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The null boundary controllability for semilinear heat equations
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School of Mathematics, University of Minnesota

Abstract. We consider the null boundary controllibility for one-dimensional semilinear heat
equations. We obtain null boundary controllability results for semilinear equations when the
initial data is bounded continuous and sufficiently small. In this work, we also prove a version
of the nonlinear Cauchy-Kowalevski Theorem

1. Introduction. The aim of this work is to study the null boundary controllability
problem for one-dimensional semilinear heat equations. First, we consider the following
initial boundary value problem for a semilinear heat equation with Dirichlet boundary

conditions: find w(z,t) such that

wy = waz = f(w,2) on (0,1) x (0,00) (1.1)
w(0,) =0 fort >0 (1.2)
w(z,0) = wo(z) for z € (0,1] (1.3)
w(l,t) = h(t) fort>0 (1.4)

where f(s,z) is an analytic function in both arguments in a neighborhood of the origin
and belongs locally to Gevrey class 2 in its first argument and is Holder continuous in
its second argument such that f(0,z) = 0 and D, f(0,z) = 0 for all z € [0,1]. We also

consider the semilinear equation
wi — Wep = f(w,wy,z) on (0,1) x (0,00) (1.5)

instead of (1.1) where f is analytic in all arguments near (0,0,0) and belongs locally
to Gevrey class 2 in the first two arguments and is Holder continuous in z such that
£(0,0,z) = 0, D, f(0,0,z) = 0, D2f(0,0,z) = 0 for all z € [0,1]. The problem of null
boundary controllability for (1.1)—(1.4) or (1.2)-(1.5) which we are going to solve is: given
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T > 0, is it possible, for every initial data wq which is sufficient small and in an appropriate
space, to find a corresponding controller h(t) so that the solution of the resulting problem

vanishes for t > T'?

The method we use here is, to some extent, based on the work of W. Littman and L.

Markus[17].

Our method proceeds roughly as follows:

(1) Extend the domain of the initial data wo to be [0,2] so that the extended wy is still
small. Alsé extend the domain of f to the interval [0,2] such that all properties of
f are preserved. |

(2) With the modified initial data wy, solve the initial-boundary value problem (1.1)-
(1.3) or (1.5) & (1-2)-(1-3) with w(2,t) = 0 for z € [0,2] and t € [0, c0).

(3) Let 9 be a cut-off function satisfying 1(¢) = 1 for ¢t < T/2 and ¢(t) = 0 for t > T.
Set

g(t) = w,(0,8)y(t)

where w is the solution of Step 2.

(4) Solve the Cauchy problem

uy —uggy = f(u,z) on (0,2) x (0, 00)

u(0,t) =0, wu,(0,t)=g(t) fort>0

in the x-direction to get a solution which vanishes for ¢ > T and equals the solution
w for t < T/2.
(5) The control function is then obtained by setting h(t) = u(1,1).

Steps 1-3 are more or less standard. The main difficulty is Step 4. To solve the Cauchy
problem in Step 4, we use a nonlinear Ovcyannikov Theorem (or called nonlinear Cauchy-
Kowalevski Theorem, see, e.g., [1,10,17,21,22]). To apply this theorem, we need g to be
of Gevrey class 2 in t for ¢ > 0. What this means is that there exist positive constants

C, H such that

|%(t)| < CH"™(2n)! fort>0,n>0.

2



By direct computation, the set of these Gevrey functions forms an algebra which is closed
under differentiation with respect to t. Furthermore, it is possible to choose 3 in Step 3
to be a Gevrey class 2 function (such function can be explicitly written, see[4]). Thus ¢
may be obtained as a Gevrey class 2 function as long as the solution of Step 2 is a Gevrey
class 2 function.

We note that the definition of Gevrey functions which we use here differs a little from
that of the definition used in [17, 24] but it is the same as the one used in (3,11].

We remark that the controller h(t) is not necessarily unique. The null boundary con-
trollability may also be obtained by other continuous controllers.

The paper is organized as follows. Section 2 is devoted to state the modified nonlinear
Ovcyannikov Theorem for system of differential equations and its proof is given in Section
3. Because the way this theorem is used in this paper, the roles of the variables z and ¢ are
reversed from those in the usual statements, making z the “time variable”. In Section 4,
we define a scale of Banach spaces of Gevrey class which will be used to solve the problem
in Step 4; and in Section 5, we actually solve the problem under the assumption that g(t)
is of Gevrey class 2 in ¢t > 0. Because we need the existence in the whole unit z-interval
(not just a small part of it), it is necessary to keep track of all constants and to check
the proof carefully to ensure that by making ¢(¢) small, we get existence in the whole
unit z-interval. Finally, we obtain the null controllability result for (1.1)-(1.4) in Section
6. The ”sufficient small” assumption on the initial data can be eliminated under certain
conditions. See remark after the proof of Theorem 6.1. In section 7, we use the same
method to obtain null boundary controllability for (1.2)-(1.5).

A great many decisive developments in the controllability theory of the linear heat
equation were initiated by H. O. Fattorini and D. L. Russell. These have been presented
in numerous articles (see e.g.[6-8,23]).

There are some other methods for proving the boundary controllability results. Some
methods which have achieved considerable success are the Method of the Multipliers[13]
and the ”Hilbert space uniqueness method” (HUM) due to J. L. Lions[14,15]. However, it
is not clear whether these methods can be modified to obtain the result of this work. The

advantage of our method is to transform the control problem to two well-posed problems.
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2. Nonlinear Cauchy-Kowalevski Theorem for Systems of Differential Equa-
tions. In this section, we shall study the existence and uniqueness of solutions of some

abstract Cauchy problems.

We begin by considering a 1-parameter family of Banach spaces X, where the parameter

s is allowed to vary in [0, 1].

Definition 2.1. {X,}o<s<1 is a scale of Banach spaces if for any s € [0,1], X, is a linear
subspace of X and if s' < s then X, C X, and the natural injection of X, into X, has

norm less than or equal to 1.

We denote by || - ||s the norm of X,.
A theorem which is originally due to L. V. Ovcyannikov is exploited (see, e.g., [1, 10,
21, 22, 25, 26]) in a number of ways to obtain results in the study of the nonlinear

abstract Cauchy problem of the form

du
= _F
u(0) = uo.

Here the solutions are sought, as functions of the variable z, in a scale of Banach spaces
{X,}. The standard condition for Ovcyannikov’s Theorem on F is that there exists a
positive constant C' such that for every pair of numbers s,s', 0 < s’ < s < 1, for all

u,v € X, and for all z in a prescribed interval, we have

||F(u,:c) - F(v,x)”s: <

s o]l (2.1)

s—s
This is the key condition needed to prove existence and uniqueness of the solution of
the above Cauchy problem. The assumption (2.1) which holds for all u,v € X, is more
restrictive. In a paper of T. Kano and T. Nishida[10], they allow the condition to be
relaxed to hold only for u,v € X, with |ju||s < R and ||v||s < R for some R.
For each 4,3 =1,--- ,m, let {X}}o<s<1 be a scale of Banach spaces with norm || - ||. P.
Duchateau and F. Treéves[1] consider systems of differential equations of the form
du;

dzx
wi(0)=uh, i=1,--,m, (2.3)

=Fi(U1,U2,"',um,$), |$|<77i,77i>0,i=1>"'»m (22)



where the u;, as functions of the variable z, are in X, i =1,.--  m. They allow each F;

to have different exponents of (s — s'), that is, there exist constants C; > 0 such that for
every pair of numbers s,s', 0 < s' < s < 1, for all u;,v; € X! and for all z, |z| < n;, we

have

”Fi(ulau%' o 7um7$) - F,‘(’Ul,'vz,- o ,'Um,CE)”s'

Ci _
S s el —olls o e — o7, =1, m (2.4)

for some parameters a;, 1 =1,--- ,m.

