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ABSTRACT

We examine a class of perfectly competitive economies calied Loeb economies,
i.e., economies defined on a measure space of agents where the cardinality of
the underlying set of agents may be either a finite integer or an "infinite non-
standard number". The particular attraction of Loeb economies is that in addi-~
tion to providing a class of models consistent with both the classical Arrow-
Debreu-McKenzie model and the atomless measure theoretic model of Aumann, they
allow one to expioit results for finite economies in obtaining an$1ogous results
for the atomless models. In particular, we will demonstrate how some of the
major results for the atomless measure theoretic model can be obtained as corol-

laries of results proved in a fixed finite economy framework.
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INTRODUCTION

An exchange economy consists of a set of economic agents, each of whom is

characterized by an endownent of goods and a "preference ordering" over all pos-
sible combinations of goods, who engage in the exchange of commodities so as to
make themselves as well off as possible. This process of exchange is said to

take place under perfect competition if, and only if, no agent is able to in-

fluence the terms of trade in other agents' transactions. If the terms of trade
are expressed via prices for the commodities, and if agents' actions result in
"market clearing”, i.e., in equality between the aggregate demand and aggregate

supply for each commodity, then a competitive equilibrium is said to exist.

The clagsical model of exchange under perfect competition (see, e.g.,
McKenzie (1954) and Arrow-Debreu (1954)) was formulated in terms of a finite set of
rational agents taking prices as given and engaging in the sale and purchase of
commodities. Such a model is clearly at odds with itself as the finitude of
agents means that each agent is able to exercise some influence on the prices at
which godds are bought and sold. To resolve this contradiction, Aumann (1964)
modeled a perfectly competitive exchange economy as a map on an atomless measure
space of agents to their characteristics. Within such a framework, the influence
of an individual agent is seen to be "negligible" as every agent is of measure
zero. An alternative resolution of the problem was given by Brown and Robinson
(1975), who introduced the notion of a nonstandard exchange economy. A non-
standard exchange economy is similar to the classical model of exchange under
perfect competition; but the cardinality of the collection of economic'égents is
taken to be an infinite nonstandard number. This has the effect of rendering
each agent's commodity endowment an "infinitesimal" part of the market and thus

renders his/her influence on price formation negligible.




The present paper examines a class of measure theoretic exchange economies
that is closely related to the nonstandard economies of Brown and Robinson

(1978). Specifically, we examine the class of Loeb economies, i.e., economies

defined on a measure space of agents where the cardinality of the underlying set
of agents may be either a finite integer or an "infinite nonstandard integer”.
The earliest reference to such economies is Rashid (1979). The class of Loeb
economies is broad enough-to contain both the measure theoretic versions of the
classical models and a class of atomless measure theoretic economjes.

The particular attraction of Loeb economies is that in addition to providing
a class of models consistent with both the classical and atomless measure
theoretic models, they allow one to exploit results for finite economies in ob-
taining analogous results for the atomless models. The mathematical muscle in
this task is the ;ork of Loeb (1975) and Anderson (1976, 1982). Recognition of
the usefulness of this work for economic ana]ys1s may be attributed to Rashid
(1979)—/ the ideas underlying this work were crystallized in Emmons (1984) and
were also employed by Yannelis (1983, 1984). To demonstrate the usefulness of
this approach, we will show that versions of Aumann's (1964, 1966) theorems on
core equivalence and the existence of a competitivg equilibrium, and Robert's
(1972) theorem on the existence of Lindah) equilibria, can be derived very simply
from results concerning finite economies, viz., Anderson's (1978) core equivalence
theorem, the Anderson-Khan-Rashid (1982) approximate equilibrium existence
theorem, and a version of the Gale-Mas-Colell (1975) existence result, respect-
ively. '

The remainder of the paper may be outlined as follows. Section 0 provides
the basic notation employed. Section 1 provides an introduction to nonstandard
analysis. For an alternative account of this material, see Loeb (1979); for a

more complete presentation, see Robinson (1974) or Stroyan and Luxemburg (1976).




Section 2 presents some of the basic properties of the nonstandard real number
system. Section 3 1s an introduction to Loeb measure spaces; alternative pre-
sentations of this material may be found in Loeb (1975) and Cutland (1983).
Section 4 presents the definitions needed from economics. Section 5 contains
the statements of the results demonstrated and a discussion of their signif-
icance, Section b consists of a statement of the basic technique underlying

each of the proofs. Finally Section 7 contains the proofs.




0. NOTATION

R denotes the set of real numbers

R’ denotes the 2-fold Caretesian product of R
Ri denotes the positive cone of )
For any X,y in R (or wY)

X2y=x; 2y, all i

X>y=x>y and x#y

X>> ¥ "X > Yy all i

i=1 171
L
Il = =[x}
i=1
Ixl_ = max  |x]
1<icy

u €RY denotes u = (1,1,...,1)

int A denotes the interior of the set A
IS| denotes the number of elements in the set A
For any x,y 1in R
x=y=x differs from y by an infinitesimal amount
XZy=™Xxwy or x>y J
X 3y =x is greater than y by a noninfinitesimal amount and not less
fn any other;

X %Y ™ X is noninfinitesimally greater than y in all coordinates.




1. INTRODUCTION TO NON-STANDARD ANALYSIS

At the heart of non-standard analysis 1ies.an extension, *R, of the
ordered field of real numbers. As a first description, the important features
of this field are:

i) *R properly contains R;
-i1) *R is non-Archimedian, i.e., it contains "infinite" numbers;
iii) the structure surrounding *R is "role preserving", thus, e.g., given
S CR there exists a set *S C ™R which plays a role in *R analog-
ous to that played by S in R; and
jv) statements that are true regarding R and the relations defined with
respect to R are also true in relationship to *R and the relations
that are defined with respect to *R, provided they are "suitably
interpreted".

