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1. Introduction

We consider systems of differential equations

¢=p(z,9), ¥=4(=y) (1.1)
in which p and ¢ are polynomials, and seek conditions under which the origin is a
centre (that is, a critical point in a neighbourhood of which all orbits are closed).
The derivation of conditions for a centre is a difficult and long-standing problem in
the theory of Nonlinear Differential Equations; necessary and sufficient conditions are
known for very few classes of systems. There are well known conditions for quadratic
systems (see [4]) and the problem has been resolved for systems in which p and
¢ are cubic polynomials without quadratic terms ([7]), but it is only recently that
conditions have been obtained for other classes of cubic systems [3].

Our interest in ‘the problem of the centre’ arose as part of our investigation of
Hilbert’s sixteenth problem. Hilbert’s problem is to determine the maximum possible
number of limit cycles of polynomial systems (1.1) in terms of the degrees of p and
g. To have a realistic chance of making progress particular classes of systems are
investigated and various kinds of bifurcation considered. We are interested in the
number of limit cycles which bifurcate from the origin under perturbation of the
coefficients in p and ¢; these are called small-amplitude limit cycles. Much of our
recent work has been concerned with such limit cycles in cubic systems (see [10,11]

for instance, and the survey articles [8,9]).



In 1944 Kukles [6] proposed necessary and sufficient conditions for the origin to

be a centre for systems of the form
T =y,
(1.2)

¥ =—2 + a,2% + a,zy + agy’ + a,z* + a2’y + agzy? + ay’

(see [NS, page 124]). Kukles stated that the origin is a centre if and only if one of

the following holds:
(K1) M=M,=M,=M,=0;
(K2) a, =M, =M, =M, =0;
(K3) a;=a5=20a,=0;
(K4) ay =ag=ay=a,=0;
where

M, = a4a§ + aym,

M, = (3a,m + m? + agal)ag — 3a,m? — azaim,
M, =m + a,a, + a4,

M, = Qaeag + 2a3 + 9m? + 27a,m

and

m = 3a, + Gyay.

Our interest in (1.2) arose when Jin and Wang [5] reported an example of a

system for which the origin appeared to be a centre but which was not covered by



any of the conditions {K1)-{K4). Their example has a, =0,a; = —24¢,,a, = ~}a7,
ag = —3a,,as = 0 and 18a2 = a}. It was proved in [2] that the origin is then indeed
a centre. In [2] we also considered the class of systems {1.2) with a, = 0. We showed
that at most five limit cycles bifurcate from the origin and that the origin is a centre
if and only if one of the following conditions holds:
(i) a; = a5 =0,
(i) @) = a3 = a5 =0,

 (1.3)

(iii) a, = ag = ag = 0,a, + a; =0,

(iv) ag = (a, + ag)ag, ag = —(a; + a3)a,, 05 = —(a, + az)aj(a, +2a;) 7" )
It follows that the Kukles conditions (K2), (K3), (K4) are in fact complete for this
subclass.

To study the full system (1.2) we scale the variables by a,. Let X = a,z and

Y = a,y; the system becomes

X =Y,
(14)
X=-X+4+AX 4+ XY +AY + A, X+ A XY + AXY? + AY?,
where A; = a;/a, (¢=1,3)and A, =q;/a} (i=4,56,7). Thus the case a, =0
has to be considered separately. We did this in [11] where we proved that at most
six limit cycles bifurcate from the origin and that if a, # 0 the origin is a centre if

and only if

ay = —2a,,a, = —ia3, a5 = —3a,,a; = 0,182 = o?, (1.5)



We note that the example of Jin and Wang is covered by (1.5).

The necessity of the conditions which we derive and their sufficiency are proved
independently. For the necessity we exploit the fact that there exists a function V
defined in a neighbourhood of the origin such that V, its rate of change along orbits,
is of the form V = 5,r2+5,7% +..., where r2 = z% +y2. The coefficients 7,, are the
focal values and are polynomials in the coefficients arising in p and ¢. The origin is
a centre if and only if all the focal values vanish. By Hilbert’s basis theorem the set
of focal values has a finite basis in the ring of polynomials in the coefficients arising
in p and ¢.

