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Abstract

We consider the semilinear heat equation Uy — Au+ f(u) = 0 in a bounded domain 2 C Rn, n> 1, for t > 0 with
Dirichlet boundary conditions % = 0 on o x (0, OO) For T' > 0 fixed we consider the map S(T) : CQ(Q) — CO(Q)
such that S(T)UO = u(:c, T) where U is the solution of this heat equation with initial data u(:c,O) = uo(:c) and
Co(Q) is the space of uniformly continuous functions on € that vanish on its boundary. When f is globally Lipschitz and
for any 1" > 0 we prove that the range of S(T) is dense in Co(Q) Our method of proof combines backward uniqueness
results, a variational approach to the problem of the density of the range of the semigroup for linear heat equations with
potentials and a fixed point technique. These methods are similar to those developed by the authors in an earlier paper in

the study of the approximate controllability of semilinear heat equations.

key words and phrases: Semilinear heat equation, density of semigroup-map, approximate
controllability.

1 Introduction and main results

Let §2 be a bounded domain of R®, n > 1, with boundary of class C? and f a globally Lipschitz
function from R to R.
Consider the semilinear heat equation

up—Au+ f(u) =0 in  Qx(0,00)
(1.1) u=0 on 09 x(0,00)
u(z,0) = «%(z).

It is well known that, when 1 < p < o0, and «° € LP(Q) equation (1.1) admits a unique
solution

u € C([0, 00); LP()).

The same result holds in Co(f2) (the space of uniformly continuous functions on € that vanish on
92 endowed with the norm of the supremum), i.e. if u° € Co(R) there exists a unique solution

u € C([0,00); Co(9)).
For every T > 0 we define the map
(12) [S(T)]u’ = u(z,T)

where u = u(z,t) is the solution of (1.1).
Our main result of this paper is as follows:

Theorem 1.1
Suppose that f : R — R is globally Lipschitz. For every T'> 0 the map

has dense range in Co(R).

As an immediate Corollary we have the following result:
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Corollary 1.1 . .
For every T > 0 and 1 < p < oo the range of the map S(T) : LP(Q) — LP(Q) is dense in

LP(Q).

Remark 1.1 . .
1) When f is linear, or more generally, in the framework of linear heat equations with a

bounded potential a = a(z,1),
(1.3) up — Au+ a(z,t)u =0

the density of the range of the semigroup-map is a consequence of the following backward unique-
ness result.
-ty — A +a(z,t)p=0 in Qx(0,T)
(B.U.) =0 ondQx(0,T) =>¢v=0
¥(z,0) =0

This backward-uniqueness result holds for every solution ¢ with final data a bounded measure.
Note that due to the smoothing effect of the heat equation the solution is smooth for every 0 <
t < T. Since the potential we consider is uniformly bounded the backward uniqueness property
(B.U.) we need is classical and well known (see for instance [1], [5], [7] and [8]). In particular it is
a direct consequence of Th. 1.8, p. 140 in S. Agmon and L. Nirenberg [1].

Let us briefly show how (B.U.) and a simple duality argument implies the density of the range
of S(T) : L*(2) — L?(Q) in L%(Q) where, now, S(T') stands for the semigroup-map associated to
(1.3). Suppose that u! € L%(Q) is orthogonal to the range of S(T') in L%(Q). We solve the system

—thy— A +a(z,t)p =0 in Qx(0,7)
=0 on 002x(0,T)
Y(T) = u!

which has a unique solution ¢ € C([0,T); L%()). Let u be a solution of
u— Au+a(z,t)u=0 in Qx(0,7T)
u=0 on 0802x(0,7)
u(0) = u® € L3(Q)
for any «® € L?(Q). Multiplying by u in the equation satisfied by 1 we get
/ﬂu(z,T)uld:c = /nuoz,b(a:, 0)dz, Vul e LY(RQ).
Since u! is orthogonal to u(z,T) in L?(2) we deduce that
/nuod)(:c,O)dx =0, Vu®eL}Q)
but then (z,0) = 0 in Q and by (B.U.) % = 0 and u! = 0.
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2) Our proof of Theorem 1.1 is based on a fixed point technique. However, in order to apply
this fixed point method we need some informations on how the range of S(T") depends on the
potential a that the duality argument above does not provide. Therefore, we will use a different
approach to the problem of the density of the range of the semigroup for linear heat equations
with potentials. This approach is variational and is inspired by our recent works ([3], [4]) on the
approximate controllability of semilinear heat equations.