A better understanding of the above description may be had by introducing

the notion of superstructure. Intuitively a superstructure represents a

"universe of discourse", i.e., it is a set large enough to contain all the math-
ematical objects under study in some mathematical inquiry. More formally, let
S be a set. Let VO(S) = S, and let Vn(S) = Vn_](S) u P(Vn_I(S)) for all

ne N, where pP( ) denotes the power set of the set in parentheses. Let V(S)

144

? Vn(S). Then the superstructure over S 1is the set V(S) together with the
2;$ions of equality, =, and membership, €, on the elements of V(S)}. We
shall denote the superstructure over S simp]y‘as V(S). The elements of S
are called atoms; no s in S has members. The elements of V(s) - § are
called entities.

Given a superstructure as defined above, there are a great many mathemat-

jcal statements that can be formed using the atoms and entities of V(S). A
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formal language provides the means by which to identify those statements about

V(S) which are true, and those which are not. (Note that we said "the means";
there will, in general, be a great many statements about V(S) whose truth is
not known). Our description of a formal language will be in two parts. We
shall first describe the symbols of a formal language, L, and then we shall
describe the process by which sentences are formed. When we have finished with
these we shall go on to describe how such a language is interpreted.

The atomic symbols of L are: (i) The (constants} a,b”,0,1,.... The set

of constants is arbitrary but fixed. It is a set of symbols large enough to be
placed into one-to-one correspondence with the elements of whatever structure(s)
is{are) under consideration. (11)3The varjables x,y*,.... The set of vari-
ables is countably infinite. ({1i1) The connectives A (“agd"), v ("or"),

> ("implies"), < ("if and only if"), and 1 ("not"). (iv) The guantifiers

¥ (universal) and J (existential). (v} The separation symbols [ and ].

The separation symbols are used to group formulas. (vi) The basic predicates

€ ("is an element of") and = ("is equal to").

Atomic formulas for L are constructs obtained by combining € or = (in

the ususal manner) with two atomic symbols which may be either constants or
variables. Thus, e.g., a=b, 3a€x, x€z are all atomic formulas. Well-

formed formulas for L (more briefly, wff) are defined inductively. If V is

an atomic formula, then [V] is a wff, If V 1is a wff then [1V] is a wff.
If V and W are wff, then [VAW], [VvW], [V> W], and [V W] are
wff. If V 1is a wff and x is an arbifrary variable, then [{¥x)V] and
[(3x)V] are wff provided V does not already contain one of {¥x) or (3Ix).

A sentence for L 1is a wff, V, 1in which every variable x contained in
V dis within the scope of some quantifier, i.e., it is within a wff W con-

tained in V which starts with the left bracket immediately following a quan-
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tifier and ends with the corresponding right bracket. It can be demonstrated
that every sentence for L has an equivalent statement of the form (Q]x])...
(ann)w. where for i=1,...,n, Q, denotes either ¥ or 3, and W is a wff
without quantifiers. Accordingly we shall reserve the expression "sentence" for
sentences of this form. A sentence is bounded when its quantifiers always ap-

pear in the forms:

[(vx)[[x € A] + ...]J] for the universal quantifier,
[(Ix)[[x € B} A ...]] for the existential quantifier,

where A and B are constants of L.

Now that we have described the basic elements of a formal language, we turn

our attention to providing an interpretation of such a language in set theory.
tet L be a formal language, and let V(S) denote the superstrﬁcture over the
nonempty set S. A one-to-one mapping, 1, of a subset of the set of constants
of L into V{(S) will be called an interpretation map of L in set theory.
The prepositional phrase "in set theory" may now be explained as follows. Each

constant in dom(I} is interpreted as its image under 1. Atomic formulas

[« = 8] and [« € 8], whose constants belong to dom(I), are interpreted as

I[u = g], "the atom or entity I{a) equals the atom or entity I(8)", and I € 8],
“the atom or entity I{a) is an element of the atom or entity I(g)", respect-

jvely. Thus the basic predicates € and = are interpreted in the usual set-
theoretical way. The process of interpretation may be completed by noting that:

the connectives for L are interpreted in the usual fashion; V = (¥x}[x € o »

H]. is interpreted as IV = "for all x elements of I{a), the statement

IN(x)“, where Iw(x) denotes the portion of the formula already interpreted

where occurrences of x other than as the variable of a quantifier or as a

variable within the scope of a quantifier are replaced by the elements of I(a};
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V= (Ix)[x €Ea A W] 1is interpreted as I

V = "there is an x 1in I(a)} such
that IN(x)“, where W(x) 1is as above; arbitrary sentences in L are inter-
preted by proceeding "component-wise" according to the rules above.

An interpretation, I, for the language L is said to provide a model for
a set, K, of sentences in L 1if all of the constants occurring in the sen-

IV is true for each V in K, Now let

tences of K are in dom(l), and
v(S) be a superstructure over the nonempty set S, and let L be a formal
language with a set of constants, C, of greater cardinality than the cardinal-

ity of V(S). 1 is a standard interpretation map if it maps C onto V(S).
I

Let K0 denote the set of sentences, V, such that "V holds in V(§). It is
easy to show thaf the set of all constants occurring in the sentences of Ko is
equal to dom(I), i.e., that I provides a model for Kp. Now suppose that I-
maps C into the superstructure V(T), and provides a model Ko‘ If 11

* jis not onto, we say that V(*S) = V(T) is a non-standard model of V{(S).

|l

Given S and *S, such that S € *S and V(*S) 1is a non-standard model
of V(S), ‘the collection of internal objects of V(*S) 1is defined to be *V(S)
= {T: T =*B for some entity B in V(S)}. (As we shall see momentarily,
*V(S) provides the key to the proviso "when suitably interpreted” in our initial
description of non-standard analysis). Any object in V(*S} that is not
internal is called external. It is an important fact that if the cardinality of
S5 s infinite and V(*S) 1is a non-standard model for V(S), then the set of

internal objects, *V(S), 1is properly contained in V(*S).




2. THE NON-STANDARD REALS

Having defined what a non-standard model is, we now postulate the existence

of a non-standard model, V(*R), of the reals satisfying the following condi-

tions:

1) *"MDR and *R#R;
2) *: V(R) - V("R) satisfies:
i) *r=r forall r€R,

i1)  (Transfer Principle) For every Al,...,A in V(R) and every

n
bounded sentence V(x]....,xn), V(A]....,An) holds in V(R) if
and only if V(*A],...,*An) holds in V(*R);
3)  (Denumerably Comprehensive) For every internal set A and every func-
tion f: N+ A, there is an internal function f-: *N -~ A that ex-
tends f.