We shall discuss the system of differential equations of the kind (2.2) and (2.3). We
impose the same conditions on F; as (2.4) but only for ||u;||} < R;, ||lvil|t < R; for some
R;, i =1,--- ,m. The conditions on «; are the same as the conditions imposed in [1]. We

shall omit the index : if there is no confusion.

We need the following assumptions. For the initial data, we assume that:

(H1) u; € X! for every s € [0, 1] and satisfies
luiolls < Rio

for some R; o < ocofore=1,--- ,m.
Concerning the function Fj, we assume that:
(H2) There are R; > Rjp > 0,7, >0,:=1,---,m, such that for every pair of numbers
5,8 with 0 < s' < s < 1 the mapping F;(u1,-** ,Um, ), = 1,--+ ,m, is continuous

from the set

{ur € X! | flualls < Ra} x oo X {um € XJ" [ umlls < Bm} x {2 [ || <7i}

into X¢,.

(H3) There are constants Cy, ¢ = 1,---,m, such that for every pair of numbers s, s’ with
0< s <s<1,forall |[uj|ls < Rj, |lvjlls < Rj, 7 =1,--+,m, and for all z, |z| <,
we have

| Fi(ur,uz, s tum, ) — Fi(vi, 02,7+, vm, @)||s
< o9l — a9l =



where the number 97 is set to be zero if F} is independent of u; and to be one
otherwise, for some parameters a; > 0,7 =1, - ,m, such that for any collection of
m? numbers ¢!, the degree of P(), p) with respect to A, 4 is at most m, where the

expression P(A, ) of two variables \, u is defined by
P(\, p) = det(AI — [u*dicl]),

with I the m x m identity matrix and the degree is defined to be the highest degree
among all monomials in P(A, u).
(H4) Fi(0,---,0,z) is a continuous function of z, |z| < n;, with values in X! for every

8 < 1 and satisfies

K;
.FiO,"’,O, 8<—z'a <
IR0 0,0 S g, <5<
for some constants K;, ¢« = 1,--- ,m, with a; defined in (H3).

We now state the existence and uniqueness theorem for solutions of (2.2) and (2.3) as

follows.

Theorem 2.1. Under the preceding hypotheses (H1)—(H4), there is a positive constant
a such that the Cauchy problem (2.2)-(2.3) has a unique solution {u;(z),7 = 1,--- ,m},

which are continuously differentiable functions of z, |z| < a(1 — s), with values in X¢,

|lui(z)||s < Ri, for every s < 1/2.

The proof of this theorem will be given in the next section.

A few remarks about Theorem 2.1 are in order.

First, the necessity of the assumption on the degree of P(\, i) can be illustrated by the
case m = 1, a; = 2 as shown in [1].

Secondly, the assumptions (H2) and (H3) are weaker than those of [1], because here
we only require those conditions to hold for ||u;|l, < R; and |jvj|ls < R; for some R;,
j = 1,---,m. Our assumptions are also more flexible than the assumptions in [10],
because we allow the exponents a; to be different for each equation. But a small price
must be paid for the weaker assumptions. The solution we obtained in Theorem 2.1 has

value in X! for s < -;— In fact, the upper bound % is not optimal. By inspecting the proof
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of Theorem 2.1, we see that the solution can have bounded value in X} for s < 1 — ¢ for

any positive small number e.

Finally, when each Fj, : = 1,--- ,m is analytic in all of its arguments and the Cauchy

data is analytic, our theorem yields the classical Cauchy-Kowalevski Theorem.

3. Proof of Theorem 2.1. Our proof modifies the proof of T. Kano and T. Nishida’s
Theorem in [10].

We first transform the problem (2.2) and (2.3) to the integral equation

uz(x) = U;0 + / Fi(ul(y)7° o 7um(y)7y)dy, 1= 17' ce, M. (31)
0

Let a be a small positive constant to be determined later. For i = 1,---,m, let X*
be the Banach space of functions u(z) with values in X, which are continuous in z for

|z| < a(1 — s) for every s € [0,1/2), and have the norm

la(1 — s) — z|*
M;lu| = sup u(x)||s < o0 3.2
N O oy (32)
|z|<a(1—s)

where e; > 1 will be defined later. We are looking for solutions of integral equations (3.1)
whose norms M;[u;] are finite with some constant a > 0 suitably small.
We will find solutions of (3.1) in X*,i = 1,--- ,m, via the following successive approxi-

mation procedure

u$(z) = uip (33)

u D (2) = uio + / FuPw), - u® ), y)dy, k20, (3.4)
0

where ||u5k)(a:)||s < Rifor|z| <a(l-35),0<s<1/2,i=1,---,m. We shall only deal
with the case 0 < z < a(1l — s). The other case is similar.

To ensure that Hugkﬂ)(az)\ls < R;, we will require that

> R; — R;
Y @) —uP @)l < = (3:5)
k=1
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because by recursion this will imply

k
k+1 +1 )
[V (@)l < S 1w (@) = P @) + [Jusolls
7=0
< R; — R;
- 2
< R;.

+ R;o

We shall prove that (3.5) can be fulfilled for every ¢ if we diminish the x-interval step
by step, where we must ensure that the length of the limit interval is positive. The k-th

iteration ugk) will be defined on

0<z<ar(l-s) (3.6)
where the number ay is defined by
1 1 1 a
ap41 — [].— Z(1+§ ++§)]a0 = agk —2—’6_(:-_-5,]6 20,1,"' (37)
so that
a= lim ax = aop/2 (3.8)
k—o0

and ay will be chosen suitably small later. Corresponding to the x-interval (3.6) we define

as (3.2) the quantity

(k) 1 _ lak(l —s) — ]
M, u] = sup u(z)|ls
[u] B [u(z)]| (1= 5)
0<z<a(1—s)

< 00.

From this definition we immediately get the property
ME < MPW) i argr < ax. (3.9)

Now assume that ugj) are determined with Mi(j)[ugj)] < oo and ||u£])(x)||3 < R; for
0<z<ajl-s),0<s<g3,j=1,---,k i=1,---,m. By assumption (H2), u§k+1)(:c)
is well-defined. Set

D <MD o) (310
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Then
AR

s) — )% Jar(l - s)
)\gk) Qe;—l

T (1 - agr/ar)s ag 7!

[ () — ul®(2)|], <
(z) @l < 7

for 0 <z < ap41(1—35),0<s<1/2, and thus, by (3.7),
k+1 k eine;— —e;
[V (@) —uf? (@) < (@720 Ty mea®),
So if we require that

Z(2k+2)e;ze;—la(l]—e;/\gk) S Ri - Ri,O
k=0 2

for suitable ag, then (3.5) holds and by recursion

[V (@)[|s < R,

(3.11)

(3.12)

and thus Fi(ugkﬂ)(y), e ,ugrlfﬂ)(y),y) is defined, and so is u$k+2)($) fori=1,--- ,m.

Our aim is to estimate )\gk), 1=1,---,m, so that /\Ek) — 0 as k — oo and (3.12) holds

for all £ > 0. First of all, let us note that without loss of generality we may assume that

the constants K;, ¢ = 1,--- ,m, in assumption (H4) are zero, i.e., we may assume that

F;(0,---,0,2)=0 for0<z<m, 1=1,---,m.