3) Our Theorem 1.1 is sharp in the sense that it fails for some nonlinearities that, at infinity,
grow in a superlinear way.

Consider for instance

w—Au+ud=0 in Qx(0,00)
(1.4) u=0 on 90 x (0,00)
u(z,0) = u'().

It is easy to check that for every T' > 0 there exists C(T") > 0 such that for every u® € L?(Q)
the solution of (1.4) satisfies

lu(-, T)|lL2q) < C(T).

Thus, the range of S(T') is not dense in L2(Q).
On the other hand, the existence of an universal super-solution

1 3
w(t) = —=t"2
0=
implies that the range of S(T') is not dense in any LP(Q) or in Co(R).
In the case of non-linearities that grow superlinearly at infinity one may expect the density of

the range of S(7') in some ball of Cy(£2) around the origin. However, our methods do not seem to
provide such a result. o

The method of proof of Theorem 1.1 allows us to prove some variants of it. Let us mention
one of them. Let us introduce the following set of initial data:

B={p€L®(Q):p(z) € Asgn(é(z)) for some X € R and

some measurable function ¢ = ¢(z)} .

(1.5)

By sgn we denote the multi-valued sign function:

1ifs>0
sgn(s) = ¢ [-1,1]ifs =0
~-1lif s <O0.

We have the following result.

Theorem 1.2
If f 1s globally Lipschitz, for every T >0, S(T)B is dense in Co(Q).
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Remark 1.2
The initial data we use in the proof of Theorem 1.3 are in fact of the form

@ € Asgn(@)
where ¢ = ¢(z,0) with ¢ = ¥(z,t) solution of the heat equation

-t — A +a(z,t)py =0 in Qx(0,T)
(2, T) = o € M(Q)
=0 on 90x(0,T)

for some potential a € L (2 x (0,T)). By M(Q2) we denote space of bounded measures in Q (the
dual of Cp(2)).

In dimension n = 1 the results by S. Angenent [2] show that the zero set of ¥(z,0) is of zero
Lebesgue measure. Thus, in one space dimension, the density of the range of the semigroup map
S(T) holds with initial data of bang-bang form, i.e. ¢ = £ a.e. in Q for some A €RR. o

The rest of this paper is organized as follows. In section 2 we prove Theorem 1.1 for linear
equations of the form (1.3) by the variational method mentioned above. For the sake of complete-
ness, first we give a direct proof of Corollary 1.1 in the linear framework. In section 3 we complete
the proof of Theorem 1.1. Finally, in section 4 we prove Theorem 1.2.

In the sequel we will denote by @ the cylinder @ x (0,7) and by ¥ the lateral boundary
0Q x (0,T). The norm in LP(Q) will be denoted by || - ||, and the norm in M(Q) by |- |.

Acknowledgements. This work was done while the third author was visiting the IMA of the

University of Minnesota. This author acknowledges the hospitality and support of the IMA.

2 The linear heat equation with a potential

Consider a potential a = a(z,t) € L*(Q) with T > 0 fixed and the heat equation

uy—Au+au=0 in Q
(2.1) u=0 on X
u(z,0) = u’(z).

It is well known that if u® € LP(Q) with 1 < p < co then (2.1) has a unique solution
u € C(0, T1; I7(2).

On the other hand, if u® € Co(€2) this solution belongs to C([0, T]; Co(€2)).
We define the linear map

S(T)u® = u(z,T)

which is continuous from LP(Q) into LP(Q2) when 1 < p < 0o and from Cy(f2) into Co(f).
In this section we prove the following result
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Proposition 2.1
(i) The range of S(T) : LP(2) — LP(R) is dense in LP(Q) when 1 < p < co.
(i1) The range of S(T') : Co(Q) — Co() is dense in Co(Q2).