4) (Enlargement) If (Aj) J €J 1is a collection of entities in V(R)

having the finite intersection property, then SI*Aj # ¢.l/

A couple of comments are in order at this point. First, note that by {21)
we are assuming that R 1is imbedded in *R. As R 1is an infinite set, the re-
marks made at the end of the last section indicate that there exist external sets
in this model. Some examples of external sets in V(*R) are *N - N, and N.
Secondly, the Transfer Principle provides the technical rationale for our
earlier description of "R as being "role preserving” and having the property
that true statements regarding R were also true regarding *R when "suitably
interpreted". The reference to suitable interpretation stems from the fact that
given the true statement V(A],...,An). it is the statement V made with regard
to the internal sets *A]....,*An that is true. The description "role preserv-

ing" stems from the fact that when we refer to some property regarding a subset
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of R, we are able to use the Transfer Principle to obtain a statement refer-
ring to the same property in regard to an internal subset of *R. Consider, for
example, the Archimedean Property of N in R, which may be stated as 'For all

r €R, there exists n €N such that n > [r|'; however, *N plays the "role"
of N 4in that by the Transfer Principle the statement 'For all r € %R, there
exists n € *N such that n> |r['. *R i’R, may be shown to be non-Archimédean,
i.e., it is false that "For all r € *R, there exists n € N such that

ns> |rj'; however, *N plays the "role" of N 1in that by the Transfer Principle
the statement ‘For all r € *R, there exists n € *N such that n > |r]' is
true.g/ In the future statements regarding *R that are made by appealing to the

Transfer Principle will be said to have been obtained by transfer.

From the discussion above, it should be clear that it is extremely
desirable to know jﬁst what objects in V{*R) are internal and which are ex-

ternal. The following result is often useful in regard to this problem.

Theorem (The Internal Definition Principle): A set A 1is internal if and

only if it can be described as

{x: xEB & V(x.A],...,A ) holds in V(*R)},

n

where B,A],....A are internal and V(x,x],...,xn) is a bounded sentence.

n

We conclude this section with some terminology and results that we shall
need later on. The element r in *R 1is said to be finite if there exists
n €N such that |r| < n, otherwise r 1is said to be infinite. The element

r in *R is said to be infinitesimal if |r| < 1/n for all n € N. The

elements ry and r, in *R are said to be infinitely close if r =T is
infinitesimal. In the event that ™ and r, are infinitely close, we shall

write r] = rz.
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It can be shown that for every finite r 1in *R, there exists a unique
element, denoted °r, in R such that °r = r; °r is said to be the standard

part of r. For every r €R, the monad of r, denoted mo(r), s given by

mo{A) = {x € *R: °x = r for some r € A}, It may be shown that ACR 1s com-
pact iff mo(*A) = A, i.e., iff every point of *A {s finite. Any subset of
*R having the property that all of its elements are finite will be called near-
standafd.

Now N, an infinite set, implies that N 1is properly contained in its
extension *N. The next result shows that N contains all of the finite ele-

ments of *HN and that *N - N contains all of the infinite elements.
Theorem 2.1: An element of *N s figite iff n €N.

Proof: That n €N 1implies n 1is finite is obvious from the definition.
Let n € *N be finite. Then there exists m€N such that 0 < n < m, Now

the following statement is true about R:
[(vx)IxeNI[[x <m]e[[x=1]vx=2)v...vI[x=m]lll.

The transfer of this statement is:

[yx)[xe*N][[x <m]e[[x=1]vx=2)v...v[x=mn]l]l.
It follows that n € N.

Considering the initial segments of *N, which are internal, analogy with
'ihe initial segments of N motivates the last definition for this section. An
entity A 1is said to be *-finite if there exists w € *N and an internal bi-
jection from {1,2,...,u} to A. The *-finite subsets of "R behave as
finite subsets of R do. It is a fact that every *-finite collection of in-

ternal objects is internal. Moreover, it is a fact that every *-finite subset
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of "R has both a smallest and a largest element.




3. INTRODUCTION TO LOEB MEASURES

Throughout this section we will be working within the framework of the
denumerably comprehensive enlargement, V(*R), of V(R) that we established in
the previous section.

Let X denote an internal set in V{(*R). Let ¥ be an internal algebra
of subsets of X, 1i.e., an internal collection, of internal subsets, satisfying
AUB and X - A are elements of ¥ whenever A and B are elements of V.
Let v: ¥ - ™R be an internal finitely additive measure satisfying v{X) < =,

We will call such an ordered triple an internal measure space. Let (X,¥,v) be

an internal measure space, a function f: (X,¥,v) > *B is said to be
v-measurable if f 1ds intennal and for each a € "R, {x € X: f(x) <a} €v¥ and
{x € X: f(x) < al €v¥. Let themap v: ¥ + R be defined by vo(A) = °{v(A)}

for all A€y, and let o(v) denote the o-algebra generated by ¥. The
following result is fundamental to our study, and has served as the foundation

for a large number of applications of non-standard analysis to other fields as

well.

Theorem 3.1 [Loeb, 1975]: Let (X,¥,v), v » and o(¥) be defined as above.
Then v has a unique, standard, o-additive extension v to of¥). For
each B € o(v), the value of this extension at B s given by
v (B) = inf (A) = sup (C).
° A€y ,BCA Cevy,BDC

Moreover, for all B € o(v) there exists B” € ¥ with vO(B A B°) = 0, where

4 denotes the symmetric difference operator.

Proof: Let (An) be a sequence of sets in ¥, such that BC U An. Let
n=1
(An), n € *N, be an internal extension of the sequence (An). Consider the
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m

set (m mE*N &BC U An}. It may be seen from the Internal Definition
n=1

Principle that this set is internal. From this and the fact that it is non-

empty (it clearly contains *N - N), it may be concluded that it has a smallest

element. But *N - N has no first element; hence it must be that there exists
m

mEN such that BC U A

n=1 n’
Hahn Extension Theorem [Dunford-Schwartz (1957), p. 136] now implies that v

It follows that v, is o-additive on ¥. The

has a unique, o-additive extension, which we shall also denote as v,» to a(vy).
Now let B € g(¥), and let ¢ >0 in R be given. Then there exists an

increasing sequence of measurable sets (in ¥) (An) such that B C ng? A, and

vo(H An) < vo(B) +e. Llet (An)nEE*N denote an internal extension of this

sequence. Then there exists w € *N such that ¥Vn € *N, 2 < n < q, Ap1 C

A A, €Ev, and uo(An) < vo(B) +¢. As ¢ > 0 was arbitrary we have that

v, (B) = infy oy p5p(A). Consideration of A - B yields v (B) = (C).