In fact, we can take u; o to be u; o + fox F;(0,---,0,y)dy which is bounded by R; o + K;n;

for 0 <z <n; and s € [0,1).
By (3.4), we have

ul¥ D (z) — i (2)

=[BT @) D))~ B ), 0 ), 1)l

4
0

Thus for 0 < z < ag41(1 — s), it follows from the assumption (H3) that

T 1 m )
HUE’““)(:E) — U’Ek+1)(m)”s < C /0 (S(y)—_s)e (Zﬁfllugk“)(y) _ ng)(y)Hs(y)) dy
j=1
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for some choice s(y) with s < s(y) < 1 — y/ary1. We may set

5(v) = (1 - y/arss +)/2.

Then we find by virtue of (3.10),

k
[u$**2(z) — uFFD(2)|,

SCi/ozm

I o1 [T 1—-3s)+y
<G Y 9P (2ag4)%i2% LS dy. 3.13
= o [arn(1—s) —yJFe (319

mo AR
9 ]
2.7 (@1~ () — ) Jar(T = s(5))

Jj=1

We define the exponents e;, i = 1, -+ ,m as follows. By (3.13), to get the finite supremum
in the definition of )\Ek), the exponents e;, ¢ = 1,--- ,m, should be defined so that

ei > a;+ej—1 forall j such that 97 =1 (3.14)

We also know that 9% = 1 implies that a; < 1 from assumption (H5), so we only have to deal
with (3.14) for j # 7. By renumbering the variables, we may assume that a; < -+ < ayy,.

We define e; in the reverse order of ¢, under the following rule:

(1) if e; has been defined in the previous steps,bthen we skip to the smaller index;

(2) if 19{ = 0 for all 7 # ¢, let ; = a; V1, where a V b = max(a,b), otherwise, let
jo =min{j #4 |9 =1}. We let ¢; = (a; + ¢, — 1) V 1, where ej, = aj, V1if e
has not been defined in the previous steps.

By considering the restriction on the a; from assumption (H3), it is easy to check that the
ei, t =1,--- ,m satisfy (3.14).

To simplify the calculation of the )\Ek), we consider only m = 3 (it is the only case we
shall have occasion to use). The proof of the general case is essentially similar, although
somewhat more cumbersome. By the definition of e;, ax4; < a¢ and (3.13) we have

/\£k+1) _ Mi(k+1)[u5k+2) . u5k+1)]

3
< Z C,-ﬁf /\gk)(2a0)ai2ej ~1oB~(aite))V0 g, ei—(aite; —1)
j=1

3
] e;i—ej (k)
=) O] Mjjaos it
j=1
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where

Mij — Ci2a;+ej—12[3—(a;+ej)]vo
_{40,‘ ifai+6j§3
2wty ifai4ej >4

Hence for: =1,2,3, k =0,1,2,---,

3
k ; e
MY < S 9iM gt (3.15)

J=1

Now, we compute /\50). For 0 <z < ao(1 — s),
1 0 ‘
() = @)l = | / F(uf”,uf”, o, y)dy,

<C'Z‘l9 RJO/ (S(y)—S)a'

z (2(10)&‘

< C; ﬁ{R“ dy
?L:; 7 Jo Tarsr(T—s) =yl Y
and so,
A0 = sup () = 10 o) L2
3
< 2Ci(2a0)* Y 9/ Rj0 < oo. (3.16)

i=1

Let M = max;<i<3 M;;. Then by (3.15), for: =1,2,3, k =0,1,2,---
1<;<3

3
(k+1) j ei-ej k)
MY <N 9IM;jags A

j=1
3
< Map® ™! <Z ag” % )\gk)>.
7=1
So,
3 3
Zao—e;/\gk-}-l) < (3Ma’0)(z ap” Y )\gk))
i=1 Jj=1
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Thus if ag is chosen so small that

1\*%
3May < (5) , (3.17)
then
3 1\ ¢ k
O (8.18)
where
3
K = Zao—ej /\50) < ©0.
j=1
and hence
oo 3
SN amea <2k (3.19)

k=0 =1
Therefore the series Y po, /\gk) converges.
It remains to verify (3.12). According to (3.11), (3.18), we have for

OS.’I) <ak+1(1—8),0§8<1/2
Do) — ufP (@Il < 2% ag Y (2%)Fap A
k=0 k=0

< 2%ei71g, i(zﬁ)k [(%)e']kK

k=0
< 3ap2%¢ K.

Thus, if ag is taken small enough such that

R, —R;po

30023 1K < 5 i=1,2,3, (3.20)

then (3.12) is satisfied and

R, —R;po

[ (@)l < ==

+ Rio < R;.

We conclude that if we choose ag so small that (3.17), (3.20) hold and ap < 7;,7 = 1,2,3,
then the functions ugk)(:c) are defined for all k£ and ¢ with

[P (2)]ls < R for 0 <z < ar(l—s),0<s<1/2,i=1,2,3. (3.21)
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Also, according to (3.10), for 0 < z < a(1 — s) < ax(1 — s),

(k)
(k+1) (k) A
u; z)—u; (z)||s < L
R T B B oy ey
AW

S G =5) — ) fa(l —5)’

S0,

Mifuf* = uf?] <2,
Since the series Z)\gk) converges for each 7, the sequence ugk) converges to some limit
ui(z) in X%, 7 =1,2,3, and from (3.21)
lui(z)|ls <R, 0<z<a(l-—s),0<s<1/2,i=1,2,3.
These u;(z) satisfy (3.1). In fact, we have for 0 < z < a(l —s) and 0 < s’ < 5 < 1/2 that

HWp+45E@ﬂwwﬂw&ﬂwwﬂu—w@My

S/O 1 Fi(us(y), ua(y), us (), y) — Filui® (v), ul (1), u$® (v), 9) || dy

+ ui(z) — uHV(@)| o
<_C—i : (k) (k) Q) d
< (S_S,)a‘./o [Nwr(y) —wy” (Wlls + Nua(y) —ug " (Ylls + lus(y) —uz~ (y)lls]dy

+ lui(z) — w0 (@)

and both terms on the right-hand side of the last inequality tend to zero as kK — oo. This
proves the existence part of Theorem 2.1.

For the uniqueness, we also only consider the case m = 3. We suppose that for some a
there exist C? functions u;(z),v;(z) in z for 0 <z < a(l — s), 0 < s < 1/2 with values in
X satisfying (3.1) for ¢ = 1,2,3. Then w;(z) = u;(z) — v;(z) satisfies

wi(z) = /:[Fi(ul(y),ua(y),Ua(y),y) — Fi(v1(y), va(y), v3(y), y)ldy.

Given any fixed s; < 1/2, we see that both N;[u;] and N;[v;] are finite, where the norms
N; are defined by

[a(1 — 5) — 2]
Ni = ]
wl= s el
0<z<ar(l1—s)

13



Then the assumption (H3) implies that for all 0 <z < a(1 —s), 0 < s < s1,

ol < 0 [ st (oot )
J=1

with some choice s(y) € (s,1 — y/a). By the same argument as in the proof of (3.15), we
obtain that

3
Ni[wi] S Z Mae""e"“Nj[wj].
J=1

where M is defined as in (3.17). These together imply that

3

Z ap” ¥ N;[w;] < (3Ma)(Z ag _C‘Ni‘[wi])

i=1 =1

and thus N;[w;] = 0 if 3Ma < 1. Consequently, if we choose a sufficiently small then,
N;lw;] =0,i=1,2,3, and hence

|lwi(z)]]s =0 for0<z<a(l-s),0<s<s;.

Since this is true for all s;, we conclude that w;(z) = 0 for ¢ = 1,2,3. This proves the

theorem.

4. Scales of Banach spaces of Gevrey functions. We shall define scales of Banach

spaces depending on parameters d, 3, and s, where d > 1, § > 2, and s € [0, 1].

