such that

M
1A%t z| < t—:|x|, Vt>0,Vz € X. (2.13)

Moreover let ¥ € (0, 1] and & € (0,7) . Then, a well known interpolation inequality, see e.g. [17],
states that for every o > 0 there exists C, > 0 such that

|A%z| < o|A"z| 4+ Colz|, Vz € D(A") (2.14)
and there exists Cpy > 0 such that
|A%2| < CaylA72|7]2|'™5, Yz € D(AY). (2.15)

Proposition 2.1 Assume that (2.5) holds. Let ¥ : [0,00) — U and fir T > 0. Then for any
Yo € X there exists a unique solution

y € C([0,T); X) N L0, T; D(AP)). (2.16)
Moreover, if yo € D(A%), then
y € C([0,T); D(A%)) N L*(0, T; D(A)) n WY 2(0, T; X). (2.17)
Finally, if yo € D(A) and y(+) is constant, then

y € C([0,T]; D(A)). (2.18)



Proof — The argument is well known. We sketch the proof for the reader’s convenience. Fust
we show that (2.12) has a unique solution y € L(0,T} D(APY)). Fix yo € X and let Ty = 2I\p

Define the map ® on L'(0,Ty; D(AP)) by

t t
dy(t) = e Ny + A_ﬁ/ e =)Ap(APy(s5))ds + /0 e (=94 By(s5)ds

0
for any 0 <t < Tj. Let us prove that

& : L'(0,Ty; D(AP)) — L'(0,Ty; D(AP)) .

Indeed, recalling (2.14), we have

T1 Tl A
[ iasaylde < [ 1A% Ayl
0 0

T
v

<M/1|y0|dt+C/ / (142 y(s |+1dsdt+M/ F 1B(s) ddt

t—s

T t
dt -l-/ 1 }Aﬁ/ e (=94 By(5)ds| dt
0 0

/ ~(t=9)4 p( APy(5))ds

< Malyol T3 ™ + CyTullyll s o,1v;p(a)) + CFTE + MgR|| BT 7,

recalling that |y(s)] < R. Hence ®y € L*(0,Ty; D(AP)).
Next we prove that & is a contraction. For any vy, z € L'(0,Ty; D(AP)) we have

T
/o ‘Aﬁ(q)y(s) - (Dz(s))l ds

T t
< KF/O /0 ’Aﬁ(y(s) - Z(S))’ dsdt = KrThl|ly(s) — z(s)l|L1 (0,13;0(48)) -

By the Contraction Map Theorem it follows that equation (2.12) has a unique solution y €
LY(0,Ty; D(AP)). Then by classical results, (see e.g. [17]), y(t) € C([0,T1]; X). Therefore, iter-
ating this procedure, we can cover the interval [0,7"] with a finite number of steps.

As for (2.17), the maximal regularity result y € L2(0,T;D(A)) N WH2(0,T;X) is well
known, see e.g. [3]. The fact that y € C([0,T]; D(A%)) is also a well known consequence of the
maximal regularity result.

Finally, if yo € D(A) and v(-) = 7o is constant, then writing y as

t t
y(t) = e Ay + A7F /0 e~ (AR (APy(s))ds + /O e~ (=94 Baids = yy(t) + A Pya(t) + ys(t)

we easily see that, since e~*4 is a strongly continuous semigroup, then Ay, is continuous. In
addition, Ays(t) = (e7*4 — I)By is continuous and so is A'~Py, since we know that y, €

C([0,T);D(Az))and 1 - < 1. m

By inserting the change of variable (2.10) in the cost functional (2.1), we obtain a new
optimal control problem whose value function v is given by

o0
v(yo) = inf_ e—’\tL(Aﬂy(t;yo,'y),'y(t))dt. (2.19)
~(t)eU Jo



It is easy to realize that value functions v and u are related by the formula
u(z) = v(A Pz) Yz e X. (2.20)

In particular, w is uniquely determined once v has been characterized. Therefore, we will study
problem (2.11)-(2.19) instead of (2.2)-(2.6).

We will show that v is the unique solution of the following Hamilton—Jacobi-Bellman equa-
tion

Mo(z) + H(A%z, Do(2)) + (Az + AP F(4Pz), Do(z)) = 0 (2.21)
where
H(z,p) = sup[- < By,p> —L(z,7)]. (2.22)
~eU

Clearly, one needs a suitable notion of weak solution of problem (2.21), since v is not everywhere
differentiable and the coefficients of the equation are discontinuous. In the sequel, we use viscosity
solutions to overcome these difficulties.