StPcey,8D¢
From the argument above it is clear that for a1l n in N there exist

sets An and Cn in ¥ with

A

n-]CAnCBCCnCCn-

1

and vo(Cn - An) < 1/n. Considering the internal extensions of the two sequences
(An) and (Cn), we see that there exists w € *N such that Am_.| [ Am CBC

C C€C 1 and v (C -A)<1/w=20, i.e., v (C -A)=0. It follows that
w w= o W w - 8] u w

there exists B* € v such that uo(B A B°) = 0.

The importance of this result is that it takes an internal measure space
and shows how to convert it into a standard measure space. Internal measure
spaces in general will only be finitely additive so that prior to Loeb's result
there was little that non-standard analysis had to offer to the study of measure

theory (which is not to say that there were not contributions to measure theory
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before Loeb's theorem). This result alone merely says that there exists a class
of standard measure spaces that could be generated using non-standard analysis.
What makes this result so valuable are the following three theorems of Loeb
(1975) (and their subsequent extensions), which essentially say that the measure
spaces (x,o(w).vo) can be studied interna!]y.éf j.e., by looking at the non-

standard spaces that underlie them.

Theorem 3.3: Let (X,¥,v) be an internal measure space. Let

f: X+ *[-n,n}, n €N, be v-measurable. Then, for each A € v, IAfdv &
-]
[t
Theorem 3.4: Let (X,¥,v) be an internal measure space. If

g: X+ R U {-=,+} 1is o{¥)-measurable, then there is an f: X + *R which is

y-measurable such that °f = g, v -a.e.

Following Anderson (1976) we shall call the completion of the space
(x.u(w).vo) the Loeb space of the internal measure space (X,¥,v), and we
shall denote it by (X,L(¥),L{v)). An important class of Loeb measure spaces is
the collection of Loeb spaces based on an underlying space (X,¥,v) such that
X is *-finite, ¥ 1is the *-finite set *P(X), and v 1is the counting
measure on *P(X), d.e., v{A) = |A]/|X] for all A. We shall call these

measure spaces "*-finite Loeb measure spaces" and shall denote them by

(T,L{z),L(n)), with |T| denoted by w. A function f: (X,¥,v) + *R is said to

be S-integrable if (1) f 4is vy-measurable; (2) °(Jx|f]dv) < w3 and (3)
Z€w, v(2) =0, implies Jllfldv = 0. The following two theorems of Anderson
(1976) serve to show that the results of Loeb above may be sharpened to say that
integration is "preserved in moving between" a Loeb space and its underlying

internal measure space. In the case of *-finite Loeb space {T,L{t),L{(u))
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we get the additional dividend that integration with respect to u is really
*-finite summation which, of course, can be manipulated in precisely the same

ways that finite summation can.

Theorem 3.5: Let (X,L{¥),L{v})) be the Loeb space of the internal meas-
ure space (X,¥,v). Let g: X +R be L(v)-integrable. Then there exists an
S-integrable function f: X - *R such that °f = g,L(v)-a.e. Moreover, °f is

L(v)-integrable and flf}dv = J|°f|dL(u).

Theorem 3.6: Let (X,L(¥),L(v)) be the Loeb space of the internal measure
space (X,¥,v). Let f: X+ *R be S-integrable. Then °f is L{v)-
integrable and °(!Sfdv) = Js°de(v) for all S in v,

The last of our mathematical preliminaries is the following theorem of
Anderson (1982). The significance of this result for our work will be discussed

in Section 6.

Theorem 3.7: tet (X,L{¥),L{v)) be the Loeb space of the internal measure
space (X,¥,v). Let Y be a second-countable Hausdorff space. If g: X > Y
is L(v)-measurable, then there exists an internal map f, f: X + *Y, f y.
measurable, such that °f(x) = g(x),L(v}-a.e. In particular, °f is L{v)-

measurable and has the same distribution as g.




4. DEFINITIONS

In this section we will present the basic definitions for the various
modeis to be considered. The presentation will necessarily be brief; readers
desiring more in-depth explanations of this material are directed to the refer-

ences at the end of the paper.

4.1 Preferences

Let P" denote the set of all binary relations » on ]RT 4 represents

the class of all potential preference orderings on the commodity space ]}53_ A

preference ordering is an ordinal ranking of collections of commodities. In
what follows we shall have need to restrict our attention to certain subclasses

of P", each possessing some of the properties listed below.

Properties of Preferences:

1} dirreflexivity: x3¥x for all XGIRT;

2) transitivity: [x >y and y > z] implies x> z;

3) free disposal {or weak transitivity): [x>> y and y >z] implies

X > 23
4) continuity: > has open graph in ]RT xIRT;
5) monotonicity: x> y implies x »y;

6) convexity: for all x GIRT, P(x) = {y EIRT: y » x} 1is convex.
Let PT denote the subclass of > in P" satisfying (3), (4), and (5). Let
P'S denote the subclass of > in P" satisfying (1), (2), (4),(5). Finally,
Tet Pg' denote the subclass of P" satisfying (1), and (4)-(6).