Definition 4.1. Let K be a compact interval and let 8y and 6; be two positive constants
such that 6, < 6; < co. Givend > 1, § > 2, and s € [0, 1], we define the space B,(d, ) to
be the set of all C*°(K) functions ¢ which is defined in K satisfying

APo(s)™
_ (n)
dlls = i‘g?ﬁ? dn)] |¢'™(t)] < oo, (4.1)

where 6(s)™! = (1 — s5)6p ™! + 56, !, i = max(n, 1), and X is a positive constant.

It is easy to see that || - ||s in (4.1) is a norm on B,(d, 8) which makes B,(d, ) into a
Banach space. Moreover, for d and 3 fixed and s ranging in [0, 1] the family {B,(d, )}
forms a scale of Banach spaces. We shall choose A so that B,(d, 8) is a Banach algebra.
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In the following propositions, we shall study the properties of these spaces. First, for

any d > 1, p>q > 0, p,q integers, it is easy to verify the following two inequalities:

()=(&): e (3) = 35 “

dp—g)+1)---(dp—g)+d)(dg+1)---(dg+d) _ palp—g+1g+1)
(dp+1)---(dp+d) - p+1 ‘

(4.3)
Proposition 4.1. If A < 1/[2 + 28 Y77 (1/k)P], then B,(d,B) is a Banach algebra for
any s € [0,1].

PROOF: It suffices to show that for functions ¢, € Bs(d, B)

I6blls < [llsl1%1ls-

By Leibnitz’s rule, we only need to require that

"L/ Md(n — k) A(dE)! _ A(dn)!
Z(k)«n—kr)ﬂ oS

(4.4)
k=0

Now, (4.4) is satisfied if

Since

k=1
n—1
<2+2° (1/k)°
k=1
(o]
<2+2°) (1/k)°
k=1
and by (4.2), we see that (4.4) is satisfied if
A<1/[2+4 27> (1/k)°]
k=1
and hence the proposition is proved. i
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Remark 4.1. A change of the number A changes the norm of the space By(d, 3), but not

the space itself. From now on, we shall assume that \ satisfies the above inequality.

Proposition 4.2. The partial differentiation 8/t defines a bounded linear operator from
Bs(d, B) into Bu(d,B) for 0 < s' < s < 1 with norm less than or equal to C/(s — s')¢,

where C is a positive constant depending only on d, 8y, and 6.

PRrROOF: We compute

18" ()]l
nﬂe(s "

— (n+1)
SR S

s n+1 7 B n n g)nt!
< sup max !9(3) (e( )) ( ) (d(n + 1))! (n +1)Pg(s)" ()

n>0 t€K «9(3) n+1 (dn)! Ad(n +1))!
<o s (3) tan 4 1) (an 4 0}
n+1

geo—lsup{<% (dn + d)'} 4],

)
_ 6, -ldd||¢||ssup{(‘;(j')))nnd}

< 8o~ d?||¢l|s(d/€)*(lnb(s) — Inb(s") ™

Since
00 14 0(s)( — )07 = 67) 2 1= by(s — )67 — 657 2 exp (s — NP
6(s") o
we obtain
' ' 61 - 60
Inf(s) —Inb(s") > (s — s")—
0

Hence by taking the constant C to be (d?/e)%6;" ((6; — 90)/90)_d, the proposition is
proved. N

Remark 4.2. The constant C in Proposition 4.2 can be made as small as we wish by taking
the constant 8, sufficiently small while keeping the constant 6; fixed in the definition of

Banach space B,(d, ) when d > 1.
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Proposition 4.3. If ¢ € B,(d, 3), then there exists a positive constant C depending only

on f3, d such that for all positive integers m, n we have

su m/n s)~1 )1 §)—(m+1) (d(m +1))!
tengt ()] < (Clllls8(s) A" 8] s0(s) =™ A——(m+1)ﬂ -

ProOF: Using Proposition 4.2 and the fact that B,s(d, ) is a multiplication algebra, we
can conclude that ¢7 € By (d,B) for s' < s and all positive integer n. We proceed by
_induction on n. From the definition 4.1, it is obvious that the proposition is true if n = 1.

We assume that it holds up to level n for some n > 1. By Leibniz’ rule we have

oY () IPrHenIDk@l

Then applying the induction hypothesis we get

DRt <Y (’}j) (ClIg1B(s)™ N [gl],8(s) "+
k=0

Al =B I ey G
< (O80Tl o) AT A
where .
A = ,i (7)o (=t oee)
But

(m) (d(m — k + 1))(d(k + 1))!

k (d(m + 1))!
dm'\ (d(m — k 4 1))I(d(k +1))!
= ( dk ) (d(m +1))!

< (d(m — k) +1)- - (d(m - k) + d)(dk +1)- -~ (dk + d)
= (dm + 1) (dm + d)

_ palm =+ D+

- m+1
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by (4.2) and (4.3). Thus

2 i m 41 p-1
A’”dez<(m—k+1)(k+1))

m 2 B—-1
<3 ()

Since # > 2, Ay, < 00. By choosing C > A, the result follows by induction and the

proof is complete. |}

Remark 4.3. The point in introducing the factor ## in the definition 4.1 is that for Bg>1
the spaces By(d, ) become Banach algebras and for B > 2, the estimate in Proposition
4.3 is valid.

It is clear that there should be some kind of relationship between the spaces B,(d, )

and the Gevrey class 2 functions.

Definition 4.2. Let 2 be a subset of R™ and § > 0. A C* function f in § is said to be
of Gevrey class & in Q (in short, f € v°(Q)) if there exist positive constants C' and H such
that

D7 f ()] < CH®(6]al)!
for all multi-indices a and for all z € ).

Remark 4.4. The definition given here of a Gevrey class of functions is different from
that in [4] where the fact that that Gevrey class of functions forms an algebra is proved.
But, by easy computation, we can also show that, under our definition, the Gevrey class
of functions forms as algebra. It is also easy to check that there is an obvious inclusion in

both definitions.

The proof of the following proposition is clear.
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Proposition 4.4. For the case of one dimentional compact interval K,
(a) The space B,(d,[3) is contained in v%, i.e. if ¢ € B,(d, B) then ¢ belongs to Gevrey
class d. '

(b) Suppose ¢ : R — R is an infinitely differentiable function defined in K and there

are positive constants M and 6 such that
16]4(1)] < M6 (dj)!

for all t and for all j = 1,2,---. If @ < 0y, then ¢ € Bs(d,p) for all s € [0,1],d > 1,
g > 2.

Proposition 4.5. Let d, B denote fixed real parameters such that d > 1, 3 > 2. Suppose
that f(z,z) is a real valued function on R? which is infinitely differentiable with respect to
its first argument and that for every compact z-interval I there exist two constants M > 0,

a > 0 such that forn =0,1,2,--- and all (z,z) € I x {x € R | |z| < 6},
dn)!
D2 (z,0)| < Mar {22 (4.5)
n

where é is some number > 0 and 7 = maz(1,n), i.e. f € v¢ (it is easy to check that the

above statement is equivalent to the definition of Gevrey class d functions).

We define a map F on B(d,B) x {z € R | |z| < é} by

F(u,z)(t) = f(u(t),z). (4.6)
Then F is a map from B,(d, ) x {z € R | |z| < é} into By(d,),0<s' <s < 1.

PROOF: First, we remark that since u is a real valued function and f is globally defined,
F is well defined.

For functions u € Bs(d, 3), u is infinitely differentiable defined in a compact set K, so
we can only consider f(z,z) with (z,z) being restricted to a bounded set. According to
Hormander[4], there are functions in ~¢ having compact support and forming partitions
of unity subordinated to arbitrary locally finite open coverings and consisting of non-
negative functions. Therefore, as these functions form multiplication algebras, without

loss of generality, we may assume that
suppf C {(z,2) € R? | 2] < (2aCA)7", |z] < 6} (4.7)
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where A is defined in (4.1), C is the constant in Proposition 4.3 and a is the constant in
(4.5).
By the definition of the s'-norm (4.1), we have

srib
(S or (s a)) (45)

!

| F'(u, )|l < sup sup
n>0teK

where D} denotes the n-th derivative of the real valued function ¢t — F(u(t),z) (z fixed).