3 Definition of viscosity solution and comparison result
In this Section we study the Hamilton-Jacobi equation
Mu(z) + H(APz, Du(x)) + (42 + AP F(APx), Du(z)) = 0. (3.1)

We assume that (2.5) holds and that H : X x X — IR is a function, not necessarily given by
(2.22), satisfying

|H(AP2,p) — H(APy,q)| < K (14%(2 — y)| + |p — q]) for some Ky > 0. (3.2)

Let w, ¢ : D(A%) — IR be given. For any 6§ > 0 we define M} (w, ) to be the set of all
points z € D(A%) such that

6, 1 Y
w(z) —p(z) — glAsel 2 w(y) - o(y) - 1A%y (33)
for all y € D(A%). Similarly, we denote by M, (w,¢) the set of all points z € D(A%) such that
6 1 9 6 L 9
w(z) = () + 51A22]" <w(y) - ¢(y) + 5|47y (3:4)

for all y € D(A%).

Definition 3.1 We say that a bounded continuous function w : X — IR is a viscosity subsolution
of (3.1) if w is sequentially weakly upper semicontinuous, and, for every ¢ € CI(D(A%)) and
6 >0,

(i) M (w, ) C D(A);

(i) Aw(z) + H(APz, Dp(z) + 6Az) + ( Az + AP F(APz), Dy(x)) (3.5)

+6|Az|? + 6 <Ax,A‘ﬁF(Aﬁa:)> <0,Vz € MF(w,p).

-~



We say that w is a viscosity supersolution of (3.1) if w is sequentially weakly lower semicontin-
uous, and, for every ¢ € C'I(D(A%)) and 6 > 0,

(i) My (w,e)C D(A);
(i) Mw(z)+ H(APz, Dp(x) — §Az) + (Ax + APF(APz), Dy(z)) (3.6)

—6|4z[? — § (Az, AP F(AP2)) > 0, Yz € M (w,¢).

We say that w is a viscosity solution of (3.1) if it is both a viscosity subsolution and a superso-
lution of (3.1).

Now we give a comparison result between viscosity subsolutions and supersolutions of (3.1).

Theorem 3.2 Assume that (2.5) and (3.2) hold true and define apg € (0,1) as

_4p-3

(3.7)

Let w and v be a viscosity subsolution and supersolution of the Hamilton-Jacobi equation (3.1)
respectively. If w and v are Holder continuous of exponent o > apg, then

u(z) < v(z), Vz € X. (3.8)
Proof — For semplicity we take A = 1. For € and ¢ positive, we define a function ¢ : D(A%) X
D(A%) — IR as
1 1 6
d(z,y) = u(z) —v(y) — % < A2(z —y),z—y> —§[< Az, z > + < Ay,y >]. (3.9)

Notice that ¢ is weakly upper-semicontinuous. Let (2.5, ye ) € D(A%) X D(A%) be such that

(T 5, Yes) = max  ¢(z,y).
D(A%)xD(A%)

First of all we prove that
1
|Ze,s — Ye,sl < Crez== | (3.10)

where C7 > 0 and « is the Holder exponent of u and v. Since
¢($€,5a 1'5,6) + ¢(y5,5; y5,6) < 2¢(x€,5v ys,6) ,
from the Holder continuity of u and v we derive
1
glxs,s — Yesl* < Claes — yes|*, (3.11)

for some positive constant C. Therefore (3.10) holds.
Now let us consider

1 1 6
o(z) = v(Ye,s) + 9 < A2(Z — Yes), T — Yer5 > +3 < AYe 5, Ye s >

1 1 )
TP(y) = u(xs,S) - % < Az ($E,6 - y)) Tes — Y > _5 < Ams,& Les >



Notice that ¢,% € C'l(,D(A%)). Also, z.5 € Mg'(u,go) and yes € M, (v,9) by construction.
Since u is a viscosity subsolution, using ¢ as a test function, we have