4.2 Measure Theoretic Exchange Economies

A measure theoretic exchange economy, E, 1is a measurable mapping

E: (X.M,v) » P x ]R,Q;, such that prroEdv is finite, where pr denotes the
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projection map from Pt x R_f_ to Ri The interpretation of the measure space
(X,M,v) dis as follows. X denotes the set of agents; M, a c-algebra of sub-
sets of X, denotes the class of all permissible coalitions of agents; and the
measure v provides a measure of the size of the coalitions in M, relative to
X. Let >-t be the projection of E(t) onto P, and let e(t) be the pro-
jection of Et) onto R_f. Then >-t represents the preference ordering of
agent t and e(t) represents t's initial endowment of commodities. An

assignment for E, f, is an integrable function of X into Rf_. An allocation
for £ is an assignment f: X - R_f such that fodv =J xedv. A price system

for E is a vector p in lRi. A competitive equilibrium for the economy E is

an ordered pair (p,f) such that p 1is a price system for E and f is an
allocation for E with the property that f(t) 1is maximal for the ordering

>-t 'il:\ {x ERi: p-x < p-e(t)}, v-a.e. in T. An assignment f dis blocked by
a coalition S €M if there exists an assignment x: T =+ R_p; such that x{t)
>y f(t),v-a.e. in 5 and stdv = Isedu. The set of all allocations that can-
not be blocked by any coalition in M is called the core of the economy £ and

will be denoted by C(F).

4.3 Measure Theoretic Public Goods Economies

In addition to the simple exchange economy described above, we will examine
an economy having & private goods, q public goods, production possibilities,
and a measure space of agents. Let P’l+q denote the set of binary relations
on Rf'q (the dimension of the cc.:nsumers' consumption sets being expanded from

£ to 2+q due to the presence of the q public goods). A measure theoretic

public goods economy, E, 1is a measurable mapping E: (X,M,v) > P“q X Ri,
+

such that prr‘°Edv is finite, together with a set A C R’ 9, and a non-

negative Radon-Nikodym derivative, ¢, of a measure o on M, where 8 is

absolutely continuous with respect to v and e(X) = 1. The interpretation of
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(X,M,v) is that of Section 4.2, and e(t) and >, shall retain their inter-
pretations as well. Note that consumers are taken to be endowed only with pri-
vate commodities, not public ones. The set A denotes the aggregate production
possibilities set for the economy and ¢ assigns profit shares to the agents in
X. An allocation for a public goods economy E 1is an ordered pair (x,y)

where X 1is an integrable function of X into Fii, y €RY, and (x(t),y) €

Ri*Q.u-a.e. in X. A feasible allocation for the public goods economy E is an

assignment (x,y) such that (Jx(x—e)dv.y) € A. A price system, p, for the

public goods economy E is an ordered pair (px,py) where p € a = {x € RE:
)
I X = 1} and Py is an integrable function from X into nmﬂ. A Lindahl
i=}
equilibrium for the public goods economy E is an ordered pair ({x,y},p).
where (x,y) 1is a feasible allocation for E and p is a price system for F
such that:
i) (px,fxpydu) . (Jx(x-e)dv,y) 3_(px,fxpydv) -z forall z 1in A; and
i) (x(t),y) is maximal for ». in B(p,t}, v-a.e., where B(p,t) =
: L4q, . . . -

(2 €RE: (pap (6)) * 2 <o, elt) + 68 (py[yp, )+ ([y(x-eda,

y)lh.

4.4 Nonstandard Exchange Economies

A nonstandard exchange economy, E, 1is an internal mapping E: T » *pt & 1Ri,

where T is an internal set of agents with cardinality w € *N. Let >}

be the projection of E(t) into *pY and e(t) the projection of E(t) onto
ﬂRi. The interpretation of >, and e(t) 1is the same as it was for standard
exchange economies. An assignment for the nonstandard exchange economy F is
an internal function f of T into ﬂRi. An allocation for the nonstandard
Ly of(e) =

w
T
*a(t). A price system for the nonstandard exchange economy E is a vector

exchange economy & 1is an assignment f: T ﬂRi such that

1
w

z
T
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p in #Ri. A competitive equilibrium for the nonstandard exchange economy

is an ordered pair (p,f) such that p is a price system for £, and f fis

an allocation for E such that f(t) is maximal for > in {x€ Rt P X<

p - e(t)) for all t € K, where K is an internal set of agents such that
|K]/w = 1. An assignment f is blocked by an internal coalition SCT, if
there exists an assignment x: T + ﬂRi such that x(t) > f(t) for all tE€S

and %— x(t) = % T e(t). As before, the set of all allocations which cannot be
S

I
S
blocked by any coalition in the economy E 1is called the core of E and is

denoted by C(E).

4.5 Nonstandard Public Goods Economies

A nonstandard public goods economy, E, {is an internal mapping

E: T~ *p?*d X ?RE, together with a set A C *Rg+q. and an internal mapping
]

¢:T + R such that Sz ¢(t) = 1, where |T| = © € *N. The interpretation of
the maps ? and ¢, and the set A is as above. An allocation for the non-
standard public goods economy E is an ordered pair ({x,y), where x is an
internal mapping from T into *Ri. y € ., and (x(t),y) € “R_t"q for all

t in T. A feasible allocation for the nonstandard public goods economy E is

an allocation (x,y) for E such that (%-z (x(t) - e(t)),y) € A, A price
T

system for the nonstandard public goods economy & 1is an ordered pair (px’py)
)

where Py € * = {x € *Iﬁ: I Xy = 1} and py is an internal mapping from T
i=1

into *B{i. A Lindahl egquilibrium for the nonstandard public goods economy E

is an ordered pair ({(x,y),p) where (x,y) 1is an allocation for & and p is

a2 price system for E such that:

) (e 2 py(8)) - (;}§ (x(t) = (e(t))yy) > “’*’l'? p, () + z for all
z €EA; and

ii) (x(t),y) 1is maximal for > in B(p,t) for all t €T, where
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B(p,t) = {z € *K*9: (pyopy(t)) 2 < p, - elt) + s:»(t)[(p‘,‘.;l-.zr p(t))

‘ﬁ (x(t) - e(t))y)).




5. THE MAIN RESULTS
We can now state the main results of the paper.

Theorem 5.1: Let E: (T,L{z),L{p)) + P% X Ri be an atomless (Loeb) measure

theoretic exchange economy satisfying:
i) IT edL(y) »>» 0; and
ii) for all t €T, 71 €K C P%, where K 1is compact in the topology of
closed convergence.
Then if f € C(E), there exists a price system p for E such that (p,f) is

a competitive equilibrium for E.

