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Abstract

In this paper we study the following reaction-di�usion equation ut = �u+

f(u; k(t)) subject to appropriate initial and boundary conditions, where f(u; k(t)) =

up � k(t) or k(t)up with p > 1 and k(t) is an unknown function. An additional

energy type condition is imposed in order to �nd the solution u(x; t) and k(t). This

type of problem is frequently encountered in nuclear reaction process, where the

reaction is known to be very strong, but the total energy is controlled. It is shown

that the solution blows up in �nite time for the �rst class of function f for some

initial data. For the second class of function f , the solution blows up in �nite time

if p > n=(n � 2) while it exists globally in time if 1 < p < n=(n � 2), no matter

how large the initial value is. Partial results are generalized into the case where

f(u; k(t)) appears on the boundary.
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1. Introduction

Consider a chemical reaction-di�usion process, where it is known that the reaction

is very strong, say like up with p > 1, but the rate with respect to this power

is unknown, say k(t), a function of t. On the other hand, the total energy is

controlled in the system in order to prevent the blowup phenomenon. That is

Z



u(x; t)dx = g(t):

This leads to an inverse problem where one needs to �nd the solution u(x; t) as well

as the coe�cient of the strong reaction. Another model arising from the nuclear

science is that the growth of temperature is known to be very fast like up, but some

absorption catalystic material is put into the system in such a way that the total

mass is conserved. These two models leads us to consider the following parabolic

inverse problem: Find u(x; t) and k(t) such that

ut ��u = f(u; k(t)) for (x; t) 2 QT = 
 � (0; T ]; (1.1)

@u

@�
(x; t) = 0 for (x; t) 2 ST = @
� [0; T ]; (1.2)

u(x; 0) = u0(x) for x 2 
; (1.3)

where 
 is a bounded domain in Rn with a smooth boundary S = @
 and � is the

outward normal on S. An additional energy condition is prescribed by

Z



u(x; t)dx = g(t); t � 0: (1:4)

The above mathematical problem can also be used to model other phenomena

in population dynamics and biological sciences where the total mass is often con-

served or known, but the growth of a certain cell is known to be of some form.

The research on the well-posedness of a parabolic inverse problem goes back to

60's (see the references in [4]). Since then, considerable progress has been made

regarding to various inverse problems for parabolic equations. The reader can �nd

a large number of references in [4]-[6] and the recent proceedings [9]. The essential

di�erence between the previous inverse problems and the current one is that the
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solution of (1.1)-(1.4) may blow up; this fact is well known when k(t) is given. On

the other hand, since our k(t) is given in terms of the solution, the problem may

have a global solution because of the stabilizing factor k(t). The natural question

is whether or not the stabilizing factor is strong enough to prevent the blowup.

We shall study this problem in the present work. We shall only discuss two classes

of function f(u; k(t)), namely,

f(u; k(t)) = up � k(t) or k(t)up:

When the function k(t) > 0 is given, there are a lot of papers (cf. [2], [10], [14],

[17] and the references therein ) dealing with various qualitative properties such

as �nite time blowup, blowup rate, blowup set. When f(u; k(t)) = up � k(t) or

k(t)up with an unknown k(t), it is not di�cult to see that the condition (1.4) and

the equation (1.1) imply

k(t) =
1

j
j

�Z



updx � g0(t)

�
; or

g0(t)Z



updx:

Hence the reaction term in (1.1) can be written as

f = up �
1

j
j

�Z



updx� g0(t)

�
; or

g0(t)upZ



updx:

In general, it is not clear which term can dominate the reaction. As there is a

nonlocal integral term in the equation (1.1), the powerful comparison principle is

invalid. We prove by applying the energy method that, for the �rst class of the

function f , the solution will blow up in �nite time for a class of initial data. For

the second case, one may also believe that the solution will blow up in �nite time.