A% (205 — ye .
u(zes) + H (Aﬁxe,s, L‘;—U—é) + 5Ax5,5) + 6| Az, 5|

(3.12)
Al g0 — Je
+6<Awﬁ&AfﬂFxAﬁx&w>4-<Axa5+frﬂﬁwAang,—i§5{¢—2ﬁl>f;o
Since v is a viscosity supersolution, using % as a test function, we have
1
A2 Tes — Ye
v(ye,5) + H (Aﬁye,& #‘i_yi) - 6Ay5,5> - 6|Aye,5I2
(3.13)
A% g,0 T Ye
—6<A%ﬁ¢rﬂFuw%ﬁ»4-<A%§+frﬂFuW%ﬁ»——9L§—ﬂiQ>20
Subtracting (3.13) from (3.12), we obtain
1 s
U(.’L’E'g) - v(ys,5) + 6 [|Axe,6|2 + IAys,5|2] + ElAg (m6,5 - ye,5)|2
1 1
Az e,0 7 Je 2 e,d — Ye
< H <Aﬁys,5; —2(;3_'66#2 - 5/13/5,5) - H (Aﬁxe,& 'A_z'gic—{:_'y_'&) + 6-’41'5,5)
(3.14)
8 [(Azes, APF(APe)) + (Apes, ATPIF (A% )]
- Az Te§—
b <A A [F(Aﬁygﬁ) - F(Aﬁxeyg)] (—553_/5_5_)> .
Recalling assumption (3.2) on H and assumption (2.5) on F', the above inequality yields
1
u(2eg) = v(ves) + 8 [|Aze sl + 1Ave sl ] + 2|43 (22 — )P
< Kpb[|Azes| + |Aye sl + KulAP (2o — yes) (3.15)

1
< A—_'Be—s
|+ Kl A8 (s — )| e Bes)|

+6CF”A_'BHHA$€'5| + |Ays,5

Now we estimate the right hand side of (3.15). Recalling the interpolation inequality (2.15),
we get

KglAP(z.5 — ye )| < ColA(zes — y5,6)l4ﬁ-3|A%(xe,5 — e 5)*P, (3.16)

for some Cy > 0. Moreover recall the following well known inequality

oP 1
ab < —aP + —b7 (3.17)
p alq



1 l 6
for every a,b € RT, p > 1, 1—)+ 6 =1 and ¢ > 0. Choosing o = <§> ’ and p = 73 in
(3.16) and applying it to (3.16) we derive
46-3) 42 _
CalA(ze,s — Yes)| P 2| AT (2es — ye,s)|' ™
_ 3.18)
5 G (s = (
S §|A(.’L’55 Ye 5) 4 (xs,S - ye,S) sTip )
65 4;3
- . —4p
where C3 is some positive constant. On the other hand, again applying (3.17) with p = 15
) 448
5—4
and o = (—> ﬁ, we find
4e
Cs i _ L 2 2y Cye'~¥
— < —|A — .
65_42 , ) < 4€| 4(x5ﬁ y56)| 64ﬁ_3 ) (3 19)
for Cy > 0. From estimates (3.18) and (3.19), inequality (3.16) can be rewritten as
6 1,3 Cuet—18
B _ e T —_ 2 4
KA (205 = yes)| < 5 [[Azesl + 1Aues] + 1AF (@es —ves)* + S (3:20)
Moreover
]\H(S [lee 5| + lAye 5” <3 ['Axe 5|2 + |Aye 6| ] + 05(5, (321)
where C is a positive constant. On the other hand we get
SCrI|A™P||[| Az o] + |Aves)) < [|AI55|2 + [Aye s ] + Ce, (3.22)
for Cg > 0. Finally from estimate (3.11), it follows
i AT P (2.5 — vy, Cr|AP (25 — e
KplA® (205 — vos) 22 = veo)l  Crld o8 = Yes)| (3.23)
£2—a

where C7 > 0. Applying the interpolation inequality (2.15) and inequality (3.17) to (3.23) as we

did in (3.16) we find
Cr|45( )| _ 8 Csl4i( )55
Tes — Ye,b 1\ Te,s — Ye, S—4p
! = < §|A($s,6 - y€,5)|2 + 2 153 J 21—/2016
§5—48 ¢ (2=a)(5—4PB)

E£2—-a
for some positive constant Cg. Again, using (3.17) in the last term of the above inequality we

b

rewrite (3.23) as
|47 (25 ~ ye5)|

]\,FlAﬁ(me,é - y€,6)| e
, (3.24)
6 C964_4
& A £, - € —_Q—I
Ye,s)|° + i | (o5 — yes) I +64ﬁ =

< SlA(zes —

(e ]

10



with Cy positive constant. Substituting estimates (3.20), (3.21), (3.22) and (3.24) inequality
(3.15) we get

| S [ Azesl? + 1A .2] _—|A4( —yes)t<C 54 Lo (3.25)
1’»(935,5)—11('95,5)*‘5[1 le,&l +| ys,él Te,b = Ye,b 10 §48-3 " .

