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Abstract. This paper is concerned with a free-time optimal control problem for nonconvex-
valued differential inclusions with a nonsmooth cost functional in the form of Bolza and
general endpoint constraints involving free time. We develop a finite difference method for
studying this problem and focus on two major topics: 1) constructions of well-posed discrete
approximations ensuring a strong convergence of optimal solutions, and 2) necessary opti-
mality conditions for free-time differential inclusions obtaining by the limiting process from
discrete approximations. As a result, we construct a sequence of discrete approximations
with the strong convergence of optimal solutions in the W'2-norm. Then using the con-
vergenge result and appropriate tools of nonsmooth analysis, we prove necessary optimality
conditions for differential inclusions in the refined Euler-Lagrange form with a new relation

for an optimal free time.
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1. Introduction
In this paper we study problem (P) of minimizing the real-valued Bolza functional
J[z,T] = o(2(0),2(T), T) + /OT £t 2(t), &(¢))dt (1.1)
on trajectories for the compact-valued and Lipschitz continuous differential inclusion
i(t) € F(t,2(t)) (1.2)

over a varying time interval subject to general endpoint constraints on (z(0),z(T'),T). For
brevity, we shall refer to this problem as to a problem of Bolza with free time. If f = 0, then
(P) is said to be a Mayer free-time problem.

Such differential inclusion problems are natural generalizations of free-time problems in
both the calculus of variations and optimal control. The latter case corresponds to the

representation

Qt,z) ={g9(t,z,U)|ue U} (1.3)

with some vector function ¢ and set U which may depend on the time variable. Moreover,
the differential inclusion model (1.2) allows us to consider closed-loop control systems with
time-depended control regions U = U(z) in (1.3).

It is known even in classical settings that problems with free time have certain qualitative
and technical distinctions from corresponding fixed-time problems. Of course, fixed-time
problems can be considered as special cases of problems with free time. But usually results
for fixed-time problems can be easier obtained under more general assumptions about the
dependence on time variables.

On the other hand, in many situations necessary optimality conditions for free-time
problems may be derived from corresponding results for fixed-time problems under additional
regularity assumptions on the time-dependence of the data. Such transformation techniques
are widely used in the classical variational and control problems; see, e.g., [26].

To our knowledge, the first set of necessary optimality conditions for differential inclusions
with free time was published in Clarke’s book [11, Section 3.6]. Considering the autonomous

case for conver (this means convex-valued) differential inclusions, he obtained necessary
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conditions for a free-time Mayer problem by reducing it a fixed-time one and using the

so-called (true) Hamiltonian

H(z,p) := max{(p,v)| v € F(z)} (1.4)

which is a Lipschitz continuous function in the state variable  and the adjoint variable p.
Clarke established the Hamiltonian necessary conditions for an optimal solution {z(t), 0 <
t < T} in terms of his generalized gradients d¢ of Lipschitz continuous functions. These

conditions involve the Hamiltonian inclusion

(—p(t),2(t)) € OcH(z(t),p(t)) a.e. t €[0,T) (1.5)

with additional relations for (p(0),p(T),T) expressed in terms of the generalized gradients
of ¢ and endpoint constraint functions. If, in particular, ¢ and endpoint constraints do not

depend on free time 7', then Clarke’s conditions imply that
H(z(t),p(t)) =0 on [0,T]. (1.6)

The latter constancy relation is well known for the classical problems of optimal control where
it actually follows from the maximum condition in the Pontryagin maximum principle; see
[26, 46, 57].

The nonautonomous case can be easily reduced to the autonomous one if F' is Lipschitzian
with respect to both variables (¢, ). The case of merely continuous dynamics is more com-
plicated even if a standard differential equation formulation is adopted; see Berkovitz [3] for
smooth problems and Mordukhovich [34, 35, 37] for nonsmooth problems of optimal control
with free time. We refer the reader to the papers of Clarke and Vinter [13, 14], Clarke,
Loewen, and Vinter [15], and Rowland and Vinter [54] for studying as well as applications
of free-time and related optimization problems for convex differential inclusions with discon-
tinuous (in general measurable) time dependence. The mentioned papers contain necessary
optimality conditions of the Hamiltonian type generalized the results of [11].

Another version of necessary optimality conditions for convex differential inclusions was
developed by Mordukhovich first for fixed-time [33, 35] and then for free-time [39] Mayer

problems. In this version, the main differential relation is obtained in the following form (all



the results in the rest of this section are formulated only for autonomous systems):

(A(1), z(t)) € co{(u,v)| (u,p(t)) € N((2(t),v);gph F), (1.7)

v e M(z(t),p(t)} ae tc[0,T)

where ”co” stands for the convex hull and

M(z,p) := {v € F(z)| (p,z) = H(z,p)}. (1.8)

In (1.7), N is not Clarke’s normal cone but its nonconvez counterpart which was first
used in Mordukhovich [31] for obtaining transversality conditions in nonsmooth optimal
control problems. Now it is clear that this normal cone and the corresponding nonconvex
subdifferential 0 are, probably, the most convenient tools for describing transversality and
related conditions for dynamic optimization problems as well as necessary conditions in finite
dimensional nonsmooth optimization; see, e.g., [12, 22, 28, 29, 33-39, 52-54] and references
therein. We shall consider some properties of these objects in Section 4.

It is rather surprising that the dynamic relationships (1.5) and (1.7) appear to be equiv-
alent in the general framework of necessary conditions for convex differential inclusions.
This has been recently proved by Rockafellar [51] in the direction (1.5) = (1.7) and Toffe
(personal communication; see also [24, Section 3.5]) in the opposite direction.

Let us consider condition (1.7) and its further improvements in more details. First observe

that (1.7) implies for a.e. ¢t € [0,T] both the mazimum condition
(p(t), 2(1)) = H(z(t), p(1)) (1.9)
and an analogue of the Fuler-Lagrange inclusion in the form
p(t) € coful (u,p(t)) € N((2(1),v); gph F), v € M(2(t),p(t))}. (1.10)

Note that version (1.10) is, in general, independent of Clarke’s version of the Euler-

Lagrange inclusion [10]

(B(t),p(t)) € cl co N((2(t), z(t)); gph F); (1.11)



see examples in [29]. On the other hand, if the maximum set M(z(¢),p(t)) in (1.8) is a
singleton for a.e. t € [0,T] (in particular, when the sets F(z) are strictly convex along z()),

then (1.10) is reduced to the following refined form

p(t) € co{ul (u,p(t)) € N(((t),2(t)); gph F)} (1.12)

which obviously implies (1.11). Observe that the refined condition (1.12) requires less con-
vexification: only to the components involving derivatives of the adjoint function instead
of to all components at once. This makes (1.12) essentially stronger than (1.11) in certain
situations; see Remark 4.5 in Section 4.

It has been recently proved by Loewen and Rockafellar [29] that the general case of fixed-
time Mayer problems for convex differential inclusions can be actually reduced to the case
when the sets F'(z) are strictly convex along the optimal trajectory under consideration. In
this way, using the Hamiltonian analysis, they establish the refined condition (1.12) with no
single-valuedness assumption on the maximum set (1.8).

Note that in the convex-valued setting for F', the refined Euler-Lagrange inclusion (1.12)
automatically implies the maximum condition (1.9); see Proposition 4.6 stated below. There-
fore, it also implies the "fuzzy” inclusion (1.7) as well as the Hamiltonian inclusion (1.5),
and thus it appears to be the strongest result in this direction for convex problems.

The principal necessary conditions for differential inclusions considered above are ob-
tained under the convexity assumption on F(z) which is essentially used in their proofs.
What happens if the sets F(z) are no longer assumed to be convex? First note that in
this setting neither Clarke’s form (1.11) of the Euler-Lagrange inclusion nor the refined
form (1.12) implies the maximum condition (1.9). Could one ensure that these inclusions
themselves are necessary for optimality in nonconver problems?

The positive answer for the case of (1.11) can be found in Clarke’s paper [10] under the
calmness hypothesis imposed on a Mayer fixed-time problem. The latter hypothesis is a kind
of regularity (constraint qualification) assumption for problems with endpoint constraints
which ensures normality in transversality conditions; see Section 2 for more information.
Recently Kaskosz and Lojasiewicz [27] have released the calmness assumption proving that

Clarke’s form of the Euler-Lagrange inclusion holds for any boundary trajectory in nonconvex



differential inclusions.

We have considered fixed-time optimization problems for nonconvex differential inclusions
in the recent paper [43]. In that paper, we prove that the refined form (1.12) of the Euler-
Lagrange inclusion is a necessary condition for optimality in Mayer problems as well as for

boundary trajectories. Therein we also prove that the following analogue

p(t) € coful (u,p(t)) € AOf(2(), 2(t)) + N((2(t), z(t)); gph F)} (1.13)

of the refined Euler-Lagrange inclusion (1.12) with a multiplier A > 0 appears to be a nec-
essary optimality condition for fixed-time Bolza problems involving nonconvex differential
inclusions. The latter result (in contrast to those for Mayer problems and boundary trajec-
tories) is proved under a certain relazation stability assumption; cf. Section 2. The core of
our approach in [43] consists in using a method of discrete (finite difference) approzimations
together with appropriate tools of nonsmooth analysis.

The primal objective of the present paper is to extend the main constructions and results
of [43] to free-time Bolza problems for nonconvex differential inclusions. To the best of our
knowledge, such problems have never been considered in the literature and results for them
cannot be directly derived from those for fixed-time problems.

Here we pursue a twofold goal. First, to develop a discrete approximation approach for
free-time Bolza problems involving nonconvex differential inclusions. And second, to obtain
necessary optimality conditions in the refined Euler-Lagrange form (1.13) with an additional
characterization of the optimal time interval [0, T].

Discrete approximation techniques have been long time recognized as a powerful tool for
studying and solving infinite dimensional variational problems. This approach goes back to
Euler (1744) who used finite differences (broken lines) to prove the classical Euler-Lagrange
equation in the calculus of variations as well as for proving the existence of solutions to
differential equations.

In further applications, Euler’s finite difference method and its modifications are mostly
employed for computational purposes. There is a number of works devoted to numerical
aspects of discrete approximations for optimal control and differential inclusion problems. We

refer the reader to the recent papers of Dontchev and Lempio [19] and Polak [45] containing



surveys and new developments in this area; see also Dontchev’s contribution to this volume
[17].

Besides a numerical analysis of variational problems, consistent discrete approximations
provide a posibility to obtain qualitative (theoretical) results for infinite dimensional prob-
lems by passing to the limit in corresponding results for their finite dimensional approxima-
tions. For instance, in this way one can derive necessary optimality conditions for variational
problems using those in finite dimensional optimization. Such an approach may be successful
if it is possible

1) to construct "right” discrete approximations with appropriate convergence properties;

2) to derive "robust” necessary conditions in the finite dimensional optimization problems
obtaned; and then

3) to justify the convergence procedure in those optimality conditions.

Some implementations of this approach applied to optimal control and differential in-
clusion problems can be found in Mordukhovich [33, 35, 36, 39, 43], Pshenichnyi [47], and
Smirnov [56]. Observe that finite dimensional approximations for such problems always con-
tain many equality and/or geometric constraints arising from finite difference replacements
of differential relations.

Due to the natural presence of many geometric constraints, the finite dimensional prob-
lems obtained in this way appear to be objects of nonsmooth analysis and optimization
even for the case of smooth functional data in the original models. Moreover, to achieve
the purposes 2) and 3) stated above, they require to use only generalized differential con-
structions with special properties (or postulate such properties as in [47]). One can see that
our constructions in Section 4 just fit all the requirements. At the same time, other widely
spreaded constructions in nonsmooth analysis cannot be employed without some restrictive
assumptions; see, in particular, discussions in Remark 4.9.

Previous effords in using discrete aproximations to obtain necessary optimality conditions
for differential inclusions were mostly concerned with fixed-time Mayer problems under the
convexity assumption on F(z). In [39], we consider a free-time problem of Mayer with
convexity and formulate necessary optimality conditions grouped around the "fuzzy” Euler-

Lagrange inclusion (1.7). The recent paper [43] employs discrete approximations to prove



the refined Euler-Lagrange inclusion (1.13) for fixed-time Bolza problems in the nonconvex
setting.

In the present paper we develop a discrete approximation procedure for free-time Bolza
problems involving nonconvex differential inclusions. This procedure and the results obtained
have some essential distictions from the previous considerations.

To perform finite difference approximations for differential inclusion problems with free
time, we use the simplest uniform Euler scheme but on a varying time interval. This implies
that for each step of approximation, a discrete grid (stepsize) is variable and becomes a
subject to optimization. The latter requires more regularity with respect to the time variable
in order to prove necessary conditions involving optimal time.