Surprisingly, it turns out that the �nite time blowup or global existence depends

upon the exponent p and the space dimension n. It will be seen in Section 3 that

the solution exists globally if p < n=(n � 2), no matter how large the initial data

are. On the other hand, the solution will blow up in �nite time if p > n=(n � 2),

provided that initial data satisfy some conditions. This is quite di�erent from

a regular reaction-di�usion equation (cf. [2], [10], [14], etc.). We shall mention
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that di�usion equations with nonlocal reactions has been considered by a number

of authors (cf. [1], [7]-[8], [17], etc.). However, none of those deals with similar

problems to (1.1)-(1.4), since the energy in these previous problems blows up in

�nite time. More recently, the authors of [3] studied the problem (1.1)-(1.4) with

f(u; k(t)) = u2�
R
1

0
u2dx in one space dimension. Blowup is proved for some special

initial value and the blowup rate is also discussed. The argument for proving the

blowup property is obviously not suitable for the present situation.

The paper is organized in the following way. In Section 2, we study the problem

with f(u; k(t)) = up� k(t). In Section 3, we show the global existence for the case

where f(u; k(t)) = k(t)up with p < n=(n � 2). We also prove the global existence

for p = n=(n� 2) when the initial value is large enough. In Section 4, we consider

the case with p > n=(n � 2) and prove that the solution blows up in �nite time

for suitable radially symmetric initial data. Section 5 deals with the case where

f(u; k(t)) occurs on the boundary.

2. Blowup for f(u; k(t)) = up � k(t)

Throughout this paper, C denotes generic constants, unless otherwise indicated.

Mathematically, we do not require that u(x; t) is nonnegative. Therefore we shall

use jujp�1u instead of up. For some technical reasons, the argument below is valid

when g(t) = constant, say 1. This is the case in some applications. The equation

(1.1)-(1.4) can now be rewritten as follows (with g(t) = 1):

ut = �u+ jujp�1u� k(t) for x 2 
; t > 0;

@u

@�
= 0 for x 2 @
; t > 0; (2.1)

u(x; 0) = u0(x) for x 2 
:

where

k(t) =
1

j
j

�Z



jujp�1udx

�
:

The following conditions on the data are assumed throughout this section:

H(A) u0(x) 2 C
3(
) and

Z



u0(x)dx = 1:
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The existence and uniqueness of this system for small t is clear, by the standard

theory of parabolic estimates and contraction mapping principle. It is also clear

that the solution can be extended in t direction, as long as the L1 norm of the

solution remains �nite.

Theorem 2.1: The solution of (2:1) blows up in �nite time if p > 1 and

�
1

2

Z



jru0j
2dx+

1

p + 1

Z



ju0j
p+1dx

is suitably large .

Proof: The proof is based convexity argument (see Levine and Payne [15]). We

multiply the equation by u and ut, respectively, and then integrate over 
, to

obtain

d

dt

�1
2

Z



u2dx
�
+

Z



jruj2dx =

Z



jujp+1dx�
1

j
j

Z



jujp�1udx; (2.2)

Z



u2tdx+
d

dt

Z



1

2
jruj2dx =

d

dt

� 1

p+ 1

Z



jujp+1dx
�
: (2.3)

Let

J(t) = �
1

2

Z



jruj2dx+
1

p+ 1

Z



jujp+1dx:

The identity (2.3) gives

J 0(t) =

Z



u2tdx � 0: (2.4)

It follows that

J(t) = J(0) +

Z t

0

Z



u2tdxdt: (2.5)

Introduce a new function

I(t) =

Z t

0

Z



u2dxdt+A+Bt2;

where A and B are two constants to be speci�ed later. Clearly

I 0(t) =
Z



u2dx+ 2Bt; I 00(t) =
d

dt

Z



u2dx+ 2B:
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By the identity (2.2),

I 00(t) =
d

dt

Z



u2dx+ 2B

= �2
Z



jruj2dx+ 2

Z



jujp+1dx�
2

j
j

Z



jujp�1udx+ 2B:

We claim that there exists a constant � > 0 such that

I 00(t) � 4(1 + �)J(t): (2:6)

Indeed, the desired the inequality is equivalent to

�2
Z



jruj2dx+ 2
Z



jujp+1dx�
2

j
j

Z



jujp�1udx+ 2B

� 4(1 + �)
h
�

1

2

Z



jruj2dx+
1

p + 1

Z



jujp+1dx
i
:

Now H�older's and Young's inequalities imply that for any �1 > 0Z



jujpdx � �1

Z



jujp+1dx + C(�1; j
j):

As p > 1, we choose � and �1 to be small enough such that

2 �
4(1 + �)

1 + p
� �1 > 0:

Then we have the desired claim if we simply take B � C(�1; j
j):

Clearly

I 0(t) =

Z



u2dx+ 2Bt = 2

Z t

0

Z



uutdxdt+

Z



u2
0
dx+ 2Bt: (2:7)

It follows that, for any " > 0,

I 0(t)2 � 4(1 + ")

Z t

0

Z



u2dxdt

Z t

0

Z



u2tdxdt+
�
1 +

1

"

�h Z



u2
0
dx+ 2Bt

i2
: (2:8)

Combining the above estimates, we �nd that, for � > 0,

I 00(t)I(t)� (1 + �)I 0(t)2

� 4(1 + �)
h
J(0) +

Z t

0

Z



u2tdxdt
ih Z t

0

Z



u2dxdt+A+Bt2
i

�(1 + �)
h
4(1 + ")

Z t

0

Z



u2dxdt
Z t

0

Z



u2tdxdt
i

�(1 + �)
�
1 +

1

"

�h Z



u2
0
dx+ 2Bt

i
2

:
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Now we choose " and � to be small enough such that

1 + � � (1 + �)(1 + "): (2:9)

If

J(0) � 4(1 + �)(1 +
1

"
)B (2:10)

and A is chosen to be large enough, then we have

I 00(t)I(t)� (1 + �)I 0(t)2 � 0:

It follows (cf. [15]) that

Z t

0

Z



u2dxdt will blow up in a �nite time T �, if the solution

exists in (0; T �).

Remark 2.1: When u0(x) = M is a constant, then u(x; t) = M is always a

solution. In this case, the proof is invalid since in the inequality (2.6) the constant

B depends on j
j, but the condition H(A) implies M j
j = 1. Consequently, B

depends on M , so do the other constants in the proof. Therefore, it is impossible

to choose J(0) to satisfy the desired inequality (2.10).

3. Global Existence for f(u; k(t)) = k(t)up

For simplicity, we shall assume that g0(t) = 1 in Sections 3 and 4. It will be seen

that the results can be immediately carried over for a general function g(t) > 0

with g0(t) > 0 in this section. In this case the problem (1.1)-(1.4) is equivalent to

the following:

ut = �u+ k(t)up for x 2 
; t > 0;

@u

@�
= 0 for x 2 @
; t > 0; (3.1)

u(x; 0) = u0(x) for x 2 
:

where

k(t) =
1Z




up(x; t)dx
:
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We shall assume throughout this section that u0(x) is smooth, u0(x) > 0 on 
,

and satis�es the compatibility condition
@u0

@�
= 0 on @
 and

Z



u0(x)dx = m > 0.

By the standard theory of parabolic estimates and contraction mapping prin-

ciple, the existence and uniqueness of this system for small t is guaranteed. The

solution can be extended in t direction, as long as the solution remains �nite. Since

we assume that the initial data are positive, the solution u(x; t) is positive, by the

maximum principle.

Theorem 3.1: Suppose that 1 < p < n=(n � 2) for n � 3 and 1 < p < 1 when

n = 1 or 2. Then there exists a unique global solution to the system, namely, the

solution exists for all t 2 [0;1).

Proof: The proof here is for n � 3. The proof for n = 1 and n = 2 can be

obtained with obvious modi�cations. We �x a large �. Without loss of generality,

we assume that j
j = 1. For any 0 < a < 1, and
1

q
+

1

q�
= 1, we have

Z



up+�dx �

�Z



u(p+�)aqdx

�
1=q�Z




u(p+�)(1�a)q
�

dx

�
1=q�

: (3:2)

There are two free parameters a and q to be determined. We �rst let

(p+ �)aq = (� + 1)
n

n� 2
: (3:3)

If q = n=(n� 2) (it is clear that 0 < a < 1 with this choice of q, as p > 1), then

(p + �)(1� a)q� =
n

2
(p� 1) < p: (3:4)

However, the choice q = n=(n� 2) will not be good enough in our proof. Since we

have a strict inequality in (3.4) when q = n=(n � 2), we can take q > n=(n � 2)

and q � n=(n � 2) � 1 so that (3.4) is still valid for this particular choice of q.