Since the origin has to be a critical point of focus type, the system (1.1) can be

written in canonical coordinates as
¢=Ax+y+pzy), v=-2+dy+dzy)

It is easily shown that n, = A and we recall that the origin is a fine focus if A == 0.
Since our aim is to derive conditions under which all the focal values vanish, after
calculating a focal value, n,, say, we ‘reduce’ it by means of substitutions from the
relations 0, = ... =95 _, = 0.

The sufficiency of the conditions we give for a centre is proved by a technique
recently developed by Christopher [3]. Invariant algebraic curves are sought and ap-
propriate Dulac functions constructed. In this way explicit first integrals are obtained

and this was the procedure used in (2] to confirm the conjecture of Jin and Wang.



Explicitly it was shown that under conditions (1.5), with the equations scaled such

that @, = 1, the orbits are the level curves of the function
(¥*(z +1) +v2yz(z —2) +6(32 - 5))(=(V2y + 2) +3(1 — 2)) ™ exp(z(1 — 42)) + ¢(2)

where ¢(z) = [ exp(u(1 — ju))du. Under conditions (iv) of (1.3) the orbits are the
level curves of

(v — oy (ke + 1)+ (y +o_(kz + 1))~ exp{(p*(1 + p) w2 + 2rpz)0r,}
where 0y = —a, £ 0,, 0 = ay(1+p)/2p%:%, 02 =07+ (1 + p)/p*K?, K = a, + a4
and p = ay(a, + a3)"'1 (see [1]).

The work which we describe in this paper is heavily dependent on the use of
an appropriate Computer Algebra system, and indeed would not be possible without
such facilities. Large-scale computing is involved and much of the interest of the
work derives from this. We use REDUCE and most of the computing was done
on the Amdahl 5890/30 at the Manchester Computing Centre. However, we soon
encountered the 64 mbyte limit imposed under the VM/XA CMS operating system
and difficulties also arose because the maximum cpu time allowed per job was only
2500 seconds. The final calculations were performed on the Cray 2 at the Minnesota
Supercomputer Center at Minneapolis. The computing problems arise because of the
need to manipulate large polynomials. The intermediate expression swell together
with the size of the integers occurring caused severe difficulties; for instance, it was

not possible to set up some of the polynomials within 64 mbytes.



Even with large-scale computing facilities it was only possible to obtain necessary
and sufficient conditions for persistent centres. We say that a centre is persistent
relative to a class S of systems if it is not destroyed by all perturbations within
S we also describe the corresponding conditions as persistent. Thus non-persistent
centres are given by isolated points in parameter space, and are consequently of less
interest to us than persistent centres. We remark that all the known conditions
for a centre for quadratic and cubic systems are in fact persistent. We identify all
conditions for a centre for (1.4) except possibly for a finite set of points in the space
of coefficients A,, A,, A,, A, Ag, A; and find that there is exactly one condition for a
centre not covered by (K1)-(K4) and (1.5). Throughout the paper ‘persistent’ means
persistent relative to the class of systems of the form (1.4). We conjecture that there

are no non-persistent centres.



2. The Kukles System
As explained in Section 1 we consider systems of the form
z =y,
(2.1)
y=—z+ Al:;:2 +zy + A3y2 + A4a:3 + A5a:2y + Asmy2 + A7y3.
The focal values for (2.1) were calculated using FINDETA, our computer algorithm
for determining focal values of systems of differential equations of the form (1.1);
we used an improved version of that described in [12]. The reduced focal values are
then obtained by making a sequence of rational substitutions. Here we are concerned
only with the zero sets of the reduced focal values - in contrast to the situation when
bifurcating limit cycles are investigated, when it is necessary to keep track of signs.
We therefore need retain only the numerators of the reduced focal values, and these
we denote by L(k); constant multiplicative factors are also ignored. At each rational
substitution, the zeros of the denominator are excluded and considered separately.
For convenience, we let x = A, + A;, p = A, + 4; and v = A, + 34,.
Computation of 7, gives
L(1)=x+ Ay + 34,.
Now we certainly require L(1) = 0 for a centre; so we take
A, = -k -34,. (2.2)

Substituting this into 5, gives

L(2) = —15x%v + 1564 + 6xA,v — 1264, + Bud, — Quv + 24, 4 604, — 2v.



From L(2) =0 we take
Ay = (156%0 — 15x5p — 6k Ay — 6pAg + Juv — 24, + 20)/6(v — 2) (2.3)

provided that v — 2« # 0. The case v — 2x = 0 will be considered separately.