As we mentioned in the introduction this result can be easily proved by duality as a conse-
quence of the backward uniqueness of solutions of the heat equation.

Our goal here is to give a proof based on a variational method that, in the sequel, will allow
us to extend this density result to the semilinear equation (1.1).

We distinguish the cases LP(Q2) with 1 < p < 00, p = 1 and Cp(RQ).

2.1 Thecasel<p<

Let 1 < ¢ < oo be such that % + % = 1. Consider the functional

1
(2.2) T) = 2l 00+ allg?ll = [ ulpPds

where u! € LP(Q2) and a > 0 are fixed such that ||u!||, > o and ¢ = ¢(z,t) is the solution of

- —Dp+ap=0 In @Q
(2.3) =0 on X
o(T) = ¢°

which belongs to C([0, T]; LY(£2)).
We have the following result:

Proposition 2.2

The minimum of J in LI(Q) is achieved at a unique ¢° € LU(Q). If ¢ is the solution of (2.8)
corresponding to this final data (P(T) = ¢°) then the solution of

u—Autau=0 in Q
(2.4) u=0 on X
u(z,0) = u%(=) = |p(2, 0" 2p(2,0) in Q

satisfies

(25) [u(T) = u]], = a

Moreover, for « > 0 fized, ¢° remains bounded in Li(Q) when a is uniformly bounded in
L®(Q) and ul is relatively compact in LP(Q).
In addition, if



ap, —a m L%®(Q) weak-+
(2.6) Wl i IP(Q)
then
(2.7) @8 — @Y in LY(Q) weak

0 L . L 0o _
where ¢° is the minimizer associated to a and u'. The corresponding initial values u, =

|¢’n (12, O)lq_z‘ﬁn(x’ 0) satisfy

(2.8) u® — u® = |p(z,0)|772p(, 0) strongly in L®(R).

n

Remark 2.1
As a consequence of this Proposition we deduce that the map S(T) : LP(2) — LP(2) has
dense range. o

Proof of Proposition 2.2

The functional J is continuous in LY(2) and strictly convex. Moreover J is coercive. More
precisely,

0
(2.9) lim J(f ) > a.
leollg—oo  |1€°1lg

Thus, J achieves its minimum at a unique ¢° € LI(Q).
Let us prove (2.9). Consider a sequence (¢3) C L¢(€2) such that ||¢% ||, — co. Define

J (pO 1 _ . ~
= 7L = e i, 0l 4 [ e
||<Pn||q q a2

where n = o} /llenlls and Gn = @n/llegll,-
If

lim [|gn(,0)]l; > 0

then (2.9) holds.
If this does not hold, then for a subsequence (that we still denote by the index n) we have

(2.10) B (2,0)ll, — 0.
By extracting subsequences (still denoted by the index n) we have
¢ — @ in LY(Q) weakly
Pn — ¢ weakly in LI(Q)

where ¢ is the solution of
—$t—Ap+¢=0 inQ
=0 onX
B(T) = §°.
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On the other hand (2.10) implies
¢(z,0)=0

and thus, by backward uniqueness, ¢ = 0 and @° = 0. This implies that
@2 — 0 weakly in L(Q)

and therefore
lim I,, > Lma—/ulcﬁgdx:a.
Q

n—oo n—00

this concludes the proof of (2.9)
Let ¢o € L9(S) the minimum of J in LI(R2), since |[u']], > a, @° # 0 and then the Lf-norm
is differentiable. By calculating the first variation of J at ¢° we deduce that

(2.11) / 16(2,0)[1-26(2, 0)6(z, 0)dz + a[|g°|3¢ /n |60[1-200%da
(Y]

—/ u'0%z =0
Q

for every solution 8 = 6(z,t) of

—0;—Af8+af =0 in Q
(2.12) =0 on X
6(T) = 6°

with 8° € L1(). Multiplying by ¢ in (2.4) and integrating over @ we deduce that

/ |@(2,0)|92p(x, 0)8(z,0)dz = / u(T)0°dz
Q Q
Combining (2.11) and (2.12) we obtain

u! — u(T) = allg"| |30 2"

and thus (2.5).
Let us prove now the uniform bound for the minimizers when a remains bounded in L*°(Q)

and u! in a compact set of LP(2). We argue by contradiction. Let {a,} be a sequence of potentials
and ul a sequence of final data such that

an, — a in L%(Q) weak-*

L — u!in LP(Q) strongly

u
and suppose that the corresponding minimizers {¢2} satisfy
(2.13) 1831l — oo.