In this way, we construct a sequence of discrete approximation problems (Px) with a
varying grid whose optimal solutions strongly converge in W'?-norm to a reference opti-
mal solution {Z(-), T} for the original Bolza problem (P) with general endpoint constrants.
Problems ( Px ) with discrete-time dynamics can be reduced to special static problems of non-
smooth optimizationin finite dimensions with many equality, inequality, and geometric type
constraints. Necessary optimality conditions for (P ) are directly derived from a generalized
Lagrange multiplier rule in nondifferentiable programming. Passing to the limit as K — oo
and using convergence results together with appropriate tools of nonsmooth analysis, we get
a set of necessary optimality conditions for the original nonconvex problem (P) with free
time.

In these necessary conditions, the differential relation is expressed in the form of the
refined Euler-Lagrange inclusion (1.13) for a.e. ¢ € [0,T] with additional relations for
(p(0),p(T),T) in terms of (nonconvex) subdifferentials of the cost function ¢ in (1.1) and
endpoint constraints. In the case when ¢ and endpoint constraints do not depend on T', the

relations obtained imply that

/O ! H(z(t), #(t), p(t), \)dt = 0 (1.14)

in terms of the so-called pseudo-Hamiltonian

H(z,v,p,A) := (p,v) — Af(z,v) (1.15)



of the Bolza problem (P) calculated on the optimal solution {Z(-), T} and the corresponding
adjoint pair {p(-), A}.
Note that in general nonconvex setting under consideration, the refined Euler-Lagrange

inclusion (1.13) does not imply the maximum condition
H(3(8),5(0), p(6),X) = H(z(2), (1), 3) i= max{ (p,) — Af(z,0)] v € F(x)}
for a.e. t € [0,T] as well as the constancy condition
H(z(t),p(t),\) = const on [0,T].

If the latter conditions hold, then (1.14) is reduced to (1.6) for the Hamiltonian H of the
Bolza problem. In general, (1.14) appears to be an independent integral condition in terms
of the pseudo-Hamiltonian (1.15) over the optimal time interval [0, T).

The remainder of the paper is organized as follows. In Section 2 we formulate the prob-
lem and consider the property of relaxation stability employed for obtaining the principal
results. Section 3 is devoted to constructing correct discrete approximations of the original
problem and proving the strong convergence of optimal solutions. In Section 4 we review
some concepts and results in nonsmooth analysis used in the paper. Section 5 is concerned
with necessary optimality conditions for discrete approximation problems. In Section 6 we
prove the main theorem about necessary optimalilty conditions for the differential inclusion
problem under consideration. In the concluding Section 7 we discuss some open questions
and further generalizations of the results obtained.

In this paper we basically use standard notation. Some special symbols are introduced
and explaned in Section 4. Thoughout the paper, the set B stands for the unit closed ball of
the space in question; the adjoint (transposed) matrix to A is denoted by A*. Note that we
consider all finite dimensional vectors to be vector-columns although they may be written

as vector-rows for the purpose of convenience.

2. Problem Formulation and Relaxation

Let us consider the following problem (P) of dynamic optimization with a varying time
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interval:
minimize J{z,T):= ¢o(e(0), (), 7) + | A 22, a(1))dt (2.1)
over all arcs z(-) € W10, T satisfying the differential inclusion
&(t) € F(t,z(t)) ae. t€[0,T) (2.2)

and the general endpoint constraints

vi(2(0),2(T),T)<0 for i =1, 2,...,q; (2.3)
©0i(2(0),z(T),T)=0 for i=q+1, ¢+2,...,q+r; (2.4)
(2(0),2(T),T) € Q C R*™. (2.5)

Here F is a set-valued mapping (multifunction) from R™**! into R™ and f, ¢; are real-valued
functions defined on R*"*!. We call problem (P) the Bolza problem for differential inclusion
with free time. If f = 0 in (2.1), then (P) is reduced to the corresponding Mayer problem
for differential inclusions.

Any solution z(-) € W' to (2.2) is called an (original) trajectory for the differential
inclusion, and any trajectory for (2.2) satisfying constraints (2.3)-(2.5) is called a feasible
solution to problem (P). A feasible solution z(¢), 0 <t < T, minimizing the cost functional
(2.1) over all other feasible solutions z(t), 0 <t < T', (with different T') is called an (original)
optimal solution to (P).

Along with problem (P), we consider its relazation (variational extension) which is defined
by the following way going back to the classical works of Bogoljubov and Young in the 30s;
of. [4,7, 21, 25, 57, 59]. Let

fr(z,v,t) := f(t,z,v) + 6(v, F(t,)) (2.6)
where §(v,A) = 0 if v € A and §(v,A) = oo if v ¢ A (the indicator function). Denote by

fF(t,x,v) the convezification (the biconjugate function) for fr in the v variable, i.e., the
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largest convex function majorized by fr(t,z,-) for each z and t. The relazed problem (R) is

defined as follows:

minimize J[z,T]:= wo(z(0),2(T),T) + /OT fp(t,a:(t),jc(t))dt (2.7)

over all arcs z(-) € W*[0,T] subject to constraints (2.3)-(2.5). Observe that if J[z, T] < oo,

then z(-) satisfies the convexified differential inclusion
&(t) € co F(t,z(t)) ae. t€[0,T]. (2.8)

Any trajectory for (2.8) is called an relazed trajectory for (2.2) in contrast to original
trajectories satisfying (2.2). It is well known (cf., e.g., [1, 7, 21, 25]) that under natural as-
sumptions involving the Lipschitz continuity of F'in z, the following approzimation property
holds:

FEvery relazed trajectory z(t), 0 < t < T, can be uniformly in [0,T] approrimated by
original trajectories xi(t), 0 < ¢t < T, starting from the same initial point (but may be not

satisfied endpoint constraints) such that

lim inf OT Ft, ap(t), 24x(t))dt < /0 ' Fr(t, z(t), 2(t))dt. (2.9)

k—c0
Probably the first result in this vein has been obtained by Bogoljubov [4] who proved such
a property for the classical problem of the calculus of variations (no differential inclusions).
The approximation property is related to the so-called "hidden convexity” of continuous-
time systems under consideration which is reflected (from an abstract viewpoint) by the
celebrated Lyapounov theorem about the range convexity of nonatomic vector measures [30]
(the same as the convexity of Aumann’s multivalued integral; see, e.g., [11, 26]).

The discussions above make natural the following definition.

2.1. DEFINITION. Denote by inf(P) and inf(R) the infima of the cost functionals
in problems (P) and (R) respectively. Then one says that (P) possesses the property of

relazation stability (or (P) is stable with respect to relazation) if
inf(P) = inf(R). (2.10)

Note that by virtue of the convexity with respect to velocities in the relaxed problem,

the infimum in (R) is attained under well known growth conditions of the Tonelli type; see,
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e.g., [12, 26]. This means the existence of optimal solutions to the relaxed problem which is
not the case for the original problem (P). On the other hand, the approximation property
allows us to obtain a minimizing sequence of original trajectories which, however, may mot
exactly satisfy the boundary conditions.

Obviously, we always have inf(R) < inf(P). To establish the relaxation stability, one
should prove the opposite inequality which is somehow connected with the approximation

property. Let us present a result in this direction going back to the classical Bogoljubov

theorem.

2.2. PROPOSITION. Let F' =0 in (P), and let the integrand f be continuous. Then (P)

is stable with respect to relaxzation and

F(t,2(0),3(0)) = (1, 2(0),35(0)) ae. £ € [0,T) (211)
for any optimal solution Z(t), 0 <t < T, to (P).

Proof. Assume that inf(R) < inf(P). Then there exist T' > 0 and a function z(-) €
W1°[0, T'] which satisfy all the constraints (2.3)—(2.5) and

0o(2(0),2(T), T) + /0 "t (1), #(1))dt < inf(P). (2.12)

According to the version of Bogoljubov’s theorem in [26, Section 9.2.4], for this z(-) we can
find a sequence of zx(-) € W*°[0,T] such that z4(0) = z(0), zx(T') = 2(T'), zk(-) converges
to z(+) uniformly in [0, T}, and (2.9) holds with fr = f. So, all zx(t), 0 <t < T, appear to
be feasible solutions to problem (P) in (2.1), (2.3)-(2.5) with

liminf I[zg, T] < inf(P)

k—o0

due to (2.9) and (2.12). This contradiction proves the relaxation stability of (P).
If z(t), 0 <t < T, is an optimal solution to (P), then by virtue of (2.10) it solves the

relaxed problem (R) as well. This ensures

/()T[f(t,y‘c(t),:'?:(t)) — f(t,3(t), 5(t)))dt = 0. (2.13)

;From the definition one always has

F(t, (), 3(t)) — f(t,%(t),%(t)) > 0 ae. t€[0,T).
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Therefore, (2.13) is equivalent to (2.11). O

2.3. Remark. Proposition 2.2 implies the corresponding result of Clarke [7, Theorem 1]
where f is assumed to be Lipschitz continuous in (z,v). As it was observed in [7], (2.11) is

the essence of the necessary condition of Weierstrass in the calculus of variations.

It follows directly from the approximation property stated above that the relaxation
stability is inherent in any problem (P) involving (Lipschitz) differential inclusions with
endpoint constraints at either ¢ = 0 or ¢ = T (one of the ends is free). In general, the
relaxation stability is clearly related to a kind of the value stability (regularity) of (P)
with respect to perturbations of endpoint constraints. Such a regularity condition has been
developed by Clarke and Rockafellar under the name of calmness; see [6-11, 50] and references
therein. As it has been proved in Clarke [7, 9], the calmness property implies the relaxation
stability and actually allows us to reduce problems involving differential inclusions to the
classical ones as in Proposition 2.2.

Moreover, the calmness property is fulfilled for most endpoint constraints (at least of
inequality type; cf. [6, 8]) and shows that the relaxation stability may fail only for ill-
posed problems where small perturbations of endpoint constraints produce proportionally
unbounded variations of the minimum (value function).

Note also that according to Clarke [9, 10], the calmness hypothesis implies that corre-
sponding necessary optimality conditions can be taken normal. A general result that nor-
mality tmplies relazation stability for optimal control systems has been obtained by Warga
[57, 58].

For special classes of problems (P) with arbitrary endpoint constraints, the relaxation
stability holds with no calmness or normality assumptions. In particular, let differential

inclusion (2.2) be represented in the linear form:
z(t) € Fi(t)z(t) + Fa(t)

where the multifunctions F} is convex-valued while F; is not. If, in addition, the function
f in (2.1) is convex in v, then any of such problems possesses the property of relaxation
stability. This can be proved by using the Lyapounov-Aumann theorem about the convexity

of set-valued integrals; cf. the arguments in Mordukhovich [35, Theorem 19.7]. Similarly,
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the relaxation stability holds for general problems (P) involving one-dimensional differential
inclusions; see Remark 19.2 in [35].
In the subsequent sections of the paper, we shall use the property of relaxation stability to

establish convergence results for discrete approximations and to obtain necessary optimality

conditions for differential inclusions.

3. Finite Difference Approximations

This section is devoted to constructing finite difference (discrete) approximations of the
original problem of Bolza for differential inclusions with free time and to establishing the

principal theorem about the strong convergence of optimal solutions to discrete approxima-

tions in the W1 2-norm.

In what follows we use the simplest uniform Fuler scheme

i(1) ~ z(t + h})L —z(t)

for the replacement of the derivative in (2.2). Note that most of the qualitative results
obtained below hold for many other first-order and higher-order finite difference approxima-

tions.

For any positive integer K =1 2,..., we consider a real number Tk approximating T'

and the uniform grid
t():O, tj+1 :t]—l-h}\ for ]:0, 1,,1(—1

with the stepsize hx = Tk /K (so tx = Tk). We define a discrete approzimation inclusion

as follows
:UK(tj_l_l) S :L'K(tj) + /?,KF(tj,:L'K(tj)) for y=0,1,...,K—1 (31)

with some initial state zx(0) = zox. A collection of vectors {z;x := 2k (t;)| j =0,..., K}
satisfying (3.1) is called a discrete trajectory for (3.1). The corresponding collection {v;x :=
(zx(tjip1) — zx(t;))/hk| j=0,..., K — 1} is called a discrete velocity.