For n > 1, we estimate as follows (see [1]),
" " n—1 . i
prra < 3 (71 ) I )1 IDP )
j=1
and apply (4.5) and Proposition 4.3 to get

(dh)! —1yi-1
<7 el s0(s) ™ ACP " A ull

" (m-1 ;
sup |[Dy F(u,z)| < . Ma’
aprra 35 (7))

. 9—(n—j+1) (d(n —J+ 1))'

(n—j+1)F
Then from (4.8), we have
(2l < o (M sup A, sup 31F(w )
where . 1\ /(d)!(d(n —j + 1)) n o1
A":§:<?:1)< - wmf '>(ﬂn—j+n> Y

j=1
with ¥ = aCAljul|;. In view of (4.7) and the definition of the s-norm, it will suffice to
consider ¥ < . We observe that

(n— 1) ((dj)!(d(n—j+1))!> < d2d.j(n—j+1)

Jj—1 (dn)! n

and

—

jn—j+1) 75 n—-j+1

for 1 < j < n. This then implies

1 Z" o1
< 2dof—1 27 < d2d2ﬂ—l
An < )\Cd 2 o —AC <
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for all n. Therefore
[ F(u, z)|ls < o0

and thus F(u,z) € By(d,8),0<s' <s<1. 1

5. Solutions of the Cauchy problem in the x-direction. In this section, we shall

solve the following problem by using the modified Ovcyannikov Theorem (Theorem 2.1):

Ut — Ugg = f(u,z) for z € (0,2),t > Tp (5.1)

u(0,t) =0, wu.(0,t)=g(t) fort>T,, (5.2)
where T is a positive constant.

Theorem 5.1. Let the function f(u,z) belong to Gevrey class 2 locally in its first argu-
ment, varying continuously with respect to z and satisfy f(0,z) = 0 and D, f(0,z) =0 for
all x € [0,2]. Let g(t) be a function of Gevrey class 2int > Ty and ¢g(t) =0 fort > T for
some T > Ty. Then there exists a constant a > 0 such that the problem (5.1)—(5.2) has
a solution u(x,t) which is twice continuously differentiable with respect to ¢ for z < a,
infinitely differentiable with respect to t for t € [Ty, o0), bounded for z < a, t € [Ty, o0)
and vanishes for t > T. Moreover, when ¢(t) is small enough, the z-interval of existence

will be greater than 1, i.e. a > 1.
PROOF: First of all, we rewrite the problem (5.1)—(5.2) as the following Cauchy problem
Ugz = Uy — f(u,z) for z €(0,2),t > T (5.3)
u(0,t) =0, ugy(0,t)=g(t) fort>T, (5.4)
To apply Theorem 2.1, we convert the problem (5.3)-(5.4) to a first order system of

differential equations by introducing the variables v; = u, v2 = u;, and v3 = u;. Then

(5.3)—(5.4) can be rewritten as

dv1

——(z,7) = va(z,) (5.5)
B2 (2, = vsle,) = f(a(2,),2) (5.6)
dv3 8

E;(a:, )= Evz(az, ) (5.7)
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with the Cauchy data

'01(0, ) = 07 ’02(0, ) = g('), v3(0’ ) =0. (58)

For s € [0,1],let X, = B,(2,4), where B,(d, §) is defined in Section 4 with K = [Ty, T+
where € is any finite number, d = 2, § = 4, X any fixed constant satisfying the assumption
of Proposition 4.1, and the constants 8y and 6, satisfying 0 < 8, < §; < oo. The constant
6o will be chosen sufficiently small so that the constant C' in Proposition 4.2 is sufficiently
small after 6; is chosen sufficiently large (see below).

For simplification of notation, we let

Fi(vy) = vy (5.9)
FQ(’Ul,vg,JJ) = U3 — f(’l)l,.’L') (510)
Fg(UQ) = %vz. (511)

We use the same notations as in Theorem 2.1. Let X! = X,, i = 1,2,3, and Rio =
R30 =0, Ry = ||g|ls- Then by Proposition 4.4 it is easy to check that 0 < Ry < o0
if 6, is large enough and by Proposition 4.5, assumption (H2) in Theorem 2.1 is satisfied
for Ry > 0, R, > Ry and R3 > 0. It is also clear that for any Ry > 0, Ry > Ry, and
R3 > 0 the assumptions (H3) and (H4) of Theorem 2.1 are satisfied with a; = 0, ap = 0
and a3 = 2. In fact, (H2) follows from Proposition 4.5; (H3) follows from Proposition 4.2
with P(\, p) = A% — c3c2\u? — cie}); and (H4) is clear.

According to Theorem 2.1, there exist a constant a > 0 and a unique solution of the
Cauchy problem (5.5)-(5.8) such that u(z,-) = vi(z, ) is a twice continuously differentiable
function of = for |r| < a with values in X, and |u(z,-)|][o < R; for |z| < a. Since
u(z,-) € Xy for |z| < a, u(z,t) is infinitely differentiable in ¢ for To <t < T+ € and u(z, )
is bounded on |z| < a, t > Ty. By using L. Nirenberg’s Uniqueness Theorem[20] and the
fact that the Cauchy data is zero for T' < t < T + ¢, the solution u(z,t) obtained above
vanishes for T < t < T + e. By defining u(z,t) to be zero for |z| < a, t > T + ¢, u(z,t)
is a solution of (5.1)-(5.2) which is infinitely differentiable with respect to t for t > T,

bounded on |z| < a, t > Ty and vanishes for ¢t > T.
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It is interesting to see how large we can make for the interval of existence. To obtain the
estimate, we shall check the proof of Theorem 2.1 and keep track of all constants. First,
for any constants R; > 0, Ry > Ry, R3 > 0 and for v;,0; € X,,1=1,2,3, s € [0,1] with
|lvills < Ri, ||9i]|]s < Ri, and |z| < n, where n can be any large number for our problem,

we have for 0 < s’ < s <1,

[1F1(v2) = F1(2)||s < [lvz — B2ls (5.12)
[1F2(v1,vs,2) — F3(01, 03, 2)||o < [lvs — Tslls + || f(v1,2) — f(B1, )]s
< [lvs — Bsls + Nllvr — 81l (5.13)
|Fs(02) — Fy(52)]lw < ﬁnw . (5.14)
where N is a constant depending on R; which will become sufficiently small when R; — 0
by the assumption D; f(0,z) = 0; and C is the constant in Proposition 4.2 which can be
chosen sufficiently small.

Now, to get a more accurate estimate of the interval of existence, let us go back to check
the proof of Theorem 2.1. Since v;(0) = v3(0) = 0, by using (3.13) with e; = 1, e; = 1,
e3 = 2 and the inequalities (5.12)—(5.14) we get

M < dagRy o
A =0
A0 < 4Cay®Ry
AEFD < 4ao AP
ALY < 4(NagAl® 4+ 2{Y)
A < 40a 2 A0
and thus
ABRHD g @B g y@kH) g
)\(21) <Rz
/\52’6) < 4a07kR2,0
A§2’°+” <"1 Ry

)\g2k) S 4Ca§7kR2,o
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for k > 0, where v = 16(N + C)a3. If we take Ry > 17R3 ¢ and

ap < min{

R, 1 < R3 )1/2 ' =1,2,3) (5.16)
3 yNiy 0= 1,4, .
64R20 16v/2C \ Ra ) 7

so that v < 1/64, then (3.5) is satisfied and thus the theorem holds with a = a,/2.