Let us denote by J,, the functional corresponding to the potential a,, and final data ul. It is easy
to check that, since [[ul|], > o,
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Thus, we will obtain a contradiction if we show that

(2.14)

We proceed as in the proof of (2.6). Let us normalize the minimizers

¥p = on/lleally

and let 9, be the solution of (2.6) with final data ¢3. We have

P 1
n — ~0 -
”‘pn”‘]

Clearly, in view of (2.13), (2.14) holds if

[ (2, O)I[2 + o — /ﬂumdm.

Bim | ¥z, 0)lly > 0.

n— 00

If this does not hold, for a subsequence (still denoted by the index n) we have

(2.15) |l¥n(2,0)llg — 0.

Since 48 and 9, are bounded in LI(Q) and C([0,T]; L9(R2)) respectively, by extracting subse-
quences we have
¥9 — 0 weakly in L(Q)
¥n, — ¥ weakly in L1(Q).
But since the potentials weakly-* converge in L*(Q) this does not suffice to pass to the limit in
equation (2.3) satisfied by ¥, with potential a,.
However, ¥y, is also uniformly bounded in X,(0,T — 6) = LI(0, T — &; W*4(Q)) nW14(0, T —
6; LI(Q2)) (see [6], p. 341) for every § > 0. The compactness of the embedding X,(0,T — §) C
LY(2 x (0,T — 6)) allows us to pass to the limit in the equations and show that 1 satisfies:

-y —AYp+ap=0 inQ
=0 onX.

Let us now prove that ¢ takes the final data ¥°, i.e. %(T) = ¢°. For every 6 € C?(Q)NCy(Q)

we have
T T
' - / Y20dx + / Yn(t)0dz| = / / Yo Abdzdt —/ / antn0dzdt
Q Q 0 Jt QJt
<o(T-1)
for some C > 0 that does not depend on n. Passing to the limit as n — oo we obtain
l - / ¥0dr + / Y(t)0dz| < C(T - t)
Q Q

which shows that ¥(T) = ¢°.



On the other hand, (2.15) implies that
$(2,0) = 0
and therefore by backward uniqueness ¥° = 0. This shows that
¥2 — 0 weakly in LY(R)

and therefore
lim I, > lim [a—/ui,t/)fidw] =«
Q

n—00 n—00

which concludes the proof of (2.14).
Since ¢ is bounded in L?(Q2) we may extract a subsequence (still denoted by the index n)
such that
@2 —9° in  LI(Q) weakly .

Let us see that ¥° = ¢° where $° is the minimizer associated with a and u!. It is sufficient to
check that

(2.16) JW0) < J(°), Vo' € LUQ).
By the weak lower semicontinuity of the L9-norm and the strong convergence of {ul}, we have

J(°) < lim J,($9) < lim Ja(¢°), Ve° € LY(Q)

n—oo

and on the other hand
lim Jo(¢%) = J(¢°), Ve° € LU(Q).

Thus (2.16) holds. Since the limit ¥° has been identified the whole sequence {¢%} converges. This
concludes the proof of (2.16).

Finally (2.8) is immediate from the regularizing effect of the heat equation since we have
‘ﬁn(’vt) - ¢('7t) in Lw(Q)
for every 0 <t < T.o