Using H�older's inequality again, we obtain, (recalling that j
j = 1),

Z



up+�dx �

�Z



u(�+1)
n

n�2dx

�1=q�Z



u(p+�)(1�a)q
�

dx

�1=q�

�

�Z



u(�+1)
n

n�2dx

�1=q�Z



updx

�(p+�)(1�a)=p
:

(3:5)
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Next, multiplying the equation by u� and integrating over 
, we obtain

�Z



1

� + 1
u�+1dx

�
t

+ �
Z



u��1jruj2dx =

Z



up+�dxZ



updx
: (3:6)

Integrating the equation, we immediately get

Z



u(x; t)dx =

Z



u0(x)dx+ t:

Hence by H�older's inequality and the fact j
j = 1,

Z



updt �
� Z




u0(x)dx+ t
�p
�
� Z




u0(x)dx
�p

= mp > 0: (3:7)

Using (3.4), (3.5), (3.6), (3.7), we obtain

�Z



1

� + 1
u�+1dx

�
t

+
4�

(� + 1)2

Z



���ru(�+1)=2���2dx � C

�Z



u(�+1)
n

n�2dx

�
1=q

: (3:8)

If we de�ne v = u(�+1)=2, then

�
1

� + 1

Z



v2dx

�
t

+
4�

4(� + 1)2

Z



jrvj2dx � C

�Z



v
2n
n�2dx

�1=q
:

Now we use the following (elliptic) Sobolev's embedding theorem (cf. [16]) in the

above inequality.

kwkLr(
) � C
�
krwkL2(
) + kwkL2(
)

�
;

�
r =

2n

n� 2

�
:

Since q > n=(n � 2), we obtain

�Z



v2dx

�
t

+

Z



jrvj2dx � C�

�Z



v2dx+ 1

�
: (3:9)

By Gronwall's inequality, we conclude that the right-hand-side of the above in-

equality is bounded. Therefore

�Z



u�+1dx

�
t

+

�Z



u(�+1)
n

n�2 dx

�n�2
n

� C�;

sup
0�t�T

�Z



u�+1dx

�
+
Z t

0

�Z



u(�+1)
n

n�2 dx

�n�2
n

dt � C�:

(3:10)
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It follows that u is bounded in L�+1 for any �nite �. Thus the Lp estimates (cf.

[13]) implies that u is in W 2;1
(�+1)=p(QT ) for any �. Therefore if we take (�+1)=p >

(n + 2)=2, then by the Sobolev's embedding theorem, u is H�older continuous, for

0 � t � T , for any T > 0. It is then easily seen that u 2 C1(QT ). Thus we obtain

a global solution.

We now turn to the case where p is equal to the critical number n=(n�2). The

above proof with q = n=(n � 2) gives (recalling that j
j = 1)

�Z



u�+1dx

�
t

+

Z



���ru(�+1)=2���2dx � C�

�Z



u(�+1)
n

n�2dx

�n�2
n

�Z



updx

�1=p

� C�

�Z



u(�+1)
n

n�2dx

�n�2
n

t+

Z



u0(x)dx
;

(3:11)

where at the �nal step we have used the inequality (3.7). By Sobolev's embedding,

the numerator in the right-hand side of (3.11) can be dominated by

C
� Z




u�+1dx+
Z



���ru(�+1)=2���2dx�

We now �x � in (3.11) such that (� + 1)=p > (n + 2)=2 and choose
Z



u0(x)dx

to be large enough, then we have the same estimates as (3.10). Consequently, we

proved

Theorem 3.2: Suppose that p = n=(n � 2) for n � 3. Then the solution exists

for all t 2 [0;1), provided
Z



u0(x)dx is large enough.

4. Blowup of solutions for f(u; k(t)) = k(t)up

In this section we shall construct a solution which blows up in �nite time when

p > n=(n � 2).