2 — . . 1
where Cjp > 0and y =4 — 48 — 5 % s positive as & > ag. Therefore, if z € D(A;) we have

u(z) —v(z) = ¢p(z,z) + 6 < Az, >< H(2es,Yes) +0 < Az, z >

Cye
<wzes) — V(Yes)+ 6 < Az, > Crod + 53 +6 < Az,z > .

§48-3

Letting ¢ — 0 and then § — 0 we conclude that

(NI

u(z) <wv(z), Ve € D(Az).

Since D(A%) is dense in X, we have u(z) < v(z) for every z € X. I

4 Properties of the value function and existence results

In this Section we prove that the value function v of problem (2.11)-(2.19) is the unique viscosity
solution of

Mo(z) + H(APz, Do(x)) + (Az + APF(4°z), Du(z)) = 0 (4.1)
where

H(z,p) = sup [~ < By,p > —L(z,7)].
~yeU

We first show a Holder continuity result for v. We will exploit the technique of [5].

Proposition 4.1 Assume (2.5), (2.4). Then, the value functz'on v defined in (2.19) is Hélder

continuous in X with any exponent a € (0,1] satisfying o < 2=. Moreover for any 6 € [0,1— )
there exists a constant Cyng > 0 such that
[o(2) = v(y)| < Caol 4~"( — )| (4.2)

forallz,ye X.

Proof - Let o, 90 € X and v(t) € U be given. Let us set z(-) = z(-;z0,7) and y(-) = y(:; ¥o,7)-
Then

t t
z(t) = e Yo + A_ﬁ/ e~ (=)AR(AP2(s))ds +/ e~ (=94 By(5)ds
0 0
and : t
y(t) = e~y 4 A0 [ e IME(APy(e))ds + [ eI By (s)ds
0 0

for any ¢ > 0. Now we estimate |A®(z(t) — y(¢))|*. From assumption (2.5) and from inequality
(2.13) we have

(4P(a(t) ~ Y| < sy lA~"(m0 — wo)l + K [ 14%(a(s) ~ylsDlds,  (43)
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¢
for any 6 € [0,1 — ). Now set n(t) = / |AP(z(s) — y(s))|ds. Integrating the above inequality
0

we get

M
n(t) < d

t
— A%z =P L K / {
< T o vl ke [ a(eds

By Gronwall’s Lemma we obtain an estimate on 7(t). Applying this estimate to the right hand

side of (4.3) we derive
¢ \
49(2(0) = y(0) < (g5 + Crtt16-0) 1420 - o)

Then, for every « € (0 ), @ < 1, we have

C \FO
45(e(0) — NI < 2 (g + NPt ) 40z — gl

Moreover, by (2.4),
| (AP (1), 7(8)) = L(APy(1), ¥(1))

’I\F

< (20)1 | (AP (1), 7(2)) — L(APy(t), (1)
where L = (2C1)'~*K§. Now choose T such that

2y,

< 1A (0 - o)|°

(4.4)

(4.5)

(4.6)

From the definition of value function and from the Dynamic Programming Principle it

follows that there exists a control v(-) such that

T .
W) > [ e LAY, 7()dt+ e Toy(T)) ~ 147 (20 — yo)l°

Here, we may suppose that [A=%(zo — yo)|* > 0, as (4.2) is trivial if [A=%(zo — yo)|* = 0.
From the Dynamic Programming Principle and from the above estimate it follows

v(zo) — v(yo) < |[A™0(zo — yo)|
T
+/0 e M \L(Aﬁx(f))‘)’(t)) - L(Aﬁy(t)ﬁ’(t))l dt + e [v(2(T)) — v(y(T))]

T
<240 - o)l + L [ NI a(t) - y(e) [t
Substituting (4.5) in (4.7), we get
v(z0) — v(30) < 2/A7%(z0 — yo)|*

« Ce~M (Kpa—\)t;(1-f—8)a
+12 |A™ (.’L‘o —yo)|* / 7a(870) + Ce'™F i dt .

The result follows since a < 7\%; and 6 € [0,1-75). 1

We now give an existence result for (4.1).