2. 2 Thecasep=1

Consider the functional
J:L®(Q)—-R

defined as follows
1
(2.17) T6%) = 5@, O + llg?lles ~ [ uipPds

for u! € L'() and o > 0 fixed such that ||u!||; > o and ¢ being the solution of (2.3) with initial

data ¢° € L*(Q). In this case ¢ € L*(Q) and ¢ € C([0,T);Co(R2)). Thus J is well defined in
L>(Q).
We have the following result.
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Proposition 2.3 .
The minimum of J in L®(Q) is achieved at a unique @° € L®(Q). If ¢ is the solution of
(2.8) corresponding to this final data (¢(T) = ¢°) then, the solution u of

u—Aut+au=0 nQ
(2.18) u=0 onX

u(0) = u® = ¢(x,0)
satisfies
(2.19) [u(T) - wfly < @

Moreover, @° is uniformly bounded in L>®(Q) when a is bounded in L°(Q) and u' remains in
a compact set of L(2). In addition, if

a, — a weakly-+ in L*°(Q)
(2:20) ul — ul strongly in L'(Q)
then
(2.21) @0 — % weakly-* in L™®(Q)

where @0 is the minimizer associated with the limit potential a and u' and the initial data ul =
@n(z,0) satisfy

(2.22) ud — u® = p(z,0) strongly in L°(Q).

Remark 2.2
This result implies that the range of S(T) : L}(Q) — L(Q) is dense in L}(Q). o

Proof of Proposition 2.3
J is continuous in L*°(§2) and convex. Moreover, as a consequence of the backward uniqueness,
J is strictly convex. On the other hand, J is lower semicontinuous in the weak-* topology of L* ().

The existence of a unique minimizer in L*°(Q) is a direct consequence of the following coer-
civity property

(2.23) lim 2

Lhim > a.
9l ca— oo [#°]oo

The proof of (2.23) is analogous to that of (2.6). The minimizer @° is such that

/ $(2,0)0(z, 0)dz + of[|° + 0°lco — 1§ lloo] - / W6%dz > 0
9] 0

for every §° € L®(Q2) where § = 0(z,t) is the solution of (2.12). Multiplying in (2.18) by 6 we
obtain

/ﬂ (z,0)0(z,0)dz = /ﬂ w(T)0de.
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Therefore
[ @) — s < a6 + 01k = [8°le] < alllf, V0" € L7().
Q
Thus
[(T) = u'[h < e
The proof of the uniform bound on ¢° when a remains in a bounded set of L®(Q) and u! in

a compact set of L!(€) is similar to that of Proposition 2.2. The proof of (2.21) and (2.22) is also
very similar. o

Remark 2.3

In this case we do not get ||u(T) — ul||; = « since the L>(Q)-norm is not differentiable. o

2. 3 The Cy(f2)-case

This case requires to work in M (), the space of finite measures. Let us recall that M(Q) is the
dual of Cp(€2). The norm in M(R2) is defined as follows:

lpl = sup [{i, )|
P €EC(Q)
llelloo <1

By (-, -) we denote the duality between M(2) and Cy(2).
Let us consider the functional

J:M(Q)—R
such that

1
J(#°) = Slle(2, 0|3 + ele’| - (¢, u')

for u! € Co(Q) and o > 0 fixed such that ||ul|ls > a, where ¢ is the solution of (2.3). Let us
recall that the solution of (2.3) with a measure as final data belongs to

p € L®(0,T; L} (2)) N C([0,T); L' (2))
and takes the final data ¢° € M(Q) in the following sense
/ o(z,1)0(z)dz — (¢°,0), ast /' T for every 8 € Co(R).
Q

We have the following result:
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Proposition 2.4
The minimum of J on M(Q) is achieved at a unique ¢° € M(Q). If $ is the solution of (2.3)
with this final data and u solves (2.18) then

(2.24) [(T) - u'lleo < 0.

Moreover, ¢° remains bounded in M(Q) when a is bounded in L®(Q) and u' remains in a
relatively compact set of Co(Q). In addition, if

(2.25) {a,; - al w.eak-* in L°(Q)
u, —u in Co()
then
(2.26) @2 — °  weakly-+ in M(Q)
and
(2.27) ul = ¢, (z,0) =  u® = @(,0) in Co(Q).
Remark 2.4

As a consequence of this result we obtain Proposition 2.1 in the Co(Q2)-case. o

Proof of Proposition 2.4

The functional J is strictly convex because of the backward-uniqueness property. On the other
hand J is continuous in M ().