14




We also consider piecewise-constant extensions of discrete velocities

Tr(tjy1) — i (L5 )
i (t) == I(”“i)m_ £) for 1 e [tjtiv1) & j=0,...,K —1 (3.2)

and the corresponding piecewise-linear extensions of discrete trajectories
¢
Tk (t) := zox +/0 vk (s)ds for ¢ € [0, Tk] (3.3)

to the continuous time interval [0, Tx]. We shall call (3.2) and (3.3), respectively, extended

discrete velocities and extended discrete trajectories for (3.1). It follows from (3.3) that
:ﬁK(t) = ’UK(t) a.e. t € [O,TA]

for extended discrete trajectories and velocities. So, given an extended discrete trajectory
rk(-), one can always identify the corresponding discrete velocitity with ().

Now let us fix arbitrary original trajectory z(t), 0 < ¢ < T, for the differential inclu-
sion (2.2) and formulate an important result about its strong approximation by discrete
trajectories. For this purposes, we assume that the multifunction F' is bounded and locally
Lipschitzian in z around z(-) and it is Hausdorff continuous in ¢ a.e. on [0, T]. In the sequel
we actually need these assumptions and the result only for the case when z(t), 0 <t < T,
is an optimal solution to the initial problem (P).

More precisely, we impose the following hypotheses:

(H1) There are an open set U C R" and positive numbers mp, { such that z(t) € U for
any t € [0, 7], the sets F(t,z) are closed for all (¢,z) € [0,T] x U, and

F(t,z) C mpB Y(t,z) €[0,T] x U, (3.4)

F(t,z,) C F(t,xq) + lp|zy — 22| B V1,22 € U, t €[0,T). (3.5)

(H2) The multifunction F(-,z) is Hausdorff continuous for a.e. ¢ € [0,7] uniformly in
zeU.

Following Dontchev and Farkhi [18], we consider the so-called averaged modulus of conti-
nuity for the multifunction F(¢,z)in ¢t € [0,T] when z € U. This modulus 7(F; h) depending

on the parameter A > 0 is defined as
T
T(F';h) ::/ o(F;t,h)dt (3.6)
0
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where o(F;t,h) := sup{w(F;t,z,h)|z € U},

w(F;t,z, h) = sup{haus(F(t',z), F(t",2))| t',t" € [t — h/2,t + h/2) N[0, T]},
haus(+,-) is the Hausdorff distance between compact sets.

It is proved in [18] that if F'(-,z) is Hausdorff continuous for a.e. t € [0,T] uniformly
inz € U, then 7(F;h) — 0 as h — 0. Moreover, 7(F;h) = O(h) if F(-,z) has a bounded
variation [18] uniformly in € U (in particular, if F' is Lipschitz continuous in ¢ with a
uniform Lipschitz constant).

Note that in the case of single-valued bounded functions f(¢) not depending on z, the
construction (3.6) has been originally developed in Sendov and Popov [55] under the name
of "averaged modulus of smoothness”. It has been proved in [55] that 7(f;h) — 0 as h — 0
if and only if f is Riemann integrable on [0,T], i.e., f is continuous for a.e. t € [0,7T]. If f
is of bounded variation on [0, 7], then 7(f;h) = O(h). In this paper we shall use the name
"averaged modulus of continuity” for both single-valued and multi-valued cases.

Now we formulate an auxiliary approximation result which is of independent interest for

qualitative and numerical aspects of discrete approximations.

3.1. LEMMA. Let (t), 0 <t < T, be an original trajectory for the differential inclusion
(2.2) under hypotheses (H1) and (H2). Then there exists a sequence of solutions {zn(t;)| j =
0,...,K} to discrete inclusions (3.1) with Ty = T such that zx(0) = z(0) for any K =
1, 2,..., and the extended discrete trajectories zx(t), 0 <t < T, converge to Z(-) as K — oo
in the norm topology of W“2[0,T).

Proof. The complete proof of this result can be found in Mordukhovich [43]. The main
idea is related to the so-called prozimal algorithm to construct discrete trajectories for (3.1)
by using projections of the derivative z(t) on the admissible velocity sets F(t;, zx(t;)); cf.
(35, 36, 56]. In this way, we establish the strong L2[0, T]-convergence of the extended discrete
velocities zx (+) to z(-) with effective error estimates. The latter estimates involve the bound-
edness and Lipschitz constants mp and [p in (3.4), (3.5) as well as the averaged modulus of

continuity (3.6). O

Now let z(t), 0 <t < T, be a given optimal solution to the original problem (P) for the
differential inclusion (3.1) satisfying (H1) and (H2) around Z(-). Because of U in (H1) is an
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open neighborhood of z(¢) for all ¢ € [0,7], one can find a number € > 0 such that
B(z(t)) c U Vte[0,T). (3.7)

Using Lemma 3.1, we construct a sequence of discrete approximation problems for finite
difference inclusions whose optimal solutions strongly W'2-converge to the given to the
given trajectory z(-).

For any K =1, 2,..., we consider the numbers

QK = go,-(:i(O),zK(T),T) — go,-(:E(O),:z‘:(T), [') for i =1,...,q; (3.8)
Bix := |@i(2(0), 25 (T), T)| for 1 =q+1,...,q+r; (3.9)
vi = |Z(T) — 2k (T)) (3.10)

where 2 (t), 0 <t < T, is the extended discrete trajectory from Lemma 3.1.
According to this lemma, yx — 0 as K — oo, and also a;x, Bixk — 0 as K — oo when
the functions ¢; are continuous in the second variable at the point (z(0),z(T),T). It follows

directly from (3.8)-(3.10) that

IaiK|§li’)’K for iZl,...,q & ﬂ,’]{ﬁli’)’]{ for i:q—l—l,...,q+r

if the corresponding functions ¢;(Z(0),+,T") are Lipschitz continuous around z(7") with con-
stants /;. Note that the number v in (3.10) can be effectively estimated in terms of the
initial data of the problem; see [43].

Now for each K = 1, 2,..., we define the discrete approzimation problem (Pg) as follows:

minimize Jx[zx, Tk := vo(zx(0), 2k (Tk), Tk) + |zx(0) — 2(0)]* + (T — T)*+ (3.11)

K-1 Tx t — K t: K-1 G+1 pn(t; — 2t .
e 3 S (), L= G > [ sl = o) sp)par
.7:0 L ]: "\

over trajectories {zx(¢;)| j = 0, ..., K} for the finite difference inclusion (3.1) subject to the

constraints

wilzg(0), 25 (Tk), Tk) < aji for v =1,...,¢; (3.12)
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—Bix < pi(zk(0),2x(Tk), Txc) < Bixx for i=q+1,...,q+r; (3.13)
(zr(0),2x(Tk), Tk) € Q = Q4+ vk B; (3.14)

zx(t;) € B(z(t;)) Vj=0,....,K; Tpx <T+e¢ (3.15)

where € satisfies (3.7) and € is a given (arbitrarily small) positive number.

Let us emphasize that in each problem (Px) the final time Tk and the discretization step

hyi are variable for any fixed K =1, 2,....

We assume that the multifunction F' satisfies hypotheses (H1) and (H2) along the given

optimal solution #(-) for ¢ € [0, T +¢]. In addition to this, we impose the following hypotheses
on f, ¢;, and €

(H3) f(-,z,v) is continuous for a.e. ¢ € [0, + €] and bounded uniformly in (z,v) €
U x (mFB)

(H4) There exists v > 0 such that the function f(¢,-,-) is continuous on the set
A,(t):={(z,v) €U x (mp+v)B|v € F(t',z) for some t' € (t — v,t]}

uniformly in ¢ € [0, + ¢].

(H5) The functions g, @1, - - ., @, are lower semicontinuous on U x U x [0,T + €] being
continuous in the second variable at (2(0),z(T),T).

(H6) The functions @gy41,- .-, @q4r are continuous on U x U x [0,T + €]

(H7) The set Q is closed around (2(0),z(T),T).

3.2. THEOREM. Let z(t), 0 <t < T, be an original optimal solution to problem (P)

which possesses the property of relazation stability. Assume that hypotheses (H1)—(HT7) hold.
Then:

(i) The discrete approzimation problems (Px) admit optimal solutions {Zk(t;)| j =

0,...,K} for all K large enough.

(ii) For any sequence of extended optimal trajectories {Tr(t), 0 <t < Tk} in (Pg) one

has

Tk = T as K — oo, (3.16)
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max{|ZTx(t) —Z(t)|: t €Tk} -0 as K — oo, (3.17)

Ty | .
Alﬁﬂﬂ—i@ﬁ#eOaSK—wn (3.18)

Proof. First let us show that the discrete approximation problem (Px) has a feasible
solution for any K large enough. In fact, we check that the trajectory {zx(¢;)| j = 0,..., K}
constructed in Lemma 3.1 satisfies all constraints (3.12)—(3.15). For the case of (3.12)~(3.14),
it immediately follows from the definitions of the perturbations ek, Bik, and vy in (3.8)-
(3.10).

According to Lemma 3.1, the extended trajectories zx(t), 0 < t < T, converge to Z(t)
uniformly in [0, T]. Now taking any e satisfying (3.7), one can find a natural number K such
that

lzi(t) — z(t)] < e VK > K.
Therefore, we ensure (3.15) for zx () when K > K. Now the existence of optimal solutions
to (Px) for K > K follows directly from the classical Weierstrass theorem due to the
compactness and continuity assumptions made. This proves assertion (i).

To prove (ii), let us start with establishing the inequality

limsup Ji[Zr, Tx] < J[z, T (3.19)

K—oo

for any sequence of optimal solutions to (Pg). If (3.19) is not true, then there is a sequence

N of natural numbers K — oo such that

@o(2(0),z(T),T) + /OT ft,2(t),z(t))dt < Jg[zg,Tx) VK € N. (3.20)

To get a contradiction from (3.20), let us again use Lemma 3.1 and consider an approximating
sequence of the discrete trajectories {zx(t;)| j =0,..., K; Tx = T} which are proved to be
feasible for (Pg). By virtue of zx(0) = z(0) and the continuity of ¢g in the second variable,
one has

wo(zk(0), 2 (Tx ), Tk) — ¢0(2(0),2(T), T) as K — oo.

Observe that in the cost functional expression (3.11) for zx(-), the second and third terms

vanish. For the last term therein we get

gil /tf“ |ZIx'(tj+1) . {U)
- t; hK

T
—ﬂm%:/IQ@—Tm%—Wa&Kﬁm
0
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by virtue of the extension rules (3.2), (3.3) and the convergence result in Lemma 3.1.
It remains to estimate the forth term in (3.11). Let us prove that

K-1

2i (T, z\
e 1= hoe Y £(t (), ZEZI) T a0 )t as i - oo

§=0

under assumptions (H1)-(H4). Note that (H3) implies that 7(f; hx) — 0 as K — oo for the

averaged modulus of continuity (3.6).

In what follows we use the sign ”"~” for expressions which are equivalent as K — oo.

Due to (3.2), (3.3), (3.6), and Lemma 3.1, one gets

K-1 K-1

t1+1 ti+1
nA—Z/ Pty 2x(L3), 2 (1)) dt ~ Z/* tozwe(ty), 2x(8)dt + 7(f; hc) ~

K-1

/tt’“ t,2(t), 25 (t))dt = /ft:v ), 2xc(8))dt ~ /Tf(t,:?:(t),:é(t))dt_

0

To justify the last conclusion, we observe that the strong L2[0, T- convergence of zx(-) — Z(:)
in Lemma 3.1 implies the existence of a subsequence {zx(t)} converging to z(t) for a.e.
t € [0,7]. Now one can employ the classical Lebesque theorem about the limit under the
integral sign.

Thus we have proved that
ij-[zhf-,T] — J[2,T] as K — oo.

By virtue of (3.20) and the feasibility of zx(-) for (Px), this contradicts the optimality of
Tk(-) for the discrete approximations under consideration. Therefore, we ensure (3.19).

In the discussions above we have heavily used Lemma 3.1 but have not yet used the
property of relaxation stability for the original problem (P). Now let us prove that the
relaxation stability property together with result (3.19) imply the desirable convergences

(3.16)—(3.18). We are going to show that

lim [6x := |25 (0) — Z(0)[? + |Tx — T|? + /OT |5 (1) — &(1)[2d1] = 0. (3.21)

K—o0

Suppose that (3.21) doesn’t hold and consider any limiting point é6 > 0 of the sequence

{6k} in (3.21). For the purpose of simplicity, we assume that § = lim éx for all K — co.
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Using the boundedness of Tk by virtue of (3.7), one can find a real number 7' < T + ¢
such that Tx — T as K — oo (here and on we take all natural K without loss of generality).
Let us consider the extended discrete trajectories Zx(t) on the time interval [0, 7] defining
Ti(t) = zx(Tk) for t € (TK,T] when Tk < T.