12
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Theorem 4.2 Assume that (2.5) and (2.4) hold true. Then the value function v is a viscosity
solution of (2.21) in the sense of Definition 3.1.

Proof — Recalling the compactness assumption (2.5) (ii), from (4.2) we conclude that v is
sequentially weakly continuous in X. It remains to prove that v satisfies (3.5) and (3.6). We
show this fact in the next two steps.

Step I - Proof of (3.5).
Let ¥ € U be a constant control, ¢ € C’l(D(A%)) and =z € M (v,9). Moreover let y(-) =
y(+;z, 7). Then, recalling Proposition 2.1, we obtain

) 1)
o(z) — ple) - 5 < Az,z >> 0(y(t) — (1) — § < Ay(t),y(0) > (438)
for every ¢ > 0. From (4.8) and from the Dynamic Programming Principle it follows

p(z) — e(y(t)) i< dnz> - < Ay(t),y() >

t 2 t
t o ey (4.9)
< MR O) 2 [ e paty(s), s + S a(0),
Notice that, since by Proposition 2.1 y € L%(0,T; D(A)), we get
p(z) — p(y(t) = - / t (De(y(s)), — Ay(s) — AP F(APy(s)) + By) ds (4.10)
and
%(< Az x> — < Ay(t),y(t) >) = — /Ot (Ay(s), —Ay(s) — APF(APy(s)) + By) ds
(4.11)
= [ [IAu(o)* + (Au(s), AP F(A°y(s)) = By)] ds.
Therefore, exploiting (4.10) and (4.11), (4.9) can be rewritten as
i [ (Dotu(). Au(s) + AP F(APy(s)) - By ds
+§ /0 t [14y(s)1” + (Ay(s), AP F(APy(s)) - Br)| ds (4.12)
¢ e M _
<7 [ e naPys) mds + ).
By Proposition 2.1 y € L?(0,T; D(A)) and so
tl/ot <Dgo(y(s)), Ay(s) + ATPF(APy(s)) — B7> ds < %/Ot |Ay(s)|*ds + Cs (4.13)
and
% /0 (Ay(s), AP F(4Py(s)) — By ) ds
(4.14)

6 rt 5 rt 5t
<% [aPliCriav)lds + 5 [ 1av@IBIIRds < & [ 14u()ds + Cy
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for some positive Cs.
From (4.12) , (4.13) and (4.14), since v and L are bounded it follows

1 ft
—/ | Ay(s)|?ds < Cs
t Jo
for Cs positive. Hence, there exists a sequence {t,}, t, | 0 such that
|Ay(tn)l < CS‘

Taking a subsequence we have that Ay(t,) — z and y(t,) — z. Therefore we get y(¢,) =
A1 Ay(t,) — A7'2 = z and so ¢ € D(A). This proves (3.5) (i).

In order to show that (ii) holds, we recall that if z € D(A) and y(:) = v, then y €
C([0,T]; D(A)), see Proposition 2.1. Then, passing to the limit as ¢ | 0 in (4.12), we derive

(De(x), Az + APF(472)) + |- < Dp(a) + 64z, By > —L(A%z,7)]

+6|Az[? + 6 (Az, AP F(4P2)) + Mo(=) < 0.
Taking the supremum over v € U we obtain (3.5) (ii).

Step II - Proof of (3.6).
Let ¢ € C’I(D(A%)) and x € My (v,p). For every n € IN there exists a control v,(-) such that

n? n

o)+ 2 [ " e L(APyn(s), va())ds £ e (w (). (4.15)

where y, () = yn(; 2, yn). Moreover we get

s+ <anr o (1) () 50 2) o (2)

From (4.15) and from the above inequality we obtain

oo o ()] 5 (0 2) o (1)) <10

1

> [ ML (s) (s 4 e = o (w0 (5] ) e (5).

n n

(4.16)

Here and in the sequel of the proof we denote by w(t) a function such that w(t) | 0 as ¢ | 0.
Similarly to Step I we have

1

p(z) — ¢ <yn (1)) = /0 i (Dp(yn(5)), Avn(s) + AP F(APy(s) — Bryn(s))ds  (4.17)

and
o (22 < e
= /0% <Ayn(s), —Ayn(s) — ATPF(APy,(s)) + an(s)> ds (4.18)

1

= [ [F1Au(o) - (Aun(s), AP F (A9 () + (Ava(s), Bra()] ds.