The coercivity of J and the fact that it achieves its minimum in M(Q) follow from the argu-
ments of Proposition 2.2 and 2.3 but now one has to work with the weak-* topology of M(2).

The uniform bound on the minimizers as well as (2.26) and (2.27) follow also by similar
arguments. 0

Remark 2.5

Note that, again, due to the non-differentiability of the M ()-norm we do not get ||u(T) —
ul||c = @ but just ||u(T) — ull|e < @. B

3 The semilinear heat equation: Theorem 1.1

In this section we give the proof of Theorem 1.1. The same arguments allow to give a direct
proof of Corollary 1.1.

Consider u! € Co(Q) and a > 0. Our goal is to find an initial data u® € Cy(R) such that the
solution u of
uy—Au+ f(u) =0 inQ
(3.1) u=0 onX
u(0) = u°

13



satisfies
(3.2) 14(T) — uleo < .

We consider first a nonlinearity f which is C! and globally Lipschitz and introduce the con-
tinuous and bounded function:

F&) =10
(3.3) o(s) = { : fs#0
£1(0) ifs=o0.

The general case where f is globally Lipschitz function (non-necessarily C') will be covered later
on by a density argument.

For every v € L!(Q) we consider the linearized equation

u— Au+g(v)u=—f(0) inQ
(3.4) u=0 onX
u(0) = uo.

For each v, proceeding as in section 2.3, we will find an initial data ug € Co(€2) (defined in a unique
way) such that the solution u of (3.4) satisfies (3.2). Thus we will have a nonlinear map

(3.5) K : LY Q) — LY(Q)

such that Kv = u with u solution of (3.4) satisfying (3.2). The problem will be reduced to prove
the existence of a fixed point for K.

Let us construct the map K.

We decompose the solution of (3.4) as follows

(3.6) u=U+w

where U solves

Uy — AU + g(w)U = —£(0) in Q
(3.7 U=0 onX
U@©)=0

and w satisfies

wy— Aw+g(v)w=0 inQ
(3.8) w=0 onX
w(0) = u°.

Condition (3.2) is equivalent to
(3.9) [(T) = (u! = UD))]l < a.

14



As a consequence of Proposition 2.4 we know that given u! € Co(R2) and o > 0, for every
v € L'(Q) there exists u® € Cy(Q) (which of course depends on v) which is defined in a unique
way by minimizing a suitable functional over M () such that the solution w of (3.8) satisfies
(3.9). Moreover, since g € L®(R), g(v) is uniformly bounded in L*°(Q) and due to the smoothing
effect of the heat equation, U(T') remains in a compact set of Cy(2). Thus, as a consequence of
Proposition 2.4, uy belongs to a compact set of Cy(§2) and therefore u remains in a compact set of
L'(Q).

We have shown that K maps L'(Q) into a compact set of L1(Q). If we show that K is
continuous, the existence of a fixed point of K will be a direct consequence of Schauder’s Theorem.

Let us prove that K : L'(Q) — L'(Q) is continuous.

Consider a sequence {v,} C L!(Q) such that

(3.10) v, — v in LY{Q)
and let us prove that
(3.11) u, = Kv, - u=Kv in LI(Q).

Since g is continuous and uniformly bounded from (3.10) we deduce that

(3.12) g(vs) — g(v) weakly-* in L=(Q).
Therefore
(3.13) U,—U inLYQ).

Let us see that
(3.14) w, = w in L}Q).

In view of (3.12), the fact that {U,(T")} remains in a compact set of Co(2) and Proposition 2.4 we
deduce that the initial {ul} satisfy

ud —u®  in Cy(Q)

and then (3.14) holds. From (3.13)-(3.14) we obtain (3.11).
Schauder’s fixed-point Theorem ensures the existence of some v € L!(Q) such that

u=Kv=v

but then u = u(z,t) solves
uy—Au+ f(u)=0 inQ
u=0 onX
u(0) = u®

and by construction

[(T) - u'floo < @

This concludes the proof of Theorem 1.1 when f € C'(R).
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Let us consider now a globally Lipschitz function f and define the regularized sequence
fn=TF*pn

where p,(s) = np(ns) for some p € D(R) with [z p=1and p > 0.