To obtain a > 1, we require that

min{—m T = ( i )1/2} > 2 (5.17)
32v/N +C’ 64Ry 0’ 16/2C \ Rao ’ '

This can be obtained when the ”initial data” g¢(%) is sufficiently small. Because when this
term is small the quantity Ry o = ||g(¢)||1 is small and so we can only consider small R,
which makes N small.

We remark that the interval [0, a), where a = a4 /2 and ay is given above, is not necessary
the largest length of the interval of existence, because we have not always chosen the best
possible constants in our argument. However, the estimate (5.16) is sufficient for our

purpose. I

Remark. In that main theorem, we need the analyticity of function f to guarantee that
w4(0,t) belongs to Gevrey class 2 but in Theorem 5.1, we only need to assume that f is

of Gevrey class 2 in t to obtain existence fot problem (5.3)-(5.4).

6. Existence of Boundary Controller. In this section, we shall prove our principal
result on the existence of the boundary controller h(t) that steers a prescribed initial
data wq to the zero for the problem (1.1)-(1.4). The controller h(t) will be continuously
differentiable on a finite time duration 0 < ¢t < T with T' > 0.

Theorem 6.1. Suppose that f(s,z) is an analytic function in s and z in a neighborhood
of the origin and belongs locally to Gevrey class 2 in s and is Hélder continuous in z € [0, 1]
and satisfy f(0,z) = 0, Dyf(0,2) = 0 for all z € [0,1]. Let the initial data wo(z) be a

continuous sufficiently small function® in [0,1]. Then for any finite time T > 0, there

lthe ”sufficiently small” assumption can be dropped for some cases, see remark after the proof of Theorem
6.1
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exists a controller h(t) € C*°((0,00)) N C([0,00)) such that the solution w(z,t) of (1.1)-
(1.4) satisfies w(z,T) =0 for = € [0, 1].

PROOF: We organize the proof in a series of steps.

Step 1. Extend the domain of the initial data wo(z) to be [0,2] so that wo(z) is
continuous and the sup norm of the modified initial data is less than or equal to the sup
norm of the original initial data. We also extend the domain of f to be (—oo,00) x (0, 2)
so that all properties of f are maintained.

Step 2. We solve the initial-boundary value problem with the new modified initial

condition:

wy — wgy = f(w,z) on (0,2) x (0,00) (6.1)
w(0,t) =0 fort>0 (6.2)
w(2,t) =0 fort>0 (6.3)
w(z,0) = wo(z) for z € (0,2). (6.4)

It is well-known that the solution w(z,t) exists locally and it is bounded [9]. Let Ty be
any number such that the solution of (6.1)-(6.4) exists for ¢ < T and € < T} be any small
positive number so that f(w,z) is an analytic function in the range of values assumed by
w, z for € [0,2¢]. Then it is also clear that the solution w(z,t) is a C* function for
0 <z <2e¢and e <t <T because the nonlinear term f(w, ) is infinitely differentiable in
w and z [2,12].

Step 3. We claim that the solution w(z,t) obtained in Step 2 belongs to Gevrey class
2int for t < Tj. Let uo(z) = w(z,€), where e < T} is any small positive number as in the

Step 2. Since w(z,t) is a C* solution of the problem
wy — wzp = f(w,z) on (0,2€) x (¢, T1]
'w(0,t) =0 fore<t<Ty
w(z,€) = uo(z) for z € (0,2e¢),
it follows from a theorem of D. Kinderlehrer and L. Nirenberg[11] that w(z,t) is real

analytic in z and is of Gevrey class 2 in ¢t for 0 < z < € and 2¢ <t < T;. In fact, the
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derivatives of w(z,t) satisfy
020/w| < CHITA(j +2X)!, VA, j,

for some constants C and H. Thus w;(0,¢) belongs to the Gevrey class 2 in t for
2e <t <T;.

One can easily see, by contradiction and compactness, that small initial data wo(z) in
sup norm implies small wg(0,t) in Gevrey class 2 norm for ¢t € [2¢,T] when T is a small
number less than Tj.

Step 4. Since the initial data wo(z) is sufficiently small in sup norm, let us assume that
the time interval [2¢, T is small enough for 2¢ < ¢ < T, so that w,(0,t) is sufficiently small
for2¢ <t <T.

Next, we modify w,(0,t) to be a function w.(0,t)y(t) with support in [0,T]. Here t(¢)
is C*° on 0 <t < oo satisfying

0<1(t) <1
P(t)=0 fort>T

P()=1 for 0 <t < (T + 2€¢)/2

With some care we can take ¥(t) to be of the Gevrey class 2 for ¢t > 2¢ (see [4]). We note
that the definition of the Gevrey class 2 in [4] is different from the one we use in this paper
which is the same as that in [3]. But it is easy to check that the Gevrey class 2 functions

constructed in [4] satisfy our definition.

Let
(1) = { wz(0,t)(t), for2e<t<T
9= o, for t > T.

Since the Gevrey class of functions forms an algebra which is closed under multiplication,
g(t) € 4% in t for t > 2¢ and vanishes for ¢ > T. When T is small, g(¢) will be sufficiently
small because ||w;(0,t)||; is sufficiently small.

Step 5. In this step, we solve the Cauchy problem:
Uy — Ugy = f(u,z) on (0,2) x (2¢,00) (6.5)
u(0,t) =0, u,(0,t)=g(t) fort> 2e. (6.6)
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Since ¢(t) is small, it follows from Theorem 5.1 that there exist a constant a > 1 and
a solution u(z,t) of (6.5)—(6.6) which is twice continuously differentiable in z for z < a,
infinitely differentiable in ¢ for ¢ > 2¢, bounded for < a and t > 2¢ and vanishes for
t>T.

Step 6. Before we give the conclusion, we still need to show that w(z,t) which we obtain
in Step 2 and u(z,t) which we get in Step 5 agree in [2¢, (T + 2¢)/2]. First, we observe that
w and u are both bounded functions in [0, 1] x [2¢, (T'+2€)/2]. Let z(z,t) = w(z,t)—u(z, ).
Then by Mean Value Theorem,

lzt - Zm:‘z = |f(w,x) - f(U,CU)'Z < C|Z|2

on [0,1] x [2¢,(T + 2¢)/2] for some constant C. On the other hand, 2(0,t) = 0 and
z:(0,t) = 0 for t € [2¢, (T +2€)/2], i.e., the Cauchy data are zero. Hence, by L. Nirenberg’s
Theorem|[20], z = 0 on [0,1] X [2¢,(T + 2¢)/2]. This shows that w(z,t) and u(z,t) are
identical on [0, 1] x [2¢, (T + 2¢)/2].

Step 7. Now comes our final step. We will read off the require boundary controller h(t)
through w(z,t) and u(z,t) by defining h(t) = w(1,t) for 0 < t < 2¢ and h(t) = u(1,t) for
t > 2e.

This proves the theorem. |

Remark. If the initial-boundary value problem (6.1)-(6.4) has a global solution w(z,t)
and w(z,t) — 0 ast — oo for continuous initial data wo(z), for example if f(z,u) = u? for
p > 1 (see [18]), then we can drop the ”sufficiently small” assumption on the initial data
and obtain the null boundary controllability for problem (1.1)-(1.4) for time T sufficiently
large because when the time is sufficiently large, w,(0,t) will be sufficiently small and
belongs to Gevrey class 2 in t, say t > Ty, and thus by substituting Ty for 2¢ in steps 4-7
in the proof of Theorem 6.1 and take T > T, the result follows.