Taking into account the boundedness conditions (3.7) and (3.4) for t € [0,7'] and em-
ploying the classical compactness results, we claim the existence of an absolutely continuous
function #(t) in [0, T] such that Zx(-) — #(t) uniformly in [0, 7] and Zx(-) — &(-) weakly in
L2[0,T] as K — oo. Due to assumptions (H5)~(H7), the limiting function &(¢), 0 < ¢ < T,
satisfies endpoint constraints (2.3)—-(2.5). Now we study the limit of the cost functional
JK[:EK,TK] in (3.11) as K — oo.

According to the well-known Masur theorem, there is a sequence of convex combinations
of Zx(-) which converges to :E() in the norm topology of Lz[O,T]. Hence it contains a
subsequence converging to Z(-) for a.e. t € [0, 7).

From here one can easily conclude that #(-) satisfies the convexified differential inclusion

(2.8). Moreover, taking into account that

b S Sty ot ol = onlb)) " (3 (8), B (0)dt a5 K — oo

and also the definition of the convexified function fr for (2.6), we get

[ K-1 = (4. s (.
/O C et 3(0), 30)dt < liminthre 3 f(t;, 2k (t)), . (t’“})m g (“)). (3.22)

Let us observe that

K=l rtinn Zpe(tin) — z2r(t;) . T . . T . .

3 / o 2altin) Z2(l) g opyeg - / e () —a()|2dt ~ / i (1) —2(1)2dt as K — oo.
— Jt; hg 0 0

By virtue of the convexity in v of the function g(v,t) := [v — z(¢)|?, the integral functional

I[o] := /OT lo(t) — &(1)[2dt

is lower semicontinuous in the weak topology of L?[0, T] Therefore.

7. : K zr(tip) — 2x(t;) -
/ [&(t) — 2(t)dt < liminf 3 & ( J“])z zrlt) z(t)|2dt. (3.23)
0 {—00 j=0 K
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Now passing to the limit in (3.11) for Jx[Zx, Tx] and taking into account (3.22), (3.23),

and the lower semicontinuity of g, one has
~ ~ = jod T r ~ o S
0o(#(0), #(T), T) + /0 Fr(t,#(8), #(8))dt + 6 < lim inf Jx[ex, Tyl (3.24)
By virtue of (3.19) and our assumption about § > 0, (3.24) implies that
J&,T) < J[z,T).
But the latter is impossible because
J(z,T] = inf(P) = inf(R)

due to the relaxation stability property for (P). Therefore, § = 0 and we get relationship
(3.21).
The relationship obtained directly implies (3.16), (3.18), and the convergence Zx(0) —

z(0) as K — oo. The latter and (3.18) provide (3.17). This ends the proof of the theorem.
O

3.3. Remark. Denote by Jx the optimal value of the cost functional in the discrete

approximation problem (Pg) for each K = 1, 2,.... We have actually proved in Theorem
3.2 that
inf(R) < lkm inf Ji < limsup Jg < inf(P) (3.25)
- K—o0

with no assumption about the relaxation stability. Moreover, (3.25) implies that the relaz-
ation stability property for (P) is in fact equivalent to the value convergence Jx — inf(P)
of the discrete approximations under appropriate perturbations of constraints. We refer to
Mordukhovich [32, 35, 36] and the recent book of Dontchev and Zolezzi [20] for related

properties and discussions in other problems of optimal control.

3.4. Remark. In the convergence results stated above, one may avoid the continuity
hypothesis (H3) on f in ¢ by changing the approximation
K-1

hx Iil f(tj, zx(t;), exltiv) — xK(tj)) for Z /:jﬂ f(t, zx(t), Tr (L) — JJK(tj))'

o hx hx
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Indeed, we can handle the latter approximation in the same way as the last term in (3.11)

under the measurability (summability) assumption f in ¢. On the other hand, one can change

K—-1

tit1 ¢ (1 K-1 (1.
Z/ + :cI J+1h :c;\(]) ()|2dt for hy Z |5CI\ ]+1) $Iﬂ(ta) —i’(tj)|2

K hI\"

assuming that Z(-) is continuous for a.e. ¢ € [0,T]. These two kinds of approximations are

treated by different techniques from the viewpoint of necessary optimality conditions; cf.

[43] and Section 5 below.

3.5. Remark. The convergence results obtained in this section allow us to make a bridge
between variational problems for differential inclusions with free time and dynamic optimiza-
tion problems in finite dimensions. The latter can be reduced to special finite dimensional
problems of mathematical programming; see Section 5. In this paper we develop this pro-
cedure to obtain necessary optimality conditions for the original variational problem (P) by
passing to the limit in corresponding necessary conditions for finite dimensional optimization
problems (Pk).

Note that the convergence results in Theorem 3.2 ensure that optimal solutions to prob-
lems ( Pk ) belong to the interiority of the constraints in (3.15). Therefore, from the viewpoint
of necessary conditions, constraints (3.15) can be omitted without any loss of generality. In

what follows we shall always consider problems (Px) with no constraints (3.15).

3.6. Remark. Problems (Pg) and equivalent problems of mathematical programming
always have many geometric constraints arising from the approximation of differential inclu-
sions. Such problems appear to be objects of nonsmooth analysis and optimization.

For the variational analysis of these problems and then for passing to the limit in neces-
sary optimality conditions as K — oo, we need to use generalized differential constructions

with special properties which are the subject of the next section.

4. Generalized Differentiation

In this section we briefly review some constructions and results on the generalized differ-

entiation of nonsmooth and set-valued mappings which are widely employed in the paper.
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Most of these results with detailed proofs and discussions can be found in Mordukhovich
(35, 40, 41]. We also refer the reader to Clarke [12], loffe [22-24], Loewen [28], Rockafellar
[48, 52], and Rockafellar and Wets [53] for related and additional material.

Developing a geometric approach to the generalized differentiation, we begin with the
definition of a normal cone to arbitrary sets in finite dimensions.

Let Q be a nonempty set in R"™, and let
I(z,Q) :={w e Q| |z —w|=dist(z,Q)}

be the (multi-valued) Euclidean projector of = on the set cl Q. In the following definition,
"cone” stands for the conic hull of a set and ”Limsup” denotes the well-known Kuratowski-

Painlevé upper limit for multifunctions, i.e., the collection of all limiting points in their values

(see, e.g., [2, p. 41]).

4.1. DEFINITION. Given z € cl 2, the closed cone
N(z;9) := Limsup,_,;[cone(z — I(z,Q))] (4.1)

is called the normal cone to the set Q at the point z. If z ¢ cl 2, we put N(z;) = 0.

This definition of the normal cone first appeared in Mordukhovich [31] motivated by
applications to optimal control problems. The normal cone defined (or equivalent construc-
tions) are widely used in the literature, sometimes under different names: the ”approximate
normal cone” [22], the "cone of the limiting proximal normals” [48], the ”prenormal cone”
[12], the "limiting normal cone” [28, 29, 54], etc.

If Q is convex, then (4.1) is reduced to the normal cone of convex analysis. In general, the

normal cone (4.1) is frequently nonconvez and its convex closure coincides with the Clarke

normal cone
Neo(z;9) = cl co N(z;9) (4.2)

which is the dual (polar) construction to Clarke’s tangent cone [11]. Furthemore, (4.1) always

admits the representation

A

N(z;Q) = Limsup,_,; N (z; Q)
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where the cone

A * / —
N(z;9) == {z* € R"| limsup 222 —2)
m'(EQ)—>:1; |$ _ l'l

<0} for z €clQ (4.3)
appears to be dual to the well-known Bouligand contingent cone; see, e.g., [2, Chapter 2].

Observe that our basic normal cone in (4.1) is not dual to any tangent cone because it is
not convex, except situations where all three normal cones (4.1)- (4.3) coincide at z. (The
latter fails in many important settings, e.g., for sets £ which can be locally represented as
graphs of nonsmooth Lipschitz continuous functions; see Remark 4.5.)

Despite its nonconvexity, the normal cone (4.1) possesses many nice properties essential
for applications. First, it is always robust with respect to perturbations of z, i.e., the mul-
tifunction N(-,) has closed graph. What is really surprising a priori, that this nonconvex
normal cone and related differential objects enjoy rich calcult which is even better than ones
for convex-valued counterparts; see below. The progress in this direction has been achieved
by using a variational approach instead of convex analysis.

Now we consider generalized differentiation constructions for multifunctions and nons-

mooth mappings induced by the normal cone (4.1) to their graphs. The following notion was

first introduced in [33].

4.2. DEFINITION. Let F' be a multifunction from R"™ into R™ which graph
gph F:= {(z,y) e R* x R"|y € F(z)}

is nonempty, and let (Z,7) € cl(gph F). The multifunction D*F'(z,y) from R™ into R"
defined by

D*F(z,9)(y") == {z* € R"| (2%, —y") € N((z,7); gph F)} (4.4)

is called the coderivative of F' at (z,y). We put D*F(z,5)(y*) = 0 if (z,y) ¢ cl( gph F).
The symbol D*F(z) is used in (4.4) when F' is single-valued at z and § = F/(Z).

One can see that the coderivative D*F(z,y)() is a positive homogeneous multifunction
with closed values. These values may be not convex by virtue of the nonconvexity of (4.1).

Therefore, the coderivative (4.4) is not dual to any tangentially generated derivative of mul-

tifunctions (see, e.g., [2, Chapter 5]).
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Let us present two useful representations of the coderivative (4.4) in the following classical

settings.

4.3. PROPOSITION. Let F be single-valued around z and strictly differentiable at  with
the Jacobian VF(z) € R™" i.e

°)

lim F(z) — F(2') — VF(z)(z — 2')

z,x'—ZT 'CC — :I,‘/’

=0.

Then one has

D*F(z)(y") = {(VF(z))'y*} Yy* € R™.

4.4. PROPOSITION. Let F' be a multifunction of convex graph. Then for any point
(z,y) € cl(gph F) and for any y* € R™ one has

D*F(z,y)(y") = {«" € R"| (z",2) — (y",9) = ( ?;IphF[<x*,x> — ("}

4.5. Remark. Note that in both cases considered above the coderivative (4.4) coincides
with the Clarke coderivative D F'(Z,y)(-) which is obtained in the scheme (4.4) by replacing
the normal cone (4.1) with its Clarke’s counterpart (4.2). However, this is not longer true
for a broad class of multifunctions whose graphs are nonsmooth Lipschitzian manifolds in
the sense of Rockafellar [50], i.e., they are locally homeomorphic around (z,y) to graphs
of nonsmooth Lipschitz continuous functions. Besides locally Lipschitzian vector functions,
this class includes maximal monotone relations, in particular, subdifferential operators for
for convex, concave, and saddle functions; see [50].

Indeed, for such multifunctions the coderivative (4.4) is always strictly smaller that its
Clarke’s counterpart; moreover, they may be distinguished in dimensions. (We refer the
reader to [42, Section 3] for more details and related discussions.) That is is why the refined
form of the Euler-Lagrange inclusion in (1.12) involving the coderivative (4.4) is essentially

stronger than Clarke’s one (1.11) involving Dg F'.

Let us consider some general properties of the coderivative (4.4) which are useful in

the framework of this paper. First we note that it is a robust construction with respect

26



to perturbations of the data (Z,%,y*. The next result (35, Theorem 3.1] shows that the
considered Euler-Lagrange conditions for differential and discrete inclusions automatically
imply the maximum (minimum) conditions in problems with convex velocities. In what

follows, we use a conventional concept of lower (inner) semicontinuity for multifunctions;

see, e.g., [2, p. 39].

4.6. PROPOSITION. Let F' be convex-valued around T and lower semicontinuous at .

Then one has

[D"F(z,5)(y*) # 0] = [{y",9) = min{(y",y)| y € F(a)}].

One of the most important advantages of the coderivative (4.4) in the general setting
consists in effective using this construction for complete dual characterizations of Lipschitzian
properties of multifunctions and nonsmooth mappings. These results play a crucial role to
justify the convergence of adjoint functions in necessary optimality conditions for discrete
approximations; see the proof of Theorem 6.1 in Section 6.