Theorem 5.2: Let E: (T,L(x),L(n)} ~ E% X I&, be an atomless {Loeb) measure
theoretic exchange economy satisfying:
i) I edL(u) >> 0; and
ii) fgr all t€T, > €k'C Pg. where K' is compact in the topology
of closed convergence.

Then there exists a competitive equilibrium for E.

Theorem 5.3: Let E: (T,L{t),L{p)) » P§+q lei be a Loeb measure theoretic
public goods economy satisfying:

A0) For all te€T, ">E € K" C P§+q, where K" is compact in the topology

of closed convergence;

Al) e(t) >> 0 for all tE€T;

A2} A is a closed convex .cone with vertex 0;

A3) AD-RK' and ANRI™ = {0}; and

A4) there exists (;.;) € A such that ; >> 0.

Then there exists a Lindahl equilibrium for E.
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Notice that Theorems (5.1)}-(5.3) are versions of the core equivalence result
of Aumann (1964), the existence of a competitive equilibrium result of Aumann
(1966) (and Schmeidler (1969)) and the existence of Lindahl equilibrium theorem
of Roberts (1972) respectively. In that sense our results are not really new
(aithough some of our assumptions are weaker than those of the above authors,
and therefore are not implied by theirs). Moreover, there is a restriction as
far as the measure space of agents is concerned. Indeed, our space of agents in
a Loeb space, contrary to the arbitrary atomless measure spaces which can be

used in the above cited papers. However, our objective is not to provide the

most general versions of the above theorems but rather to illustrate a method of
obtaining results for mathematically consistent models of perfect competition

in a very simple and intuitive way. We must emphasize that we do not need the
Fatou Lemma (in one dimension or several dimensions) and the complicated lengthy
process adopted in Aumann (1966), Schmeidler (1969), and Roberts (1972). More-
over, we do not need the Lyapunov theorem; only a simple version of the Shapley-
Folkman theorem is needed. As a matter of fact, our results turn out to be
corollaries of theorems proved in a fixed finite economy framework, and there-
fore have been obtained in a very simple and natural way. Finally, we believe
that the restriction involved in the measure space of economic agents is not
really important. Indeed, if the purpose of an arbitrary atomless measure space
of agents is to capture the meaning of perfect competition, then Loeb spaces

serve precisely this purpose.




6. STRATEGY OF THE PROOFS

The theorems stated above are concerned with economies defined on a *-
finite Loeb space of agents. Henceforth we shall refer to such an economy as a

Loeb economy. Now the essence of Theorem 3.7 {Anderson's Lifting Theorem} is

that given a Loeb economy E: {X,L{t),L(n)) ~ ! ox Rﬂ, there exists a non-
standard economy E': X + *pM ¥ *IlT having essentially identical pre-
ferences and endowments. More precisely, given the Loeb economy E, there
exists a nonstandard economy, E', having the property that ©(E'(t))

= E(t),L(u)-a.e. It will then be noted that E' inherits properties similar to
those stated {for E) 1in the hypotheses of the theorem to be proved. These, in
turn, will be sufficient to ensure that the analogous result for nonstandard
economies may be had by transferring a known finite result.

The proofs will then be completed by "pushing back down" to the Loeb economy
that we began with. This "pushing down" will consist, in large part, of com-
posing the standard part mapping with the nonstandard solution and utiiizing the
strong similarities that exist between E and E'. The S-integrability of
allocations of private goods in the nonstandard solution will play an important
part at this stage of the proof. In particular, S-integrability will be nec-
essary for demonstrating needed integrability properties in the solution of the

theorem being proved.




7. PROOFS OF THE MAIN RESULTS

Proof of Theorem 5.2: By Theorems 3.7 and 3.5, there exists an internal

nonstandard exchange economy *E: T + *P; X *nt such that:
o(*E(t)) = E(t),;L(n)-a.e.; and

*e(t) = ISEdL(“) for all S € 1.

1,
S
We will need to make use of the following result of Anderson-Khan-Rashid (1982),

Theorem 7.1: Llet Fp: 7T~ P; X lﬁ be a finite exchange economy (|T] =
n€N). Then there exists f: T+R! and p € int K such that

i) f(t) 1s maximal for >y in {x EIRf',! p-x<p-e(t) forall te€T,

and A .
)
. ] ‘ (2+1)
ii) = © max {z f,(t) - g ey(t),0) < max He(t)i.
n 4= T 1 T 1 i teT

Now the nonstandard exchange economy *E satisfies:

*
i) for all tE€T, >£-e *K C *12'", where *K is near standard in the

topology of closed convergence; and

11) ;1— *e(t)»>, 0.

X
T
It follows from the transfer of Theorem 7.1 that there exists an ordered

pair (p,f) such that:

*(7.1)  f(t) Tis maximal for *> in {x e*mi; P x<p - *e(t) for all

t € K, where K 1s an internal set of agents such that

[K]/1T] = 1, where |T] = w € *N - N.

*(7.2) 1 5 max iz f.(t) - 1 *e;(t),0) < (241) max N *e(t)h/Vw = 0, i.e.,
i) T ! T ! ter
1o of(t) < L r*e(t).
w T ~ W T

Note that in *(7.2), the bound (e+1)max F*e(t)l/Ju 1is now infinitesimal
teT
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since *e 1{s S-integrable. Given the fact that preferences

1 z *e(t). Hence, we have
“r
shown that a competitive equilibrium, (p,f), for *E exists. It remains to

are monotone, we can strengthen *(7.2) to %—z f(t) =
T

be shown that the existence of a competitive equilibrium for *E implies the
existence of a competitive equilibrium for E. The following lemma will be

needed in this task.
Lemma 7.1: f: T~ *Ri is S-integrable.

Proof: Note that p - f(t) < p - *e(t) for all t in T. Therefore, for
any internal set of agents S having |S|/w = 0, it follows that:

p - *e(t) = p - r *e(t)/w = 0,

p - L
S S

1
p - f(t) <=

E {e

1
Z flty =—1
S ©g

by the S-integrability of *e. On the other hand, since p >>» 0 (see, e.g.,
1

Khan (1975}) it follows that = I f(t) = 0.