It is easy to check that f, € C'(R), f, — f uniformly on compact intervals and that every
fn is globally Lipschitz with the same Lipschitz constant as f.

For u! € Cy(2) and & > 0 fixed we take, for each n € N, an initial data u2 € Co(f2) such that

the solution u,, of
ug—Au+ fr(u)=0 inQ

u=0 onX
u(0) = ul
satisfies
(3.15) [|un(T) — !0 < @.

Since the nonlinearities f, are uniformly globally Lipschitz and f,(0) is a bounded sequence,
in view of Proposition 2.4 we deduce that {ud} is relatively compact in Co(f2). By extracting
subsequences (that we denote by the index n) we deduce that

ud — ul in Co(Q)

u, — u in L*(Q)

where u satisfies
u—Au+ f(u)=0 in Q@

u=0 onX
u(0)=u0 in Q

and by (3.15),
o [(T) — u'leo < .

This concludes the proof of Theorem 1.1.
4 The semilinear heat equation: Theorem 1.3
This section is devoted to the proof of Theorem 1.2. Let us fix any u! € Co(Q2) and a > 0.

Our goal is to find some u® € B such that the solution of

uy—Au+ f(u)=0 inQ

(4.1) u=0 onX
u(0) = u°
satisfies
(4.2) [ w(T) — u!||eo < c.

16



We proceed in several steps.

Step 1. Suppose that f € C!(R) and introduce the continuous and bounded function g as in (3.3).
For every v € L'(Q) consider the linearized problem

ur — Au+g(v)u=—f(0) in Q@
(4.3) u=0 onX
u(0) = u°.

Consider any ¢ > 1. We claim that there exists an initial data of the form

(4.4) u(z) = ( / lsa(z,owx) 16(2, 0)[2¢(z, 0)

so that (4.2) holds for the solution of (4.3). Moreover ¢ = ¢(z,t) is solution of

—pt —Ap+g(v)p=0 inQ
(4.5) =0 onX
o(T) = ¢°

for some ¢° € M(Q) which is bounded in M (Q) uniformly with respect to v € L}(Q) and ¢ > 1.
The proof of this claim is very similar to the proof of Proposition 2.4. For any v € L}(Q)
fixed we consider the functional
Jg: M(Q) =R

with

e =5 ([ |¢<x,0)|qdz)2 +alg?] - (¢, a0).

where ¢ is solution of (4.5) and ul =l — U(T) where U solves (3.7). Minimizing J, over M ()
we obtain ¢ such that the corresponding solution of (4.5) is so that (4.2) holds for the solution
u of (4.3) with initial data (4.4). The arguments of Proposition 2.4 allow us to prove that ¢° is
uniformly bounded in M(Q) with respect to v € L}(Q) and ¢ > 1.

Step 2. For u! € Cyp(Q), @ > 0 and ¢ > 1 fixed we may proceed as in section 3 by applying
Schauder’s fixed point theorem and we deduce that there exists some v € L!(Q) such that the
solution u of (4.3)-(4.4) satisfies u = v. Thus u solves (4.1) for the initial data (4.4) and by
construction satisfies also (4.2).

Step 3. Now, we have to pass to the limit as ¢ — 1. Since ¢° is uniformly bounded in M(Q)
and f is globally Lipschitz we deduce that ¢(z, 0) is relatively compact in Co(2). By extracting a
subsequence ¢, | 1 we deduce that

¢n—@° in M(Q)

$n— ¢ in LI(Q)

én(z,0) — ¢(z,0) in Co(R)
u, —u in LY(Q)
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where @2, ¢n and u, denote respectively the minimizer of J,,, the corresponding solution of (4.5)
with v = u,, and the corresponding solution of (4.1).
It is easy to see that u solves (4.1) with the initial data

= ([ 160z ) v

for some ¥ = 9(z) € sgn(p(z,0)). By construction u satisfies (4.2). This concludes the proof of
Theorem 1.3 when f € C'(R).

Step 4. In the general case of a globally Lipschitz function the proof can be completed by
approximation as in section 3. o
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