Recall that the multifunction F' is said to be pseudo-Lipschitzian around (z,y) € gph F'
if there is a neighborhood U of Z, a neighborhood V of 4, and a constant [ > 0 such that

F(z)YNV C F(z) + ]2’ — z|B Vz,2' € U. (4.5)

This definition goes back to Aubin who imposed the additional condition F(z)NV # )
for all z € U; see [2, Definition 1.4.5]. Rockafellar [49] obtained some characterizations of
the pseudo-Lipschitzian property and established its interrelations with other Lipschitzian
properties of multifunctions. Note that the pseudo-Lipschitzian property of F' appears to be
equivalent to such fundamental properties as metric regularity and openness at linear rate

for the inverse mapping F'~'; see Borwein and Zhuang [5], Penot [44], and Mordukhovich

[40] for various modifications.
The next dual characterizations were obtained in Mordukhovich [38, Theorem 5.1] and

[40, Theorem 5.7]. Moreover, therein one can find formulae for calculating the exact bound

of Lipschitz moduli [ in (4.5).
4.7. PROPOSITION. Let F' be a multifunction from R"™ into R™ whose graph is closed
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around (z,7). Then the following are equivalent:
(a) F' is pseudo-Lipschitzian around (z,7);

(b) there exist a neighborhood U of %, a neighborhood V of y, and a constant [ > 0 such
that

sup{[z”] : 2" € D" F(z,y)(y")} < ly*| (4.6)

foranyxz € U, y € F(z)NV, and y* € R™;
(c) D*F(z,y)(0) = {0}.

If F'is locally bounded around Z, then its classical (Hausdorff) Lipschitzian behavior
(V = R™ in (4.5)) is equivalent to F' being pseudo-Lipschitzian around (z,y) for every
y € F(z); see [49]. Therefore, we get dual criteria for the classical local Lipschitz continuity

of multifunctions.

4.8. COROLLARY. Let a closed-graph multifunction F be locally bounded around the
point T where F'(Z) # (. Then the following are equivalent:

(a) F is locally Lipschitzian around 7;

(b) there are a neighborhood U of Z and a number | > 0 such that estimate (4.6) holds
foranyx € U, y € F(z), and y* € R™;

() D*F(z,5)(0) = {0} Vg € F(z).

4.9. Remark. If one replaces the coderivative (4.4) by its Clarke’s counterpart in the
"null-criteria” (c) of Propositions 4.7 and 4.8, then the conditions obtained are far removed
from the necessity for F' to possess the Lipschitzian properties. Indeed, they are never fulfilled
even in the case of single-valued Lipschitz continuous functions which do not happen to be
strictly differentiable at z (and also in more general settings with nonsmooth Lipschitzian
manifolds in Remark 4.5). In fact, the condition DEF(z,7)(0) = {0} implies a "strictly
smooth” property of multifunctions whose graphs are Lipschitzian manifolds; see [42, 50].
So, one cannot ensure an analogue of the basic estimate (4.6) in terms of D} for such

nonsmooth multifunctions.

Now let us consider some calculus rules for the coderivative (4.4) and related differential

constructions which are valid under natural assumptions and appear to be of great impor-
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tance for applications. The proofs of the following and other calculus results based on an

extremal principle for systems of sets can be found in Mordukhovich [41].
4.10. PROPOSITION. Let Fy and Fy be closed-graph multifunctions from R™ into R™,
and let j € Fy(Z) 4 F5(Z). Assume that the multifunction S from R™™ into R2™ defined by
S(z,y) :==A{(y1,92) € R*™|y1 € Fi(x), y2 € Fa(z), yi +y2 =y}

is locally bounded around (z,y) and the qualification condition

D*Fi(2,41)(0) N (= D" Fy(&,2)(0)) = {0} V(y1,92) € S(z,79) (4.7)

is fulfilled. Then for any y* € R™ one has

D*(Fi+ )z, 9))c U [DF(E5)") + D" Fy(2,3:)(y")]
(v1,92)€5(2,9)

where equality holds if either Fy or Fy is strictly differentiable at Z.

Observe that according to Proposition 4.7, the qualification condition (4.7) is automati-

cally fulfilled if for each (y1,y2) € S(z,y) either Iy is pseudo-Lipschitzian around (z,y,) or
F3 is pseudo-Lipschitzian around (Z,ys).

The next calculus result is concerned with general chain rules for the composition

(Go F)(z)=G(F(z)) := U G(y)

yEF ()

of multifunctions F' from R” into R™ and G from R™ into RY.

4.11. PROPOSITION. Let F' and G be closed-graph, and let z € (G o F')(z). Assume
that the multifunction

(z,2) = F(z) N G7(z) = {y € F(2)| z € G(y)}
is locally bounded around (z,%) and the qualificaltion condition
D*G(y,2)(0) Nker D*F(z,y) = {0} Vy € F(z)N G '(2) (4.8)
is fulfilled. Then one has

D*(G o F)(%,%) C U  [D*F(z,y) o D*G(y,z)]

YEF(Z)NG~1(2)
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where equality holds in each of the following cases:
(i) F' is strictly differentiable at T with the quadratic (n = m) and nonsingular Jacobian
matriz VF(Z);

(ii) I is single-valued and Lipschitz continuous around & while G is strictly differentiable

aty = F(z).

Note that according to criterion (c) in Proposition 4.7 and the inverse criterion for the
(local) metric regularity in [40, Corollary 4.3], the qualification condition (4.8) is automati-
cally fulfilled if for each y € F'(z) N G~1(2) either G is pseudo-Lipschitzian around (y,z) or
F is metrically reqular around (z,y).

These major calculus results implies some other calculus rules for the coderivatives of
multifunctions and associated constructions of the first and second order subdifferentials for
extended-real-valued functions f : R* — R = [00,00]; see [35, 41]. Now we consider some

results for the (first order) subdifferentials of such functions important in what follows.

4.12. DEFINITION. Let |f(z)| < oo, and let

Es(z) :={p e Rl p = f(z)}
be the epigraphical multifunction (gph E; = epi f) associated with f. The set
af(z) := D" Eg(z, f(2))(1) = {z" € R*| (¢*, —1) € N((z, f(2));epi f)} (4.9)
is called the subdifferential of f at z. We put df(z) = 0 if | f(Z)| = oo.

The subdifferential (4.9) has been studied in details in the book of Mordukhovich [35]
and previous publications starting from [31]. There are various analytic representations of
(4.9) in terms of other subdifferential mappings named Dini, Frechét, viscosity, proximal
subdifferentials, etc. We refer the reader to [12, 16, 22, 28, 35, 52, 53] for more information
about these and related questions. Therein construction (4.9) is often used in some equivalent
forms under different names (e.g., the approximate subdifferential, the presubdifferential, the
set of limiting proximal subgradients or basic subgradients).

Note that for functions f : R® — R lower semicontinuous around Z, the subdifferential

(4.9) can be expressed directly in terms of the coderivative (4.4) for f:
9f(z) = D" f(z)(1),
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i.e., (epi f) in (4.9) can be replaced by (gph f); see [35, Proposition 2.1].
On the other hand, if f : R™ — R™ is a vector function Lipschitz continuous around

z, then the coderivarive of f can be expressed in terms of the subdifferential (4.9) for its

Lagrange scalarization:
D*f(2)(y") = 8(y*, f)(z) Vy* € R™
where (y*, f)(z) := (y*, f(z)); see proofs and comments in [22, Section 5] and [35, Section
3].
For the case of real-valued Lipschitz continuous functions we have the following well-

known results (see, e.g., [12, Propositions 1.1 and 1.2] and [35, Theorem 2.1]).

4.13. PROPOSITION. Let a real-valued function f be locally Lipschitzian around & with
modulus [. Then:
(i) 9f(2) #0 & |z*| <1 Va* € 0f(2);

(ii) one has
Jcf(z) = co 0f(z) = co{ lim Vf(z,)| f is differentiable at z, — %, z, ¢ S}

for the generalized gradient of Clarke, where S is arbitrary set of measure zero.
It is easy to see that
N(z;9Q) = 06(z,Q) if z€Q

for the indicator function of the set 2. We shall also use another representation of the normal
cone (4.1) in terms of the subdifferential (4.9) for the Lipschitz continuous distance function

dist(-, ). The following result is proved in [35, Proposition 2.7].

4.14. PROPOSITION. For any nonempty set 1, one has
N(z;9) = cone[ddist(z, Q)] if z € cl Q.

Various calculus results for the subdifferentials (4.9) and the normal cones (4.1) can be
easily deduced from the coderivative results stated above; cf. [41]. A number of calculus
rules for (4.1) and (4.9) have been proved in [12, 22, 28, 35, 38, 53] (see also references
therein) by using different but somewhat close variational approximations. In this paper we

employ the following simple corollary of Proposition 4.10.
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4.15. PROPOSITION. Let fi and f; be extended-real-valued and lower semicontinuous

functions one of which is Lipschitz continuous around . Then one has
I f1+ f2)(z) C 0fi(2) + 0fo(%). (4.10)

Moreover, (4.10) becomes an equality if either fy or f, is strictly differentiable at z.

5. Nonsmooth Optimization in Finite Dimensions

In this section we study nonsmooth optimization problems in finite dimensions and obtain
necessary optimality conditions by using generalized differentiation constructions in Section
4. First we consider a broad class of mathematical programming problems with many in-
equality, equality, and geometric type constraints. We provide necessary conditions for such
problems in the form of a generalized Lagrange multiplier rule. Then we employ this result
for studying the finite difference problems (Pg) with a variable stepsize (varying discrete
time interval) approximating the differential inclusion problem (P) with free time. We de-
rive necessary conditions for the discrete approximation problems in a refined Fuler-Lagrange
form with no convezity in the original and/or adjoint inclusions.

For our purposes of applications to dynamic optimization problems like (Px), we need to
consider mathematical programming problems with many geometric constraints, nonsmooth
inequality constraints, and smooth equality constraints.

Given real-valued functions ¢;, n-vector-valued functions g;, and sets A; in the space

R¢, we formulate the mathematical programming problem (M P) as follows:

minimize ¢o(z) for z € R? subject to (5.1)
$i(z) <0 for 1 =1,...,s; (5.2)

gi(z) =0€R" for 7 =0,...,m; (5.3)
z€Aj for y=0,...,L (5.4)
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5.1. PROPOSITION. Let z be an optimal solution to problem (MP). Assume that the
functions ¢; are Lipschitz continuous, the functions g;j are smooth, and the sets A; are closed
around z. Then there exist real numbers {u;| ¢ =0,...,s} as well as vectors {; e R"| 5 =

0,...,m} and {zF € R4 j =0,...,1}, not all zero, such that

z; € N(z;4j) for 7=0,...,1 (5.5)

pi >0 for 1=0,...,s; (5.6)

pidi(2) =0 for t=1,...,s; (5.7)

e —ae a(gm z j:j V4i(2)) ;. (5.8)

Proof. This proposition follows from general necessary conditions in nondifferentiable
programming proved in Mordukhovich [33, Theorem 1] and [35, Corollary 7.5.1] on the ba-
sis of the so-called metric approrimation method. This method allows us to approximate
the nonsmooth constrained problem (M P) by a special parametric family of smooth uncon-
strained minimization problems and then to get necessary conditions (5.5)-(5.8) by passing
to the limit in the classical Fermat stationary rule. In such a way, we obtain more gen-
eral results in the presence of nonsmooth equality constraints, vector objective functions,

non-Lipschitzian data, etc.; see [35, Chapter 2]. O

Now let us reduce the discrete approximation problems (Pg) in (3.11)—(3.14) to the
(MP) form (5.1)—(5.4). For any fixed K =1, 2,..., we consider the following minimization

problem with respect to variables § > 0 and (zo,21,...,zx) € RE+I™,

minimize @o(zo, x,0) + |20 — 2(0)|> + (0 — T)*+ (5.9)
K-1 K- (j+1)6/K )
(1K) S, 160185, (K 0 ess =)+ 3 [y 01000 =) =0

subject to the constraints

T €z + (0/K)F(j0/K,x;) for j =0,...,K —1; (5.10)
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vi(To, 2k, 0) < aiic for 1 =1,...,¢; (5.11)
—Bix < pi(zo, 2, 0) < Big for i =q+1,...,q+T; (5.12)

(:CO, :L'K,O) EQr =0+ vk B (513)

where Z(t), 0 < t < T, is the considered optimal solution to the original problem (P) and
(ak, Br,vK) are the defined constraint perturbations in (Pgk).

One can easily see that for each K = 1

, 2,... problems (Pg) and (5.9)-(5.13) are

equivalent by virtue of the following correspondence between decision variables:
{zk(t;), Tx} «— {z;,0} for 7=0,..., K. (5.14)
For convenience, let us introduce the auxiliary variables
y;j = (K/0)(xj41 — ;) for y=0,..., K - 1.