The proof of Theorem 5.2 can now be completed by verifying that (°p,°f) is
is a competitive equilibrium for E. The proposition below shows that an even
stronger relationship exists between the competitive equilibria for E and the

competitive equilibria for *L,

Proposition 7.2: If the pair (p,f) is a competitive equilibrium for *E

if and only if (°p,°f} 1is a competitive equilibrium for E.

Proof: Gﬂ):l Let. (p,f) be a competitive equilibrium for *E and (°p,°f)
is not a competitive equilibrium for &. Then there exists y: T »-Ri, L(ﬁ)-

integrable such that
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(7-]) JT ydL(U) = IT bedl-(ll)a
and
(7.2) °p,y(t) < °p + e(t) and y(t) t °f(t) for all te€S, L{u)(S)>» 0.

By Theorem 3.5 there exists a function x: T *l& such that x 1is S-

integrable and °x =y, L(u}-a.e. From (7.2) it follows that °p - ®x < °p -
e(t) and °x >E f(t) for all t€S, L{y)(S) > 0. Since °x is L{u)-

integrable and °x = y, L(u)-a.e. JT °xdL(p) = JT ydl(u} = IT edL{n). By

Theorem 3.5 we have IT oxdl (u) = %—z x(t). Since IT edL(p) = %—z *e(t) by
T T
(7.1) we have %-z x(t) = %-z *a(t). Moreover, it follows from (7.2) that
T

P x<p- *e(t) and x *> f(t) for all t €S, |S|/u # 0, a contradiction
to the faét that {(p,f) is a competitive equi11br{um for *E.

(=}: Let (°p,;f) be a competitive equilibrium for E énd {(p,f) 1is not
a competitive equilibrium for *E. Then there exists an internal function

y: T+ *R, such that

(7.1)¢ p-y<p- *e(t) and y ;% f(t) for all t €S, |S| internal,

|S|/m f 0.
It follows from (7.1)*' that for any infinitesimal set V, .p - %-z y(t) = 5.3 p
v V
y(t) 5.%‘2 p+ *e(t) = 0 since *e is S-integrable. Since p >0,
v
%-z y(t) = 0 and therefore y dis S-integrable. By Theorem 3.6, °y in
v

L(y)-integrable and from (7.1)' it foilows that °p - ®°y < °p - e(t) and
°y > f(t) for all te S, L({p){S) >0, a contradiction to the fact that
(°p,°f) is a competitive equilibrium for E. This completes the proof of the

proposition.

Proof of Theorem 5.1: By Theorem 3.7, there exists an internal nonstandard
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exchange economy *E: T -» *P% X *Ri such that °(*E(t)) = E(t)}, L{p)-a.e. We

now make use of the following theorem due to Anderson (1978).

Theorem 7.2: Let EF: T+ Pf xiRi, be a finite exchange economy,
(|IT] = n€N). Let M= sup {ﬂe(t1) + ... 4 e(tg)ﬂm: t, €T, 1<ice) If
2

f € C(EF), then there exists p € {q EERi: L q; = 1} such that
i=1

03 Frlec (0 - el <5
and
(7.4) %; linf {p + (x - e(t)): x> f(£)3] < &,

The nonstandard exchange economy *E will satisfy the following assumption,

i) *JE € *X C *P?.*K‘ is near standard in the topology of closed con-

vergence.

ii) II'%"“”W 0.

By the transfer of Theorem 7.2 we have that if f: T » #r* is an allocation

4
£
I ¥: =1} such that

such that f € C(*E), then there exists p € {y € ﬁmi: i
1

i
2M 0

(13 prle e (fe)-re()] < 5e 0 or
p'lzf(t)=p-lz*e(t) and
{ T U}T ’
*(7.4) :1-% linf @ - (x - *e(t)): x 5 f(en] < H a0, e,

*
p - (f) =p - *e(t) = inf {p - x: x > f(t}} for all tE€XK

where K 1is an internal set of agents such that |K|/w = 1.

It follows from Assumption (ii) and the continuity of preferences that *(7.4)

can be strengthened to f(t) 1is maximal for’ > in {x:p-x<p- *e(t)}
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for a1l t € K, where K 1is an internal set of agents so that [K|/w = 1,
Lenma 7.2: f: T+ R, is S-integrable.
Proof: Same as in Lemma 7.1,

The proof of Theorem 5.1 may now be completed by noting the following

proposition.

Proposition 7.2: f € C(*E) » °f € C(E).

Proof: (=): Let f€ C(*) and °f & C(E). Then there exists y: T + Ri
L{u)-integrable such that

(7.5) y(t) 3 *f(t). for all L €5, L(x)(S) » O
(1.6)  [gvaw) =[5 eatn).

Since y 145 L{p)-integrable by Theorem 3.5, there exjsts x: T » %Ri S-
integrable such that °x =y, L(u)-a.e. Moreover, by the same Theorem, °x 1is
L{u)-integrable. Hence, IS °xdL{y) = IS ydi(u) and by (7.6) IS °xdl{y) =

[S eaL(u). 1t follows from (7.5) that x(t) ->{ f(t) for all t€S, |S|/wfoO.

Furthermore, Since IS °xdL(n) = %-g x(t) and IS edi(y) = %-g *e{t) we
have then %—z x{t) = %-r *e(t), a contradiction to the fact that f € C(*E).
S S

(=) : Let °fec(e) and f & C(*E). Then there exists an internal function
y: T fmi .such that

(7.7)  y(t) % £(t) for all te€S, [S|/uf 0,

and

*e(t).

(7.8) y(t)

E|—
n
£ |

w1
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Since *e is S-integrable for any internal set V, |V|/u = 0 we have

12 y(t) = Ls*e(t) = 0. Therefore y 1is s-integrable. By Theorem 3.5 °y
v

v

f5 L)-integrable an "Gyt - [ valG). since [ LG = {5 v(t)

and IT edL(u) = -¥ *e(t) from (7.8}, it follows that JS °ydl(u} = [S edL(n).
L{(u)(s®)

> 0, @& contradiction to the fact that °f € C(F). This completes the proof of

Moreover, it follows from (7.7) that °y(t) > °f(t) for all t €S5S,

Proposition 7.2.
It follows from Propositions (7.1) and (7.2) that the core equivalence
theorem is true for *E if and only if it is true in E. This completes the

proof of Theorem 5.1,

Sketch of the Proof of Theorem 5.3: By Anderson's Lifting Theorem and

Theorem 3.5, there exist internal mappings E': T » *P§+q x‘*Ri and ¢': T+ *R
such that

(7.9) E'(t) = E(t) and ¢'(t) = ¢(t),L{n)-a.e.,

and
(.10 1 et} - [§ et ang L e(t)a = [semam wse-.