Theorem 4.1: Suppose that p > n=(n�2). Then there exists a radially symmetric
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initial datum u0(x) (with 
 = B1(0) ) such that the corresponding solution u(x; t)

of (3:1) blows up in �nite time at x = 0. Furthermore, x = 0 is the only blowup

point.

Proof: Let

'(r) =

8>><
>>:

1

r�
for � < r � 1;

1

��

�
1 +

�

2

�
�

�

2��+2
r2 for 0 � r � �;

(4:1)

where we choose

� =
2

p� 1
:

It is clear that '(r) is in C1[0; 1]\C1
�
[0; �)[ (�; 1]

�
, and '0(0) = 0 and '0(r) � 0.

A direct calculation shows thatZ
1

0

n!n'
p(r)rn�1dr =

Z
1

0

n!nr
n�1�p�dr + �1(�)

=
n!n

n � �p
+ �1(�);

(4:2)

where

�1(�) = �
Z �

0

n!nr
n�1�p�dr +

Z �

0

n!n
h 1
��

�
1 +

�

2

�
�

�

2��+2
r2
ip
rn�1dr = O(�n��p);

(4:3)

and !n is the surface area of unit ball in Rn. Thus �1(�) ! 0 as � ! 0+, since

p > n=(n � 2). From our choice of �, we �nd that for each � 2 (0; 1),

'rr +
n� 1

r
'r =

�

r�+2

�
(�+ 1) � (n � 1)

�
= ��

�
(n� 2)� �

�
'p for � � r < 1;

and

'rr +
n� 1

r
'r = �

n�

��+2
= � n�'p(�)

� �n�'p(r) for 0 � r � �:

Since ' is in C1, we have

'rr +
n� 1

r
'r � � �'p for 0 � r < 1; (4:4)
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in the distribution sense, where

� = max
h
�
�
(n� 2)� �

�
; n�

i
:

We now let u0(r) = �'(r), then

(u0)rr +
n� 1

r
(u0)r +

1

2

�
1Z

1

0

n!n(u0)
prn�1dr

�
(u0)

p

� (���)(
u0

�
)p +

1

2

 
1

n!n

n� �p
+ �1(�)

!�u0
�

�p
(4.5)

�
1

4

n� �p

n!n
��p (u0)

p � (u0)
p for 0 � r < 1;

provided we take � and � such that 0 < � � �0, 0 < � < �0 for some su�ciently

small �0 and �0. We now �x � = �0. Thus u0(r) will be uniquely determined by

the choice of �.

Next, we want to give an estimate for the modulus of continuity of the integralR
B1(0)

up(x; t)dx near t = 0 which is uniformly valid for small �. Since we want

to prove that the solution blows up in �nite time, we can always assume for the

contrary that it exists for 0 < t < 1. Note that

m =
Z
B1(0)

u0(x)dx = n�!n
h 1

n� �
+
�2 + �

2n
�

�

2(n+ 2)
�

1

n � �

�
�n��

i
: (4:6)

It is clear that m is bounded from above and below uniformly for � < �0. By the

constraint condition, we know

Z
B1(0)

u(x; t)dx = t+m: (4:7)

Since u0(x) = u0(r) is monotone decreasing in r, applying the maximum principle

to (rn�1ur) gives us ur(r; t) � 0. Hence

u(r; t)!nr
n = u(r; t)

Z r

0

n!nz
n�1dz �

Z r

0

u(z; t)n!nz
n�1dz

�
Z

1

0

u(z; t)n!nz
n�1dz = t+m;
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which implies that,

u(r; t) �
t+m

!nrn
�

1 +m

!nrn
for 0 < t < 1: (4:8)

Thus u(r; t) is uniformly bounded, say, in [1=2; 1] � [0; 1). Next, by H�older's in-

equality, one can easily derive

k(t) �
wp�1
n

mp
for 0 < t < 1: (4:9)

Observe that the function w(r; t) = rn�1ur satis�es the following equation

L[w] = 0 for 0 < r < 1; 0 < t < 1; (4:10)

where L[�] is de�ned by

L[ ] =  t �  rr +
n� 1

r
 r � pk(t)up�1 : (4:11)

Comparing w with a function v satisfying the same equation L[v] = 0, but

equals to 0 on r = 1=2 and on r = 1, and equals to rn�1(u0)r(r) on t = 0, we easily

obtain that

ur(3=4; t) � � c0 for 0 < t < 1; (4:12)

where the constant c0 is independent of � because of the estimates (4.8) and (4.9).