Now problem (5.9)—(5.13) (and, therefore, (P )) can be rewrited in the equivalent form

(5.1)—(5.4) with respect to variables z = (xo,...,ZK,%0,..-,yK-1,0) € REE+)n+1 o5 follows:

minimize @o(2) := @o(To, K, 0) + |zo — 2(0)|* + (6 — T)*+ (5.15)
K— K-1 J+1)9/I\ . )
(0/K) ;: 0/ K m3,3) + Lo s = e
subject to

¢i(2) :== pi(zo, i, 0) —ig <0 for i =1,...,¢; (5.16)

bi(2) := pi(zo,2K,0) — Bix <0 for 1 =g+ 1,...,q+7; (5.17)

bryi(2) = —pi(@o, 2, 0) — Bix <0 for e =q+1,...,9+7; (5.18)

gi(2) =zjp1 —x; — (0/K)y; =0 for j=0,..., K -1 (5.19)

€A i={(z0,...,yx_1,0) € REETIH |y e F(jO/K,z;)} for j=0,...,K —15(5.20)
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z € Ak == {(2o,...,yx-1,0) € REFFI™H| (0 2 0) € Ok ). (5.21)

Obviously, (5.15)-(5.21) is a problem of mathematical programming in the form (5.1)-
(5.4) where d = 2K +1)n+1, s = ¢+2r, m = K — 1, and | = K. Moreover, the
real-valued functions ¢;, the smooth vector functions g;, and the sets A; have special struc-
tures. Now one can employ Proposition 5.1 to obtain necessary optimality conditions for the
dynamic optimization problem (Pg) taking into account the special nature of (5.15)-(5.21)
and calculus rules for the generalized differentiation constructions in Section 4.

For simplicity, in the following theorem we deal with autonomous systems where F' and f
do not depend on the time variable. Moreover, to avoid technical complications and taking
into account applications in Section 6, we focus on the case when the derivative z(-) of the
reference optimal solution to (P) is Riemann integrable on [0,T], i.e., continuous for a.e.

t € [0, T]. The general case of Z(-) € W'*[0,T] will be discussed in Remark 5.5.

5.2. THEOREM. Let {Zx(-), Tk} be an optimal solution to problem (Pk) of autonomous
dynamics where Z(-) is Riemann integrable on [0, Tk]. Assume that the functions ¢; and f
are Lipschitz continuous and the sets Q and gph F are closed around {Zx(-),Tx}. Then
there exist real numbers {\i| i =0,...,q+r} and a discrete n-vector function {px(¢;)| j =

0,...,K}, not all zero, such that

Xik >0 for 1=0,...,¢; (5.22)

)\Z‘K((p,'(f[{(()),f?[((TK),TK) — ai]() =0 fOT‘ 1=1,...,¢; (523)

Tr(tjiv1) — Tx(t;)

pr (tiv1) — pr (1))
( hi

hi

Aok _
, P (tj41) + ——hO] pik) € Mox0f(ZK(t;), )+ (5.24)
K

T 4 t - :i‘( t .
N (@), 2= ZE D i ) for =0,k =1

(i (0) + 2ok (2(0) — 2 (0)), —px(Tx), Hi + 2Xox(T = Tx) + doxex) € (5:25)

q+r B _ _ _
" ki) (@ (0), zx(Tk), Tk) + N((zx(0),zx(Tx), Tx); k)
1=0
where
hi =Tk/K; t;:=jhg for j=0,..., K (tg = Tk); (5.26)
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1 &  Zxltin — T (t; _ Tr(tis1) — T (t;
Hici= o X prltin) i) = 2ell)y o fage(ry), i) = (b)) oy

h[( hK
tiyr Tr(t; e
piK = 2/ (z(t) — x(tin) = Trelts ))dt for 3=0,...,K —1; (5.28)
t; h]\" ’
K-1 : - -
L J 0 Zk(Gin) = Tx(ty) - v G+ 1D Zx(tin) — Ex(t) -
ox = 3 P =) g - U Dl 2 ), (5.

Proof. Let z = (Zo,..., %K, ¥0,---,¥K-1,0) be an optimal solution to the mathemat-
ical programming problem (5.15)-(5.21). According to Proposition 5.1, there exist real
numbers {y;| ¢ = 0,...,¢ + 2r} as well as vectors ¢»; € R™ (j = 0,...,K — 1) and
25 1= (g5 > Thps Ujos - - -5 ik -1, 0%) € REEAL (5 — (.. K), not all zero, such that
conditions (5.5)—(5.8) are fulfilled for the initial data in (5.15)-(5.21). Note that these yu;, ¥,
and z} as well as the solutions z depend on K but here we omit the index ” K for simplicity.

Without loss of generality one can always suppose that B;x > 0forz = ¢+1,...,¢+r and
all K =1, 2,.... Then the complementary slackness conditions (5.17) and (5.18) obviously
imply that

Wi pryi =0 Yo=qg+1,...,9+T.

Denoting
Noi=p; for 1=0,...,9 & N:=pi—ppyi for 1=q+1,...,q+m,

we get conditions

A\ >0 for i =0,...,9 and (5.30)
)\i(goi(ifo,:f](,é) - OziK) =0 for e =1,...,¢q (5.31)
ensuring that {\;| 7 = 0,...,¢ + r} are not equal to zero simultaneously with {v;| j =

0,...,K —1} and {23 j = 0,..., K}.
Now let us express condition (5.8) in terms of the initial data in problem (5.15)-(5.21).
From the structure of (5.15)-(5.18) and the calculus rule in Proposition 4.15 one has

q+2r q+r
8(2 1) (Z) C a(z Xigi)(Z) + M0C(2) + NoOE(2)+ (5.32)
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2(Mo(Zo — 2(0)),0,...,0,A(0 — T))

where
0 K-1
((Z) = C(CE(), <o KL Y0y - - YK -1, 0) = ? Z f(flf'j, yj), (533)
7=0
K-1 J+1)0/I\ )
(=) = Elense s 201, 0) = 3 [ (1), (5.34)
=0 JielK
It is easy to see that
q+r q+r 3
AN (2) = {uo,0,...,ux,0,9)| (uo, ux,?) € 00> Niwi) (%o, Tk, 0)}, (5.35)
=0 1=0

1]&1

06(2) = {(vo, -+, VE-1, W0, - -+, WE-15 75 Z F(@5,9,)| (vj,w;) € 0f(%5,7;)}.  (5.36)

Next let us consider the function ¢ in (5.34). This function is obviously differentiable
in the (z,y) variables. Moreover, under the Riemann integrability assumption on z(-), this
function is also differentiable in §. The latter follows from a variant of the fundamental
theorem of the classical calculus where an integrand may not be continuous but admits a
primitive and takes all the intermediate values of its range.

Now using the classical formulae for the differentiation under the integral sign and with

respect to varying integral limits, one gets

Ve;€(2) =0 for j=0,...,K; (5.37)
Vy,€(2) =& = 2/:_]/;1)5/}{(% —z(t))dt for 7=0,...,K — 1; (5.38)

_ e T R
VoE(E) = €= 3 (g — (G DO/EOP - Ligs — #GO/KOR. (539)

Note that to justify (5.39) one needs to assume the one-sided continuity of z(-) at the points
jO/K for j =0,...,K — 1 (otherwise, we should take z(-) at points nearby). But this does

not restrict generality as K — oo due to the procedure in (6.18).
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Next let us compute the vectors (Vg;(z))*s; for g; in (5.19). For each j = 0,..., K — 1,

we have the following expressions

(Va;95(2))"%5 = =5, (Va0 0i(2))%5 = b5, (Vargi(2))5 =0 if k#j;  (5.40)

( ng]( ))*1/)1 = (é/]{)@ij ( kg]( ))*"/"J =0 if k# j; (5'41)
1 K-1
(Vags D)o =~ 3 (5,3 (5.42)

Thus we have calculated the left-hand side of (5.8) for the data in (5.15)-(5.19). To

represent the right-hand side of (5.8), we observe that conditions (5.5) for the sets A; in
(5.20) and (5.21) are equivalent to

(235, 95;) € N((25,9;);8ph ) & (5.43)

]k_y]k—()lfk#j, Vi=0,...,K —1;

(250, Ther) € N((Zo,%r); k) & 2}; = yk; = 0 otherwise. (5.44)

Now putting all the calculations (5.32)—(5.44) together in Proposition 5.1, one gets the

equalities: B
0
gk — 2o = o + 2Xo(Zx — #(0)) + v — o3
Aol . ,
—xi; = Io(vj—i-zp]l Yp; for y=1,..., K —1;

* .
—*x[\"[\" = UK + ?1[)1\"—17

Ao 9 .
—y;-‘j:%wj—}zd)j+/\oﬁj for 7=0,...,K —1;
K-1 1]\ -1 3 B
0—19'*'_2][55]73/] Z<¢J7yj>+2)‘0(0_T)‘|‘)‘O§0

where ¢; and &y are defined in (5.38) and (5.39),
g+r B
(uo, urc,¥) € DD Mowi)(Zo,Zx,0), and

1=0

(vj,wj) € df(z;,y;) for j = 0,..., K —1.
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Thus denoting

Po := Tk + to + 2A0(Zo — £(0)) & pj =9y for j=1,... K,
we obtain the following necessary conditions for the solution (Zoy -y ZK, Yo, - -y JK-1,0) to
problem (5.15)~(5.21): there are real numbers {\;| i = 0,...,q + r} and n-vectors {p;| j =

0,..., K}, not all zero, such that one has (5.30), (5.31), and
((K/0)(pivr = pi)s pivr — (MoK /0)E;) € Xodf (75, (K/0)(Tj41 — 2;))+ (5.45)

N (@5, (K/0) (3531 — 7)) ph F) for j=0,... K — 1;

I

(po + 2X0(Z(0) — Zo), —pK, 2X0(T — 0) — Eo)+ (5.46)
K-1 gt
% §[<Pj+17 (K/0) (41 — Z;)) — Xof(Z;,(K/0)(Zj41 — 75))]) € 3(i Xipi)(Zo, Zx, 0).

Now let {Zx(-),Tx} be an optimal solution to the discrete approximation problem (Px).
Using correspondence (5.14), one gets an optimal solution (Zo, ..., Zx,0) to problem (5.15)-
(5.21) for which the necessary optimality conditions (5.30), (5.31), (5.45), and (5.46) hold.
For any fixed K in these optimality conditions, we mark the dependence of the multipliers
A; on K and set

pr(t;) :=p; for y=0,..., K
taking (5.26) into account. Then conditions (5.30), (5.31), (5.45), and (5.46) turn into the
necessary optimality conditions (5.22)—(5.25) for the problem (Pg ) under consideration. This

ends the proof of the theorem. O

5.3. COROLLARY. In addition to the assumptions of Theorem 5.2, let us suppose that
the multifunction F' is pseudo-Lipschitzian around (Zx(t;), (Zx(tj+1) — K (t;))/hx) for each
j=0,...,K —1. Then conditions (5.22)~(5.25) hold with (Xok,. .., Aetri, P (Tk)) # O.

Therefore, one can set

_ q q+7
|pK(TK)| + Z Ak + Z l)\iI\'" =1VK=1,2,... (547)
1=0 1=q+1

Proof. If Mo = 0, then (5.24) is represented as

((ti41) — Pr(; * k(i) — Tx(l '
Pl J+1;L prc(ls) € D*F(zk(t;), oal Hli)” - ]))(—PK(th)) for 7 =0,..., K 1
K <
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in terms of the coderivative (4.4). Now using criterion (c) in Proposition 4.7, one gets that

pK(TK) = 0 implies pg (¢;) = 0 for all j = 0,..., K — 1. This proves the corollary. O

5.4. Remark. From Theorem 5.2, one can easily obtain necessary optimality conditions
for nonautonomous problems ( Py ) using a standard reduction to the autonomous case with

respect to a new state variable z = (¢,z). The extended finite difference inclusion for z is

written in the form

Z[{(t]url) c ZK(tj) -|- h[(ﬁ(zl\"(t]‘)) fOI‘ ] = 0, ey ]( —1
where F'(z) := (1, F(z)).

5.5. Remark. If the time Tk is fixed in problem (Pr), then 0 is fixed in the equivalent
problem (5.9)-(5.13). In this case we do not need the assumption about the Riemann
integrability of Z() in the proof of Theorem 5.2 and its applications in Section 6 which work
for any z(-) € W; cf. [43]. The only place where we use the Riemann integrability of z(-)
in the latter proof is the differentiability of function (5.34) in the 6 variable.

In the general setting when z(-) € W', the function ¢ in (5.34) is Lipschitz continuous in
its variables jointly being differentiable at almost all points. Moreover, one can compute the
gradients of ¢ at the points of differentiability according to the classical results. This allows
us to use effectively the construction of Clarke’s generalized gradient and its connection with
the subdifferential (4.9) for estimating the impact of the term (5.34) to the conditions of
Theorem 5.2.