7. The Null Boundary Controllability For a Semilinear Heat Equation With

Nonlinear Term f(w,w,,z). In this section, we consider the null boundary controlla-
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bility problem of the following problem:

Wy — Wep = f(w,wy,z) on (0,1) x (0,00) (7.1)
w(0,t) =0 fort>0 (7.2)
w(z,0) = wo(z) for z € (0,1] (7.3)
w(1l,t) = h(t) fort>0 (7.4)

where f is an analytic function in all arguments near (0,0,0) and and belongs locally to
Gevrey class 2 in the first two arguments and is Holder continuous with respect to = such
that f(0,0,z) =0, D;f(0,0,2) =0 and D, f(0,0,z) = 0 for all z € [0, 1], where D; is the
derivative with respect to i-th argument, : = 1,2. The problem is to find a controller h(?)
so that the solution of the resulting problem vanishes for ¢ > T for finite time 7' > 0. We
will use the same method as that in previous section with little modification. We also use
the same notations as before.

The main theorem of this section is the following:

Theorem 7.1. Suppose that f(y,z,z) is an analytic function in y, z and z near (0,0, 0),
belongs to Gevrey class 2 locally in y and z, is Holder continuous in ¢ € [0, 1] and satisfies
£(0,0,2) =0, Dy f(0,0,2) =0, D,f(0,0,2) = 0 for all z € [0,1]. Let the initial data wo(z)
be a sufficiently small C* function in [0,1]. Then for any finite time T > 0, there exists
a controller h(t) € C*((0,00)) N C([0,00)) such that the solution w(z,t) of (7.1)-(7.4)
satisfies w(z,T) =0 for z € [0, 1].

Remarks.

(i) The ”sufficiently small” assumption on initial data can be dropped if the following

initial boundary value problem

Wy — Wy = f(w,wz,z) on (0,2) x (0,00) (7.5)
w(0,t) =0 fort>0 (7.6)
w(2,t)=0 fort>0 (7.7)
w(z,0) = we(z) forz € (0,2) (7.8)
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has a global solution w(z,t) and w(z,t) — 0 as t — co.

(ii) By Mora’s paper ([19]), L? estimate ([12]) and the existence theorem ([2]), the
condition we impose on the initial data gives the local existence of problem (7.5)-
(7.8). Other conditions which are not as restricted can also give local existence of
(7.5)-(7.8) but they require other regularity on f (see [12]).

(iii) When we solve our problem and extend the domain of the initial data to be [0, 2],
besides the smallness of wy(z), we require wo(z) = 0 in a neighborhood of 2 so that

we can obtain local existence for problem (7.5)-(7.8).

The proof of Theorem 7.1 is similar to the proof of Theorem 6.1. The differences are
that we need a proposition similar to Proposition 4.5 to claim that the assumptions of

Theorem 2.1 are satisfied and we have to solve the Cauchy problem

Ut — Ugg = f(u,ug,z) on (0,2) X (2¢,00) (7.9)
u(0,t) = 0,u,(0,t) = g(t) fort > 2e (7.10)

where € is an small number and f is the extended function of the function f in Theorem
7.1 with domain [0, 2] which preserves all properties. We will solve this Cauchy problem
in Theorem 7.2.

Now, here is the proposition similar to Proposition 4.5 which will be used to fulfill the

assumptions of Theorem 2.1.

Proposition 7.1. Let d, 8 denote fixed real parameters such that d > 1, 8 > 2. Suppose
that f(y,z,z) is a real valued function on R? which is infinitely differentiable with respect
to its first two arguments and that for every compact set I in y,z space, there exist two
constants M > 0, a > 0 such that form = 0,1,2,---,n=0,1,2,--- and all (y,z) € I and
z € {z e R||z| <6},

(d(m +n))!
((m +n)~)?
where § is some number > 0 and # = sup(1,n), i.e. f € ¢ in its first two arguments.

We define a map F on By(d, ) x Bs(d,3) x {z € R | |z| < §} by

|Dy' D} f(y, z,z)| < Ma™*" (7.11)

F(u,v,2)(t) = f(u(t),v(t), z) (7.12)
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Then F is a map from Bs(d, 3) x Bs(d, ) x{z € R | |z| < §} into Bs(d,3),0 < s' <s < 1.

PrOOF: With the same reason as in the proof of Proposition 4.5, without loss of generality,

we may assume that
suppf C {(y,2z,2) € R | [y| < (2aCN) 7!, |2 < (220X) 7! | < 6} (7.13)

where A is defined in (4.1), C is the constant in Proposition 4.3 and a is the constant in
(7.11).
By the definition of the s'-norm (4.1), we have
nPe(s" ™
< —|D} .
1P, < supsup (S DF P, v, ) (7.14)
where D} denotes the n-th derivative of the real valued function t — F(u(t),v(t),z)

(z fixed). For n > 1, we estimate as follows (see [1]),

DrFo <Y > (1)) () IDiDis szl D) (115)

m=1 j=0
By Leibniz’ rule and Proposition 4.3, we get
Dn—m m—j j < e n—m Dk m—j . Dn—m—k 3]

sup |[Dy ™" (uy Tv{)| < E k sup | Dy (u; )| - sup | Dy (v7)]
teK o teK teK

<« (n-m —1y\ym—j-—1 (k+1) (d(k +1))!
< C||lul|s6 A)mT 0 A
<3 (ML) @l I o) NG

(dln—m —k+1))!
(n—m-—k+1)»

= (n-m m—j 871" (d(k+ 1) (d(n—m—Fk+ 1)
=3 (") @y g - G CE

- (Cllolls8(s)™ XY 7 [o]]s6(s) T EFDN

thus, from (7.11) and (7.15), we get

nAlo(s)H™ o
2 Sy )
< mZZ(”‘1> ( ) (dm)' Z ( K )(CA||u||s)m—f(m||v||s>f-
)" (d(k + 1))! (dn—m—k+ 1)) [6(s) "
C? (k+1)8 (n—m—Fk+1)8 A(dn)!
< /\jgz Y inin ﬂ?_j'ﬁgAn—l,m—lAm,jAn—m,kBm,j (716)
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where

Y1 = aCA||ul|s,d2 = aCA||v]|s,

Ao (z) (d(j + 1) —j + ) P41 s
RN (d(i + 1)) G+OG—j+D]

—1
m
B = (j ) A ;.

In view of (7.13) and the definition of the s-norm, it will suffice to consider ¥; < % and

g < % According to the proof of Proposition 4.3 and Proposition 4.5, we have

n—m 0d o0 2 B-1
kzzjo An—m,k S d I; (m)

m+1 )ﬂ_l
U+1)(m—j5+1)

B—1
< d%d (—2 )
- J+1

B—1
2
PR
WJ = J — ]+1

Am,j < d2d(

for 0 < 7 < m. Thus,

n?10(s)]"  n
M n 1 m m 2 2(8-1) n—m 2 p—1
< = _ _ d4d 2d
‘AC?Z(z) An-simot | D <j+1) 2 d (k+1>
m=1 7=0 k=0
M (%9 9 2(B8-1) [ 9 2(8-1)
< M ad [ 4 ) 2d [ 4
<307 |21 (j+1) 2 d (k+1>
7=0 k=0
> (1 Cen (2
= 2 m+1
< o0

for all n > 1. By (7.10), we have
[ F(u, v, )|l < oo.

This completes the proof. i

The proof of the following lemma is elementary. We omit the proof.
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Lemma 7.1. Let 4,6 be two positive real numbers. Let {(x} be a sequence satisfying

Cht1 S 0Ck +vCk—1 fork >2
0< (o <o

0< ¢ <oo.