We next introduce the auxiliary function as in [10],

J = w(r; t) + "rnuq;

where we �x q such that q < p, and 2p=(q � 1) < n. We assume that (we shall

justify this assumption later on)

u(3=4; t) �
1

2
u0(3=4); (4:13)

especially, we �x � small such that

u(r; t) � u(3=4; t) �
1

2
u0(3=4) � � for 0 � r � 3=4; 0 < t < 1:
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A direct calculation shows that

L[J ] = "

�
� (p+ q)k(t)rnup+q�1

�2nquq�1rn�1ur � rnq(q � 1)uq�2(ur)
2

�
(4.14)

= "

�
� (p+ q)k(t)rnup+q�1 � 2nquq�1

h
J � "rnuq

i
� rnq(q � 1)uq�2(ur)

2

�

� �2"nquq�1J + "c(r; t);

where the coe�cient of J in the above equation is bounded as long as the solution

u(r; t) remains bounded. Since u(r; t) � �,

c(r; t) = rnu2q�1
h
� (p+ q)k(t)up�q + 2n"q

i
� rnq(q � 1)uq�2(ur)

2

� rnu2q�1
h
� (p+ q)k(t)�p�q + 2n"q

i
< 0;

provided

" <
p� q

2nq
k(t)�p�q: (4:15)

We need a lower bound of k(t) for the above to be valid for small ". If we assume

that

k(t) �
1

2
k(0); (4:16)

then (4.15) is valid for small ".

On ft = 0g, for 0 < r � �, note that �p = �+ 2,

(u0)r + "r(u0)
p = ��

�

��+2
r + "r�p

�
1

��

�
1 +

�

2

�
�

�

2��+2
r2
�p

� ��
�

��+2
r + "r�p

1

��p

�
1 +

�

2

�p
=

�

��+2
r
h
� � + "�p�1

�
1 +

�

2

�pi
< 0;

if " is small enough (independent of �). For � < r < 1,

(u0)r + "r(u0)
p = ��

�

r�+1
+ "r�p

1

r�p

=
�

r�+1

h
� �+ "�p�1

i
< 0;

14



for small ". Since p > q and u > � by the assumption (4.13), it follows that

(u0)r + "r(u0)
q < 0 for 0 � r � 3=4;

for " small enough. Thus J < 0 on ft = 0; 0 � r � 3=4g. By (4.8) and (4.12),

we can choose " to be small enough (independent of �) so that J < 0 on fr =

3=4; 0 < t < 1g. We now �x such an ". Obviously, J = 0 on fr = 0; 0 � t < 1g.

Thus, the maximum principle implies that J � 0 on f0 � r � 3=4; 0 � t � 1g, as

long as (4.13) and (4.16) remain valid.

Integrating �ur � "ruq gives us

u1�q(r; t) �
q � 1

2
"r2 + u1�q(0; t) �

q � 1

2
"r2;

i.e.,

u(r; t) �
h 2

(q � 1)"

iq�1 1

r2=(q�1)
=
h 2

(q � 1)"

iq�1 1
r

for 0 < r < 3=4;

where  = 2=(q � 1) < n=p. It follows that

sup
0<���0

Z �

0

n!nu
p(r; t)rn�1dr � n!n

h 2

(p� 1)"

ip(q�1) �n�p
n� p

: (4:17)

Since u(r; t) is uniformly bounded in the domain f� � r � 1; 0 � t � 1g, the

standard parabolic estimates imply that

lim
t!0

sup
0<���0

����
Z

1

�
n!nu

p(r; t)rn�1dr �
Z

1

�
n!n(u0)

prn�1dr

���� = 0: (4:18)

(4.17) and (4.18) imply that

lim
t!0

sup
0<���0

����
Z

1

0

n!nu
p(r; t)rn�1dr �

Z
1

0

n!n(u0)
prn�1dr

���� = 0: (4:19)

Therefore, by the continuation argument in t, there exists a �0 2 (0; 1=2) such that

(4.13) and (4.16) are valid for 0 < t < �0, where �0 is independent of �. It follows

that all of the above estimates are valid for 0 < t < �0.