It follows from (5.34) and Proposition 4.15 that

0¢(2) C 0bo(2) + -+ + 0bx-1(Z) (5.48)
where
(J+1)0/K )
5.7(2) = 63(1507,@\»3/0,,?/3—179) = /]0/;1 \yj —i(t)|2dt (549)

for j =0,...,K — 1. By virtue of Proposition 4.13(ii) one has
9¢;(2) C 0cé;(z) = cof lim Vé&(2,)] & is differentiable at z, — Z}. (5.50)
where the last expression is invariant to ”"excluding sets of measure zero”.

40



Now let us calculate the partial derivatives of i at z, = (zoy, ..., Txy, You, - . ., YK—1v,0,)

for any j = 0,..., K — 1. From (5.49) one obviously gets

Ve éi(2)=0(s=0,...,K) & Vyli(2,) =0(s=0,...,K —1; s #7); (5.51)

- (+1)6, /K .
wéi@) =2 [ (= (1)), (5.52)
Moreover, we can compute
v ) _ J + o . . 1 0 (2 L ) 2. N\ 2
o6i(2) = Ty = 3G+ DO K = Ly — (10, K (5.59)

at almost all 2, where ; is differentiable. Thus using (5.48)~(5.53), we obtain

0€(2) C (Vaol(2),- -, Vare(2), Viol(2), . .-, Ve £(2), Co(2)) (5.54)
where V; £(Z) and V,,£(Z) are expressed in (5.37) and (5.38) while
K-1
Col2) 1= 3= col im (i + 1lg; = (0 + DO/ 155 = 20/ K)PI). (5.5

(Note that similarly to Clarke [11, Example 2.2.5], one can express the convex hulls of the
limiting points in (5.55) in terms of the essential supremum and essential infimum of the

functions
nix(0) == (G + 1)|g; — 2((G + 1)0/K)|> = jly; — 2(j0/K)|* for j=0,...,K —1

at 0 = 0).
Now coming back to the notation of problem (Pg), we provide necessary optimality

conditions in form (5.22)—(5.28) where instead of equality (5.29) for px one has the inclusion

1 B fIx"(t?H) - 331{@?‘) D) . C_CK(tG'H) — flﬂ'(tq)
1 L — (4 1y P 2 (5.56
ox € 3 eof i P ()~ (54 DIFEEEE - (550

Tr(t ]H)I 1} with t0 :=j0/K for j=0,...,K — 1.

From (5.56) one can conclude that o — 0 as K — oo when z(-) is Riemann integrable
n [0,7]; cf. the arguments in (6.18). The question is about such a conclusion in more

general settings for problems with non-fixed time.
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6. Necessary Conditions for Differential Inclusions

In this section we prove necessary optimality conditions for the original Bolza problem
(P) with free time by passing to the limit in the necessary conditions obtained above for
its discrete approximations. The following two circumstances are most important in this
procedure:

1) the strong W' 2-convergence of discrete optimal solutions proved in Section 2; and

2) robustness of the generalized differential constructions and the dual differential charac-
terization of the Lipschitzian behavior of multifunctions in Section 4 ensuring the convergence
of the adjoint arcs in optimality conditions.

Note that the collection of generalized differentiation properties we need is inherent in
objects of Section 4 but not in other known generalized differential constructions.

Now we obtain necessary optimality conditions for problem (P) in the refined Euler-
Lagrange form. Using Theorem 5.1, we assume in what follows that the derivative z(-) of
the optimal trajectory under consideration is Riemann integrable on [0,7]. First we deal

with the autonomous case when F' and f do not depend on t.

6.1. THEOREM. Let Z(t), 0 <t < T, be an optimal solution to the autonomous problem
(P) which possesses the property of relazation stability. In additition to (H1) and (H7), we

assume that the functions @; are Lipschitz continuous around (%(0), z(T),T) and the function

f is Lipschitz contunuous with modulus l; around any point of the set
A:={(z,v) eR™|z €U, veF(z)}. (6.1)

Then there exist real numbers Mo, . . ., Agr and an absolutely continuous function p : [0,T] —

R™, not all zero, such that
Xi>0 for 1=0,...,q (6.2)
Xigi(2(0),2(T), T)=0 for i=1,...,¢q; (6.3)

p(t) € coful (u, p(t)) € odf(2(t),2(1)) + N((2(t),2(t));gph F) a.e. t€[0,T];  (6.4)
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q+r

(p(0), —p(T), H) € 5’(ZA #:)(2(0),2(T), T) + N((2(0), 2(T), T); ) (6.5)

where

= = / ~ Do f(2(t), #(1))]dt. (6.6)

Proof. Let us consider a sequence of discrete approximations (Pr) in (3.1), (3.11)~(3.14)
and a sequence of optimal solutions {Z(-),Tx} to (Pk) which converges to {Z(-),T} in
the sense of Theorem 3.2. Now using the necessary optimality conditions for {Zx(-),Tx} in
Theorem 5.2, we find sequences of real numbers {\;x|i = 0,..., ¢+r} and discrete n-vector
functions {px(t;)| j = 0,..., K}, satisfying (5.22)-(5.29). Due to Corollary 5.3, one can
always impose the normalization condition (5.47).

We shall consider the piecewise-linear extensions Zx(t) and px(t) of the corresponding
discrete functions on the continuous-time intervals [0, Tx] according to (3.2) and (3.3). We
also denote

pi(t) == pjx [hx for t € [t;,tj41), 7=0,...,K —1

where the numbers p; are defined in (5.28). PQne can see that

K-1 K-1

ti+1 ; t .f\"t'
[ lox(olat = REL) S e L TR (L)

TI\
2/ ) —zg(t)|dt -0 as K — oo

by virtue of Theorem 3.2. Considering (if necessary) the piecewise-constant extensions of
Zr(t) and pk(t) on the interval [0, T] and using the classical results, we can suppose without

any loss of generality that
Zx(t) — 2(t) and px(t) =0 ae. t€[0,T] as K — oo. (6.8)

Now let us obtain an estimate of the adjoint arcs px (-) for large K which appears to be a
crucial point of the proof. According to the adjoint discrete inclusion (5.24) and Definition 4.2
of the coderivative D* F', one can find vectors (v;x,w;x) € 0f(Zx(t;), (T (tjs1) —Zr(t;)/hK)
such that

(tine) — prc(t; o Frc(tine) — Txe(ts
= J+1i)L prells) Mok € D*F(x(t;), = ( ]H;LK ol ]))(/\OK%‘K* (6.9)
K .
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/\OKPjK/hK — p[((t]‘+1)) for ] = 0, Ce ,]( — 1.

By virtue of the Lipschitz continuity of F' around Z(t) with modulus /p in (3.5) and due

to the uniform convergence zx(-) — Z(-), we employ Corollary 4.8 in (6.9) and provide the
estimate

pr(tip1) — pr(t))
l J hK 27 /\oK'UjK| S lFl)\OI\‘"LUjK - )\oKij/hK — pk(t]'+1)| (610)

for j=0,..., K —1 when K is large enough. Taking into account that Aok € [0,1], one gets

from (6.10) the following recurrent sequence for pg(t;):
pre(t5)] < (1 + b)) Ip (L) + b (Jvjxe | + Iplwjk]) + Uelpjxc | (6.11)
for y =0,..., K — 1. Now observe that

Tr(tip) — Tr(t;)
hK

(T (t;), JEA for j=0,...,K -1

and all large K, where the set A is defined in (6.1). So we can employ Proposition 4.13(i)

and obtain the estimates
| <lf & |wik| <1y Vj=0,...,K —1 and large K (6.12)

in terms of the Lipschitz modulus [; for the function f in our assumptions. From (6.11),

(6.12), and |px (Tk)| < 1 due to (5.47), one gets

lprc ()] < (1 + hrelp)lpr (tj0)| + hrclg(1 + p) + lp|pj| < -+ < (6.13)
K-1
(1 + IFTA/[X’)A =+ T{(lf(l + lF) + g Z |ij| Vy=0,...,K -1
7=0

when K is large enough. Taking into account (6.7) and
Tk =T & (1+1pTx/K)* — exp[lrT] as K — oo,

we establish the uniform boundedness of {px(t)} on [0,Tk] as K — oo.
Then employing (6.10) and (6.12), one gets the estimate of the extended adjoint velocities
Pi (t) as follows:

(tji+1) — pr ()
hx

e (1)) = |EX | < 1y 4 le(ly + |pr(8)] + [pre(ti1)]) for t; <t < tjp. (6.14)
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Without loss of generality, we can consider px(t) on the interval [0, T using, if necessary,
the piecewise-constant extension on [Tk, T]. By virtue of (6.7), (6.13), and the classical
compactness criterion, estimate (6.14) implies that the sequence {px(t)} is weakly compact
in L'[0,T]. Therefore, one can find an absolutely continuous function p:[0,T] - R” such
that px(-) — p(-) uniformly in [0, 7] and px(-) — p(-) weakly in L'[0,T] (as usual we take
all K =1, 2...).

Now we carry out the limiting process in the necessary optimality conditions of Theorem
5.2. Passing to the limit in (5.22) and (5.23) and taking into account that a;x — 0 as
K — o0, one easily gets the sign and complementary slackness conditions (6.2) and (6.3)

respectively. Taking the limit in (5.47), we provide the normalization condition

_ q q+r
(D) + > X+ > [Nl =1 (6.15)
1=0 i=q+1
which ensures that Ag,..., A4, and p(-) are not equal to zero simultaneously. Employing

the limiting procedure in (6.13), we can actually conclude that if p(tg) = 0 at some point
to € [0,7T], then p(t) = 0 in the whole interval [0, 7.
Let us pass to the limit in the discrete Euler-Lagrange inclusion (5.24). Using our

continuous-time notation, we represent (5.24) in the following equivalent form:
pr(t) € {u € R (u, pr(tit1) + doxp(t)) € Ao 8f(Tx (), 2(t))+ (6.16)

N((zr(t),z(t));gph F)} for t € [tj,tj), j=0,..., K1

Employing the classical Masur theorem, we find a sequence of convex combinations of
functions pi(t) on [0,T] which converges to p(t) for a.e. ¢ € [0,T]. Now passing to the limit
in (6.15) as K — oo and using (6.8) as well as the robustness of the subdifferential 9f(-) and
the normal cone N(-;gph F'), we establish the differential Euler-Lagrange inclusion (6.4).

It remains to prove the endpoint inclusion (6.5) which combines tranversality conditions
on (p(0),p(T)) with an additional condition on the optimal time interval [0, T]. First let us
consider the left-hand side of (5.25) as K — oo. Obviously

(pr(0) 4 220k (2(0) — 25 (0)), —px(Tk), 2Xox (T — Tx)) — (p(0), —p(T), 0). (6.17)
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Considering gk in (5.29) and using (3.2), (5.26) as well as Riemann integrability of z(-)
and 7(z, f) — 0 when h — 0, one has

K-1

ex = e 2 [ ote) = 3t 1) [ o) — i~ (619

J
1[\1

J7+1 2 1 Tx . .
/t ik (t) — #(8)[2dt = 7o (D) —EOPd -0 as K - o

by virtue of the convergence (3.18) in Theorem 3.2.
Now let us evaluate Hx in (5.27). Using (3.2), (5.26), and the convergences (3.16)—(3.18),
(6.8) as well as pg () — p(-) uniformly in [0, 7], we get

K-1 t;+1
e = 7 3 [ Ut Ex(0) = dos F(@(t), 3] ~ (6.19)
K-1 t]+1 .
T1'A = /t Ph -'EI\ )) - /\OI\"f(jI\"(t),-TI\ dt] - *_/ pIx ))
o f(Zx (), G5 (1)) dt] — / [{p( — Aof(Z(t),#(1))dt] := H as K — oo

due to the classical Lebesque limiting theorem.