Then the sequence {(x} converges if and only if two real roots ui,us of the quadratic
equation

22 —6r—~v=0

have absolute values less than 1. Moreover,
Ck Sclﬂlk+62,u2k’ k:()’l,za"'

where cy,co are two constants determined by (o and (;.
The following Theorem solves the Cauchy problem (7.9)-(7.10).

THEOREM 7.2. Let the function f(u,v,z) belong to Gevrey class 2 locally in its first two
arguments, varying continuously with respect to « and satisfy f(0,0,z) =0, D, f(0,0,z) =
0 and D, f(0,0,z) = 0 for all z € [0,2], i.e. there exist two constants M > 0, b > 0 such
that for any integers m = 0,1,2,---, n=10,1,2,---,

m pn man 2m! 2n!
DT D} f(u,v,2)] < Mb™" =5 =2

Let g(t) be a function of Gevrey class 2 in t > Ty with support in [Ty, T] where Ty > 0 and
T > T, are two finite numbers. Then there exists a constant a > 0 such that the Cauchy

problem

U — Ugz = f(u,ugz,z) on(0,2) x [Ty, 00) (7.17)
u(0,t) = 0,u,(0,t) = g(t) fort>1T, (7.18)

has a solution u(z,t) which is twice continuously differentiable with respect to z for z < a,

infinitely differentiable with respect to t for t € [To, ), bounded for z < a, t € [T, c0)
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and vanishes for t > T. Moreover, when ¢(t) is small enough, the z-interval of existence

will be greater than 1, i.e. a > 1.

PROOF: We convert the problem (7.17)-(7.18) to a first order system of differential equa-
tions by introducing the variables u; = u, u; = u, and ug = u;. Then (7.13)-(7.14) can

be rewritten as

%—1- T, ) = Uz(fva‘)

dU2

B (2,) = ws(a, ) ~ (e, ) uale, ), )
dus

0
dz (:L',) = EUQ(:E")
with the Cauchy data
u1(0,-) = 0, u2(0,-) = ¢(-), us(0,-) = 0.

For s € [0,1], let X, = B4(2,4), where B,(d, §) is defined in Section 4 with K = [Ty, T +¢]
where € is any finite number, d = 2, § = 4, A is any fixed constant satisfying the assumption
of Proposition 4.1, and the constants 6y and 6 satisfying 0 < 6y < 6; < oo will be chosen

so that the constant C in Proposition 4.2 is sufficiently small.

For simplification of notation, we let

Fl(u2) = U9 (719)

Fy(uy,ug,u3,t) = uz — f(u1,u2,2) (7.20)
0

Fg(’dg) = 'a—tUQ. (721)

By substituting Proposition 7.1 for Proposition 4.5, all arguments in Theorem 5.1 for
showing the existence of solutions apply and so we get the first part of the theorem. We are
going to show that the z-interval of existence can be greater than 1 when g¢(t) is sufficiently

small by checking the proof of Theorem 2.1.

First for any constants R; > 0, Ry > Rz, R3 > 0 and for u;,4; € X, ¢ = 1,2,3,

33



s € [0,1] with |lu;||s < Ri, ||U:]]s < Ri, we have for 0 < s' < s <1

[ F1(uz) — Fi(do)lls < |lug — Galls (7.22)
”FQ(ul,uz,U;;,iE) - FQ(ﬁlaa’bﬁ%w)“S' < ”u3 - 6‘3”3 + ||f(u1,u2,m) - f(ﬁl’ﬁ%w)us
< luz — dslls + N[ |lur — d@al]s + |luz — G2l|s] (7.23)

() = Fa(ia) o < 7= = il (7.20)

where N is a constant depending on R; which will become sufficiently small when R; — 0
by the assumption D, f(0,0,z) = 0, D, f(0,0,z) = 0; and C is the constant in Proposition
4.2 which can be chosen sufficiently small.

Now, let us go back to check the proof of Theorem 2.1. Since u;(0) = u3(0) = 0, by
using (3.13) with e; = 1, e2 = 1, e3 = 2 and the inequalities (7.22)-(7.24), we get

/\go) < 4aoR;
AD < NagRs
A < 4Cay?Ryy
AFFD < 402
A < 4(NapA® + NagAlP + A9

A < 4Cap2A8Y

and thus
/\gk-i-l) < 7/\519—1) +6}\gk)

for k > 0, where v = 16(N + C)ao? and § = 4Na,. From Lemma 7.1, we know that the

sequence {/\gk)} converges if and only if absolute values of both roots of quadratic equation
22— 6z —v=0 (7.25)

are less than 1. Let p; be the positive root and ps be the negative root of equation (7.25).
Then by computing pq, g2, we know that

0<2,7v+6<l,y—6<limpliesO< py <1,—1< py <0.
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That is, if ag is chosen so that

4N(10 <2
16(N + C)ap® + 4Nag < 1
16(N + C)ag? —4Nag < 1,

then the sequence {)\gk)} converges and so are {Aﬁ’“)} and {)\gk)}. Especially,
AP < erpb 4 eaph

with
v —16a0 N?% — 4N agpz
R; 0
V6% + 4y

4N +C) 62 )
= (2N + - R
( VNZIN+C VN fNtCO) ™™o

< (2N + 4\/m) agRa o

o
S
Il

and

. 4Na0u1 - — 16(102N2

Co \/m 2,0
(ST H L P

VN2 +N+C +N24+N+C ’
<2Na0R2,0.

We also need to choose ag so that (3.12) holds, that is, we need

o0
Ky _ Ri
22k+2/\§ ) <=t

k=0 2
io: 2k+2)\gk) < R2 — R2’0
k=0 2
> R
2a0 ! szmg'ﬂ < 73
k=0

Since

(e} oo
Z2k+2)\gk) < Z2k+2 [Clﬂf + C2ﬂ§]
k=0 k=0

461 402

T oom T124
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if ag i1s chosen so that

—

1
21 <5 and  2p2 > —5

\V}

l.e.

1
4N ++VN2+4+ N+ C)ay < 5 (7.36)
e 1
then by (7.30), (7.31) and (7.35), |
S k42 (F) 8
D 2N < 8e + 302
k=0
2
S 32 (§N + VN + C) aoRg)o,
and thus if a¢ is also chosen so that
2 R, — R
32 <§N +VN ¥ C) aoRyp < —z—éﬂ (7.38)
then (7.33) is satisfied. Now, we consider (7.32),
- k - k
Z2k+2)\§ ) — 4)‘50) + 22k+2/\§ )
k=0 k=1
S 16&0R2’0 + Z 2k+24a0)\§k_1)
k=1
= 16agRa,0 + 32a0 Y 2FA8Y
k=0
< 16ag Ry 0 + 32a Z [01(2,U1)k + 62(2#2)k]
k=0
C1 C2
< 16a9R 32
< 16apftz 0 + 32a0 [1_2/” + 1_2#2]
4
S 16a0R2,0 [1 + 8(§N + \/N + C)ao] .
Thus, if we require that
4 Ry
160,0R2,0 1 + 8a0(§N + VN + C) S ?, (739)
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then (7.32) is satisfied. Similarly, to obtain (7.34), we require that

4
32Ca0R2,0 1 + 8Ca0(§N + VN + C) S % (740)

Hence by putting all of these estimates together, ap should be chosen so that (7.26)-
(7.28),(7.36)-(7.40) hold and so when the Cauchy data g(t) is sufficiently small and the

constants N and C are taken sufficiently small, ag can be chosen so that ag > 2 and thus

the

z-interval of existence a = ag/2 > 1. This completes the proof. |

Remark. In Theorem 7.1, we need analyticity of function f near (0,0) to guarantee that

w;(0,t) belongs to be Gevrey class 2 but in Theorem 7.2, we only need to assume that f

is Gevrey class 2 in t to obtain existence for problem (7.17)-(7.18).
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