Note that *A, E', and ¢' comprise a nonstandard public goods economy. Note
also that Foley's {1970) technique may be used in conjunction with the Gale-Mas-
Colell (1975) existence result for economies without ordered preferences to ob-

tain the foliowing:

Lemma 7.3: let EF: T~ P§+q x]Ri be a finite public goods economy satis-
fying:
1}  e(t) > 0;

2) AF is a closed convex cone with vertex O0;
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3 A O-RYY and A NR{TY = {0); and
4) there exists (x,y) € A such that y >> 0.

Then there exists a Lindahl equilibrium for E.

Now the nonstandard public goods economy E' satisfies:

NO) for all t €T, :% € *" C *P§+q. where *K" ijs near-standard in
the topology of closed convergence;

N1) e'(t) »5 0 for all t€T;

N2) *A 1is a closed, *-convex, *-cone with vertex 0;

N3) *A D R and *A W'Y - (01 and

N4) (x,y) €*A and y >3, 0.

Hence, by the transfer of Lemma 7.3, E' has a Lindahl equilibrium, ((X,¥}.p).
Lemma 7.4: (g x(t)/w,y) 1is near-standard.

Proof: It is a standard exercise to show that {A1)-(A3) imply that
F e (BP0 (A + (f7 edu).0))) s compact. It follows that mo(F;) is near-
standard. Now (z X(t)/w,y) € F, = (RI'9 N (*A + (£ e'(t)/w,0))), and (7.9)
T T

implies F, C mo(FI).

Lemma 7.5: For all n € *N - N, iSnI/w =1, where §":z=(t€ T: x(t) <

nul.
Proof: Supposition to the contrary contradicts Lemma 7.4.
Lemma 7.6: X 1is S-integrable.

Proof: A1l that really requires demonstration is Condition 3 of the
definition. Let Z € v satisfy [Z|/w=0. *A a *-cone (N2) implies that
equilibrium profits for E' are zero. That, together with the monotonicity of

the %, implies
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(7.11) px - x(t) + Bg(t) sy = 5x - e'(t) for all t €T,

Aggregation of (7.11) over Z, together with (7.10), yields

(702) Bz Xe)u) = 0,

n
o

(7.13)  (z p(t)/w) - ¥
2

The properties of the preferences in *K' may now be used to show that all
prices are noninfinitesima!ly greater than zero. In particular p >3 0, and

the conclusion follows from (7.12).

Lemma 7.7: = 5y(t)/m is near-standard.
T

Proof: Suppose to the contrary. Then (N2} and (N4} imply that the profits

associated with ((x,y¥),p) are not bounded, a contradiction to the equilibrium

conditions for E'.

Lemma 7.8: There exists an internal set GCT, |G|/w =1, such that

By(t) is near-standard for all t € G.

Proof: Supposition to the contrary contradicts temma 7.7. Let J =
{j € {1,...,q}: 5yj is not S-integrable}. If J = ¢, then straightforward
argument shows that °((X,y¥),p) is a Lindahl equilibrium for E. For the re-
mainder of the proof we consider the case J # ¢. Let the map By: T+ * be

defined by

0 (i,t) € J x (T-6)
(7.14) py_(t) =
3 By, (1) (3.t) € x (T-6)

J

then By is S-integrable. Moreover, 5y(t) is near-standard for all t €T,
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Lemma 7.9: (°x(t),°y) s >;-maximal on B(t.(°6x,°5y)).L(p)-a.e.
Proof: From equation (7.11) we have

(.15) (Bt By(t)e) - (z (X(t) - e (1)) = 0.

The left-hand side of (7.15) may be rewritten as

p, (% x(t)/w) + jzﬂ “% pyj(t)/m) : yj) + jezd ((§ 5yj(t)/w) - )'fj)

which, from equations (7.13) and (7.14) is infinitesimally close to

Py - (# x(t)/w) + jiﬁd ((; pyj(t)/w) - y) + 3 ((; pyj(t)/w) . ij).

So that B(t.(°ﬁx,°ﬁy(t)) = B(t,(°p,,°p,(t)) for all t €G. Finally, the sup-
position, to the contrary, that there exists t €6 for whom there exists
z € B(i,(°5x,°5y(£)) preferred to (°x(t),°¥) can be shown to contradict the

+ -maximality of (x(t),¥).
t

At this point °((i,§),(ﬁx,ﬁy)) is a natural candidate for an equilibrium
for E. Unfortunately, the production optimality condition cannot be demonstra-
ted due to the change from ﬁy to ﬁy. This situation may be remedied however
by employing a transformation due to Roberts (1972) . The essence of this trans-
formation is that it raises py to a level which Ey suggests should be (and
in fact is) consistent with production optimality. Moreover, it does this with-

out altering consumers' choices. Let the price system r (for E) be defined

by

ry(t) = °py(t) + [°(§ 5y(t)/m) - °($ py(t)/w)] for all t €T.
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By S-integrable, Lemma 7.7, and the fact that By(t) 5_5y(t), for all t €T,
jmply that r 1is L(p)-integrable. Moreover [T rydL(p) = °(¥ 5y(t)/m).
Straightforward argument will now show (1) that (°x,%y} 1is a feasible alloca-
tion for E, and (2) that {°x,°y) is ).t-maximaL on B(t.(rx.ry)) a.e, in
T. The maximality of profits may be had through a simple argunent by contradic-

tion.




FOOTNOTES

Brown-Lewis (1981) employ similar ideas but no "1ifing" and "pushing
down" arguments were used.

The existence of such a model can be demonstrated by means of an
ultrapower construction. For details see Stroyan-Luxemburg {1976).

Functions on R which are extensions of a given function f, on R
are denoted by the same symbol, f.

Pun intended.
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