Finally let us consider the limit of the right-side expression in (5.25). First we note that

q+r qt+r _
Limsupk—_}ooa(z )\i}{goi)(.’f[((()), Tx (T Z /\2‘101 .’f) T) T) (620)
=0

due to the robustness of the subdifferential (4.9). Then observe that the set Qf in (3.14) is

represented in the form
Qx = {(20, 2K, T) € R*| dist((z0, 5, T), Q) < vk }. (6.21)

Thus the geometric constraint (3.14) can be reduced to an inequality constraint with a
Lipschitz continuous function. Now using Proposition 4.14 if (2x(0),zx(Tk),Tx) € Q and
just the definition of the normal cone (4.1) if (J:K(O),:?:K(TK),TK) ¢ Qin (6.21), we get

LimsupK_,ooN((SEK(O), f[((T[{), T]{); Q[{) = N((.’E(O), f(T), T), Q) (6.22)
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Putting together relationships (6.17)-(6.20) and (6.22) we obtain the endpoint inclusion
(6.5) by passing to the limit in its discrete counterpart (5.25). This ends the proof of the

theorem. O

6.2. COROLLARY. In the assumptions of Theorem 6.1, let the functions ¢; and the set
2 do not depend on the T variable. Then one has all the conclusions of the theorem with
changing (6.5) for

qgtr
(p(0), —p(T)) € O(D_ Xiwi)(2(0),2(T)) + N(2(0),%(T)); Q) and (6.23)

1=0

[ 1030 = X (a0, (01 = . (6:21)

Proof. This immediately follows from (6.5) and (6.6) under the additional assumption

made. O

6.3. Remark. The integrand
H(t) == (p(t), 2(t)) — Ao f(2(t),2(t), 0<t<T, (6.25)

in (6.6) and (6.24) is the pseudo-Hamiltonian of the Bolza problem (P) calculated on the
optimal solution {z(-),T} and the corresponding adjoint pair {p(-),Ao}. If we have the

Weierstrass-Pontryagin mazimum condition in the problem under consideration, then
H(t) = max{ (p(t),0) — dof(3(1), )} ae t € [0,T], (6.26)

i.e., the values of the pseudo-Hamiltonian (6.25) coincides with the corresponding values of

the (maximized) Hamiltonian
H(z,p, Ao) := max{(p,v) — Ao f(z,v)| v € F(z)}

along optimal processes. The latter always holds (actually it follows from the Euler-Lagrange
condition (6.4)) for convez problems (P) when the sets F'(x) are convex and the function f
is convex in the v variable.

Moreover, it is well known that for classical autonomous problems in the calculus of

variations and optimal optimal control the pseudo-Hamiltonian (6.25) is constant:

H(t)=c on [0,T] (6.27)



where ¢ = 0 if endpoint constraints do not depend on 7. An analoque of the constancy
relation (6.27) for the maximized Hamiltonian H is proved by Clarke [11] in the framework
of his Hamiltonian conditions for Mayer problems involving convex differential inclusions.
One can easily see that in the case of (6.26) and (6.27), the number H in (6.5) and (6.6) is
equal to the value of the Hamiltonian at any point ¢ € [0, T]. In the general nonconvex setting

of Theorem 6.1, the number H appears to be the averaged value of the pseudo-Hamiltonian

on the optimal interval [0, T7.

6.4. Remark. It is essential in Theorem 6.1 that {Z(-),T} is a feasible solution to the
original nonconver problem (P) but not to its relaxation. Indeed, the Euler-Lagrange in-
clusion (6.4) for (P) may be different from its counterpart for the relaxed problem (R). It
happens because the normal cone to the graph of F' and to the graph of its convex hull are

not the same (as well as the subdifferentials for f and f]")

Theorem 6.1 provides necessary optimality conditions in the Bolza problem (P) for au-
tonomous differential inclusions with the property of relaxation stability. Now we consider

a corollary of the theorem where the latter property is automatically fulfilled.

6.5. COROLLARY. Let {z(-),T} be an optimal solution to the Bolza problem (2.1),
(2.3)~(2.5) with no differential inclusion. Suppose that for some numbers p > 0 and open
set U C R™ one has:

z(t) e U Vte[0,T) & |z(t)| < p ae tE€ (0,77, (6.28)

the set Q) is closed, the functions ; are locally Lipschitz around (2(0),z(T),T), and the
function f = f(z,v) is Lipschitz continuous around any point (z,v) € Ux (uB). Then there
exist real numbers Ao, ..., Agpr and an absolutely continuous function p : [0,7] — R", not

all zero, such that conditions (6.2), (6.3), and (6.5) are fulfilled and
p(t) € cof{u| (u,p(t)) € Mdf(2(t),Z(1))} ae. tE [0, 7). (6.29)

Proof. Tt follows from (6.28) that Z(-) € Whe°[0,T]. Using Proposition 2.2, we conclude
that the problem under consideration possesses the property of relaxation stability. In fact,

this problem is equivalent to the problem (P) with the (trivial) differential inclusion
€ F(z):=uB tel0,T] (6.30)
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where (Z(t), Z(t)) € (int gph F) for a.e. t € [0,T]. Obviously, all the assumptions in Theorem

6.1 are fulfilled for problem (2.1), (2.3)-(2.5), (6.30) and the Euler-Lagrange inclusion (6.4)
is equivalent to (6.29). This proves the corollary. O

In conclusion of this section, we consider problem (P) with a non-autonomous differential
inclusion where F'(z,t) is Lipschitz continuous with respect to both variables. Such a problem

can be reduced to the autonomous case treated above.

6.6. THEOREM. Let {Z(-), T} be an optimal solution to problem (P) in (2.1)-(2.5) which
possesses the property of relazation stability. In addition to (H1) and (H7), we suppose that
F is Lipschitz continuous in (t,x) jointly, ¢; are Lipschitz continuous around (z(0),z(T),T),

and f is Lipschitz continuous around any point of the set

A= {(t,z,v) € R (t,z) € [0,T] x U, v € F(t,z)}.

Then there exist real numbers Ao, ..., Agr as well as absolutely continuous functions p°

[0,7] = R and p: [0,T] — R" such that one has (6.2), (6.3),

{Xo,- s Ager, ()} # 0 (6.31)

(5°(£), p(t)) € cof (u®,u) € ™| (u®,u, p(t)) € Aodf (£, 2(1), (1)) + (6.32)

N((t,:f(t),fv(t));gph F) a.e. t€[0,T7;
q+r

(p(0), —p(T), —p°(T)) € DX hipi)(#(0), 2(T), T)+ (6.33)

N((2(0),2(T),T)Q), p°(0) =0;
/T P(t)dt = — /OT H(t)dt (6.34)
where the pseudo-Hamiltonian H(t) is defined in (6.25) with f = f(t,z(t),2(t)).

Proof. Let us denote t := 20 and introduce a new state variable z = (2°,z), corresponding
endpoint variables z° = (zg, o) and zr = (2%, z7), and a velocity variable w = (9,v) in

R+, We define
F(z):= (1, F(2° ), f(z,w) == f(z°,z,v), (6.35)
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@i(z0, 27) := pi(20, 7T, 2%), Q:= {(z0,27)| 20 € R, (zo,z7,2%) € Q). (6.36)

Then one can see that the arc z(t) = {(¢,2(t)), 0 <t < T} is an optimal solution to the

n + 1-dimensional autonomous Bolza problem:

o . . 4 T ~
minimize J[z, T] := @o(2(0), 2(T)) + /0 Flz(t), 2())dt

over all trajectories of the differential inclusion

z(t) € F'(2(t)) a.e. t€[0,T)

subject to the endpoint constraints

?i(2(0),2(T)) <0 for i =1,...,q;

I

©i(2(0),2(T)) =0 for i=q+1,...,q+ 7
(2(0),2(T) € © € R,
Under the hypotheses of the theorem, the autonomous problem formulated satisfies all
the assumptions of Corollary 6.2. Using this corollary and taking into account the special

structure of the data (6.35) and (6.36), we get conditions (6.32) and (6.33) directly from
(6.4) and (6.23). In this way, (6.34) follows from (6.24) and (6.25), and one can ensure

{/\Oa"'v/\q+rvp0(')7p(')} # 0. (6.37)

Suppose that (6.31) does not hold, i.e., Ao, ..., A4, are equal to zero simultaneously with
p(-). Then due to (4.4) and Corollary 4.8, (6.32) implies that p°(¢) = p(t) = 0 a.e. t € [0,T].
By virtue of the transversality condition p°(0) = 0, now we can conclude that p°(¢) = 0 on

[0, 7). This contradicts (6.37) and completes the proof of the theorem. 0O

6.7. Remark. The additional assertion (6.27) in the framework of Corollary 6.2 would
imply that

p°(t) = —H(t) on [0,T)
and conditions (6.32) and (6.33) are reduced to the forms
(—H(t),p(1)) € cof(u®, u) € R™| (u”,u, p(t)) € MoOf(t, 2(t), 2(1))+
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7. Concluding Remarks

Now we discussed some possible improvements and generalizations of the principal results

obtained in this paper.

7.1. Remark. In the main body of the paper, we have used a discrete approximation
procedure to obtain necessary optimality conditions in the constrained problem of Bolza
for differential inclusions with free time. This method allows us to prove the refined Euler-
Lagrange conditions for the original problem possessing the property of relaxation stability.
An important question consists of discovering settings when the property of relazation sta-
bility can be removed.

In the previous paper [43], we removed the latter property for the case of general (non-
convex) Mayer problems with fixed time. To accomplish it, we developed another procedure
for approximating the original problem by a parametric family of unconstrained (but non-
smooth) problems of Bolza with no differential inclusion. This procedure is based on the
metric approximation method in Mordukhovich [31, 33, 35] and the usage of Ekeland’s vari-
ational principle as in Clarke [11] and Kaskosz and Lojasiewicz [27]. In this way, besides
removing the property of relaxation stability, we obtained [43] more general transversality
conditions with and without Lipschitzian assumptions on ¢;.

To develop the latter approximation procedure for non-fixed time problems, one needs
to employ necessary optimality conditions as in Corollary 6.5 for unconstrained problems of
Bolza with optimal solutions belonging to W*°. However, the results available in Corol-
lary 6.5 are proved so far for the case of optimal solutions whose derivatives are Riemann
integrable. This difference seems to be minor from the practical viewpoint but it plays an
important role for the realization of the mentioned approximation procedure.

Thus any progress in justifying the results in Corollary 6.5 for the case of W' *°-optimal

solutions allows us to remove the property of relaxation stability in the necessary conditions
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of Theorem 6.1 for general problems of Mayer. The same is true for local controllability and

related results; cf. [43].

7.2. Remark. The discrete approximation procedure and necessary optimality conditions
are proved above for global optimal solutions of the Bolza problem (P). Obviously, they
hold for strong local minima in the space of trajectories z(-) = {z(t), 0 < ¢ < T} with the

C-norm

o)l =T+ mag la(o)|.

Moreover, the method developed enables us to study the so-called intermediate local

minimum with respect to the W'P-norm

le(llwss =T+ max [o(0)] + ([ (0)Fde)»

for any p € [1,00). This notion has been considered in [43] for fixed-time problems involving
differential inclusions. Clearly, it takes an intermediate place between the classical concepts
of strong and weak (p = co0) local minima.

The reader can check that the constructions of the paper allow us to keep the results
obtained for feasible solutions to the original problem (P) which provide an intermediate
local minimum for the relaxed problem (R) with the same value of the cost functional; cf.

[43] in the setting of fixed-time problems.

7.3. Remark. Developing the approach of the paper, we can consider a generalization of

the Bolza problem (P) where constraints (2.3) and (2.4) are replaced by the following:

i(z(0), +/ &(1))dt <0 for i=1,. (7.1)

wi(z(0),z(T),T) + /OT filt,z(t),2(t))dt =0 for i=q+1,...,q+r. (7.2)

Note that new constraints (7.1) and (7.2) unify the previous endpoint constraints (2.3)
and (2.4) with the isoperimetric type constraints in variational problems.

The constructions of Section 3 allow us to build a sequence of discrete approximations
for problem (2.1), (2.2), (2.5), (7.1), and (7.2) whose solutions strongly W'?-converge to

the reference optimal solution to the original problem under the corresponding property of
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relaxation stability. Following the procedure in Sections 5 and 6, we obtain an analogue of
the main Theorem 6.1 where conditions (6.3) (6.4), and (6.6) are changed for, respectively,
_ T ,
Ailei(2(0),2(T), T) — | fil&@(t),2(t))dt] =0 for i =1,...,¢;
0
q+r

p(t) € co{ul (u,p(t)) € 3(2 Aifi)(@(t), 2(t) + N((2(t), 2(t)); gph F)

for a.e. t € [0,T]; and
B 1 T . q+r ~ .
1= 7 [[ (0, 30) = S A0, 50

with fo := f.

7.4. Remark. The discrete approximation approach allows us to extend the results of this
paper to problems of Bolza where the functions ¢; depend not only on endpoint state posi-
tions and a varying time interval but also on intermediate times 75 € (0,T) and intermediate
states x(7,); cf. Clarke and Vinter [13, 14] in the framework of optimal multiprocesses. Our
results for such (nonconvex) problems combine the refined Euler-Lagrange inclusion (6.4)

with a new condition in the line of (6.5) involving jumps of the adjoint arc.
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