15



We now compare u(r; t) with the solution v(r; t) of the following problem

vt = �v +
1

2
k(0)vp for 0 � r < 1; t > 0;

@v

@r
= �c� for r = 1; t > 0;

@v

@r
= 0 for r = 0; t > 0;

v(r; 0) = u0(r) for 0 � r � 1;

where

c� = �
@u0

@r

���
r=1
:

By the comparison principle, u(r; t) � v(r; t), as long as both solutions exist and

0 � t � �0. Let  = vt� vp,
@ 

@r
> 0 on fr = 1; t > 0g. By using (4.5), we obtain

 � 0 on f0 � r � 1; t = 0g. Thus by using the equation for  , we can easily

obtain that  � 0, as long as the solution exists. Hence

v(r; t) �
1�

1

u
p�1
0 (r)

� (p� 1)t

�1=(p�1) :

Especially,

v(0; t) �
1�

1

u
p�1
0 (0)

� (p � 1)t

�1=(p�1) :

Therefore, the solution v(r; t) blows up at a time T � < �, if � is chosen to be small

enough. This proves the theorem.

Remark 4.1: For a general function g(t), Theorem 4.1 holds if g(t) � g0 > 0 and

g0(t) � g0 > 0 for some positive constant g0.

5. Nonlinear Boundary Value Problem

In this section we shall generalize the above results into the problem with f(u; k(t))

as the boundary function. We �rst consider the case where f(u; k(t)) = jujp�1u�

k(t).

16



Consider the following problem:

ut = �u for x 2 
; t > 0;
@u

@�
= jujp�1u� k(t) for x 2 @
; t � 0; (5.1)

u(x; 0) = u0(x) for x 2 
:

An additional condition is imposed as follows:Z



u(x; t)dx = 1 for t � 0: (5:2)

We are interested in the case where p > 1. It is known (cf. [11], etc.) that when

k(t) = 0, the solution will blow up in �nite time for any nonnegative u0(x) which

is not identically zero. Will the stabilizing factor k(t) on the boundary be able to

prevent the blowup phenomenon? We shall answer this question in this section.

We shall assume that u0(x) is smooth, say in C3(
) , for convenience. It is clear

from the standard theory of parabolic equations that the problem (5.1)-(5.2) has

a local solution.

Theorem 5.1: The solution of (5.1)-(5.2) will blow up in �nite time if

J(0) = �
1

2

Z



jru0j
2dx+

1

p+ 1

Z
@

ju0j

p+1ds

is big enough.

Proof: The proof is similar to that of Theorem 2.1. We multiply the equation

(5.1) by u and ut, respectively, and integrate over 
, to get

d

dt

�1
2

Z



u2dx
�
+
Z



jruj2dx =
Z
@

jujp+1ds �

1

j@
j

Z
@

jujp�1uds; (5.3)

Z



u2tdx+
d

dt

Z



1

2
jruj2dx =

d

dt

� 1

p+ 1

Z
@

jujp+1ds

�
: (5.4)

Let

J(t) = �
1

2

Z



ru2dx+
1

p+ 1

Z
@

jujp+1ds

and

I(t) =
Z t

0

Z
@

u2dsdt+A+Bt2:
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By a similar calculation, we see that there exists a constant � > 0 such that

I(t)I 00(t)� (1 + �)I 0(t)2 � 0;

provided that J(0) is large enough. We shall not give the detail here.

Next we consider the case where f(u; k(t)) = k(t)up on the boundary. In this

case, as the interpolation inequality is di�erent from the previous situation, we have

a di�erent inequality about p and n to ensure the existence of a global solution.

For simplicity, we again assume that

Z



u(x; t)dx = g(t) � t+m;

where m =

Z



u0(x)dx: It can be easily seen that the result will be valid for a

general bounded smooth function g(t) > 0; g0(t) > 0.