14



Therefore inequality (4.16) can be rewritten as

1

n ./0; <DSD(yn(S))« Ayn(s) + ATPF(APya(s)) — B‘rn(S)> ds
+né /01? [~ 14yn(s)? = (Ayn(s), AP F(APyo(5))) + (Ayn(s), Byn(s))] ds (4.19)

> n/(); e Y L(APyn(s), yn(s))ds + ”(6_% -1 <y” (%)) tw <%>

Again, reasoning as in Step I, from the above estimate we derive

1

n/" | Ayn(s)[2ds < Cs ,
0
hence, there exists a sequence {s,}, s, | 0, such that

|[Ayn(so)| < Cy yn(sn) — 2z and  Ay,(sn,) — 2. (4.20)

As in Step I we conclude, that z € D(A). Therefore (3.6) (i) holds.
In order to show that (ii) is verified, we have to estimate the terms contained in (4.19).
First we note that, by easy computations exploiting estimate (2.13), as € D(A)

lim sup |A%(yn(t) —2z)| =0, (4.21)
" o<
where « € [0,1). Since ¢ € CI(D(A%)) and ¢ € D(A), by (4.21) we obtain

1

— n/o}_) < Dp(yn(s)), Byn(s) > ds = —n/O; < Dp(z), Byn(s) > ds + w <%) : (4.22)

Moreover, by (4.21)

1

n /0 " < De(yn(s)), AP F(APyn(s)) > ds =< Dep(z), AP F(APz) > +w (%) L (4.23)

On the other hand we recall that by assumption (2.5) (v), there exists p such that A?B, is
bounded. Hence, (4.21) yields

1 1

n/; < Ayn(s), Byn(s) > ds = n/; <A1_”2,A"B7n(s)ds> +w <—l—>
0 0 n

(4.24)
= n/; < Az, Byn(s) > ds + w (l) .
0 n
In addition, from (4.21) we have
a 1
_n / (Aya(s), AP F(APya(s))) ds = — (Az, AP F(AP2)) 4+ (-) . (4.25)
0 n
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Finally, again from (4.21)

17/0% e M L(APyn (), Yn(s))ds = n/O% L(APz yu(s))ds + w (%) . (4.26)

Since v is continuous, substituting estimates (4.22), (4.23), (4.24), (4.25) and (4.26) in (4.19),
we derive

1

M(@) 4 [7 [ (Dp(e) — 4z, Bya(s)) = LA, 3a(5))] ds + (AP F(4°%), Dp(a))

+n/j [< Do(yn(s)), Ayn(s) > —6|Ayn(s)|2] ds — 6 <A:c,A_ﬁF(Aﬁx)> >w (l> .

n

On the other hand, recalling the definition of the Hamiltonian (2.22),
1
n/n [— (Dp(z) — 6 Az, Byn(s)) — L(Aﬂx,'yn(s))] ds < H(APz, Dp(z) — 6 Az).
0

Therefore, for some sequence {s,}, 0 < s, < %, as in (4.20) it follows that
Av(z) + H(APz, Dp(z) — 6Az)+ < A"PF(APz), Dp(z) > —6 < Az, AP F(APz) >

>< Dip(n(sn)), Aa(n) > +olAsn(sn) +0 (3 ).

By (4.20), taking the liminf,_, of the right hand side of the above inequality, we derive that
(3.6) (ii) holds. W

Combining Theorem 4.2 with Theorem 3.2 we obtain the following existence and uniqueness
result for the Hamilton-Jacobi equation (4.1).

Corollary 4.3 Assume that (2.5) and (2.4) hold true and let \p = min {1, IL} Fix
\F

3 3-Ap
p e <Z’4—2AF)' (4.27)

Then the value function v defined in (2.19) is the unique viscosity solution of the Hamilton-Jacobi
equation (4.1) satisfying a Holder condition with exponent o € (ag, 1), where ag is defined in
(3.7).

Proof - Applying Theorem 4.2, we obtain that v is a viscosity solution of equation (4.1). From
Proposition 4.1 it follows that v is Holder continuous of exponent « for any 0 < o < Ap. From
(4.27) it is easily seen that Ap > ag. The proof of existence is thus complete. As for uniqueness
we note that assumption (2.4) implies that the Hamiltonian (2.22) satisfies hypothesis (3.2).
Therefore uniqueness follows from Theorem 3.2. B
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