Consider the problem:

ut = �u for x 2 
; t > 0;
@u

@�
= k(t)up for x 2 @
; t > 0; (5.5)

u(x; 0) = u0(x) for x 2 
:

where

k(t) =
1Z

@

up(x; t)ds

:

We assume that u0(x) > 0 and u0(x) 2 C3(
). The compatibility is also

assumed:
@u0(x)

@�
=

u0(x)Z
@

u0(x)ds

for x 2 @
 :

Again the classical theory of parabolic equations implies the problem (5.5) has a

unique classical solution locally in time. Moreover, the strong maximum principle

implies that u(x; t) > 0 for x 2 
 as long as it exists.

Theorem 5.2: For 1 < p < (n � 1)=(n � 2), if n � 3, and 1 < p < 1, if

1 � n � 2, the problem (5:5) has a unique solution for all 0 � t <1.
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Proof: The proof is based the similar idea to that of Theorem 3.1. For any � > 0,

we multiply the equation by u� to obtain

� 1

� + 1

Z



u�+1dx
�
t
+

4�

4(� + 1)2

Z



���ru(�+1)=2���2dx =

Z
@

up+�dsZ

@

upds

: (5.6)

By H�older's inequality,

Z
@

up+�ds �

� Z
@

u(p+�)aqds

�
1=q� Z

@

u(p+�)(1�a)q

�

ds
�
1=q�

:

We choose, for n � 3 (in the case n = 1 or n = 2 we choose q to be large enough),

q >
n � 1

n � 2
; q �

n � 1

n � 2
� 1; (p + �)aq = (� + 1)

n� 1

n� 2
:

Then q� � n� 1, and (p+ �)(1� a)q� � (p� 1)(n� 1). Since (p� 1)(n� 1) < p,

we get

(p+ �)(1� a)q� < p:

Therefore Z
@

up+�dsZ

@

upds

� C
�Z

@

u(�+1)qds

�
1=q
:

If we de�ne v(x; t) = u(x; t)(�+1)=2, then by (5.6),

� 1

� + 1

Z



v2dx
�
t
+

4�

4(� + 1)2

Z



jrvj2dx � C
�Z

@

v

2(n�1)

n�2 ds
�1=q

: (5.7)

Now we use the following trace inequality (cf. [16]):

kwkLr(@
) � C
�
krwkL2(
) + kwkL2(
)

�
:

where

r =
2(n� 1)

n� 2
for n � 3; while r is arbitrary for n = 1 or 2:

Since q > (n� 1)=(n � 2), we obtain

� Z



v2dx
�
t
+

Z



jrvj2dx � C�

�Z



v2dx+ 1

�
:
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Using Gronwall's inequality, we have

� Z



u�+1dx
�
t
+

�Z
@

u(�+1)

n�1
n�2dx

�n�2
n�1

� C�;

sup
0�t�T

Z



u�+1(x; t)dx+
Z T

0

�Z
@

u(�+1)

n�1
n�2dx

�n�2
n�1

dt � C�;

(5:8)

where the constant C depends only on the known data and T . We �x � so that

� + 1 > n(p � 1), then by Theorem 1.1 in [12],

sup
0�t�T

sup
x2


u(x; t) � C: (5:9)

Thus by Theorems 7.1-7.2 in Chapter V of [13] (it is clear the assumptions (7.4){

(7.6) are satis�ed), we immediately obtain that

kukC1+�;(1+�)=2(QT )
� C;

for some � 2 (0; 1). This estimate implies that the function k(t)up is uniformly

bounded in the space C1+�;(1+�)=2. Consequently, we can use Schauder's estimate

to obtain

kukC2+�;1+(�=2)(QT )
� C:

With the above a priori estimates in hand, we can obtain the existence for 0 � t �

T , for any T > 0.

Remark 5.1: Similar to Theorem 3.2, the above argument works for the critical

number p = (n � 1)=(n � 2) provided inf
0�t�T

kukLp(@
)(t) is large enough, which

is the case if we assume that min
x2


u0(x) to be large enough. Global existence is

guaranteed in this case.

Remark 5.2: We conjecture that the solution of (5.1)-(5.2) will blow up in �nite

time if p > (n� 1)=(n � 2) and the initial value satis�es a certain condition.
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