The substitution (2.3) for A4 gives
L(3) = cup’ + e + ¢
where

¢y = 9(20k® — 29x%v + 50k% 4, + 18x1% — 82k A, + 64 A] — 30° + 181° 4,
~ 8vA? — 8A3)

ey = 3(—210x° + 195x%y — 420k* A5 + 57x%0? — 40263V A5 + 408x° A] + 24470
+180x%12 4, ~ 132k%v A2 — 40x%v ~ 48k% A3 + 40k% 4, — 132x1° 4,
+ 108,12 A2 + 64k0® + 24kv AT — 160kv A, + 96K8A3 + 241° A2 —~ 120°
- 242 A3 + 16V% 4, + 12042 — 1643),

¢y = 630x°y — 1395x°%1% + 12605511A3 + 1665x*1° — 5U4n4v2A3 - 1224&4VA§
+ 660x*y — 660k* A, — 1188k°1° A, + 10445317 A2 + 15067 + 144x3 v A3
— 5826°v A, + 4326° A + 144k%1° A2 — 3246%0° — 1444707 43
+ 708212 A, — 43262V A2 + 487 A3 + 216Kk — 504k1° A, + 360K12 A2
+ 3260% — T2xv A} — 64kv A, + 32A2 ~ 120° + 240* 4, — 120°A2 + 4°

— 1607 A, + 200 A% — 843,



Suppose for now that ¢, # 0; we take

gl = (e p+ )/ (24)

from L(3) = 0 and obtain L{4) = Cu+ D, where C and D are polynomials in «,v
and A, with 184 and 255 terms respectively. Now L(4) = 0 if we take y = -D/C
with C # 0; the case C = 0 will be considered later. For consistency we require
p from L(4) = 0 to satisfy L(3) = 0 also. Substituting g = —D/C into (2.4) and

factorising the expression so obtained, we have
(v - 2&)2c§(u - A (26 + 9° 4+ 4y — 2A4,)f(k, v, Ag) =0 (2.5)

where f is a polynomial of degree 19. With g = —D/C and u? given by (2.4),
further computation gives

L(5) = (v — 26)*c2(v — A3) (26 + 9° + 4v — 24,)g(k, v, A) (2.6)
and

L(6) = (v — 26)°c3(v — A3)(26 + 9% + 4v — 24,)h(K, v, A,) (2.7
where g and h are polynomials of degrees 20 and 25 respectively. We have excluded

the possibilities v — 2x = 0 and ¢, = 0, so the origin may be a centre if v — A; =0

or 26+ 97 +4v —24, =00r f=g=h=0.

Now v — A; =0 is equivalent to @, = 0, which was investigated fully in [2], so

we exclude the possibility that v — A; =0 in the following.



Consider the possibility that 2x + 92° + 4v — 24, = 0 with 4; and A given
by (2.2) and (2.3) respectively, and g = —D/C. Restoring the original coeflicients
a; of equation (1.2) and after some manipulation we obtain the conditions given in

the following result.

THEOREM 2.1 Suppose that a, # 0 and that
a, = —m(9m? + 4a3)/2a;,
a, = —m?*(9m? + 2a3)/2a$,
as = m(9m? + 2a3)/2a;,
ag = ---(].Sm2 —9ma,a, + 2a;)/9a§,

where m = aya, + 3a,. Then the origin is a centre. The orbits are the level curves

of the function
A. ((9m® + 2ma})u + 2a3)(mu + az)*za;""e’(“)du

+9agy2(3m:z - agy + 302)_2(m3: + az)"le’("‘)
where

1
3(x) = E(sz — 18ma,a; — 203)&2_2:1:2 + (3m - 2a2a3)a;1m.

The sufficiency of these conditions follows from the existence of an invariant line
and was proved in [1]. They are in fact equivalent to (K1), the first of the Kukles

conditions.

10



Referring back to (2.5), (2.6) and (2.7) the other alternative for the origin to be
a centre is that f = ¢ = A = 0. Now f,¢ and h are inhomogeneous polynomials
in k,» and Ay; we aim to eliminate one of these variables from f,g and A. This,
however, is a non-trivial task as f has degree 19 with 458 terms and g is of degree
20 with 539 terms. The straightforward application of the RESULTANT function of
REDUCE even to bivariate polynomials of degree more than about 10 can exceed
the time limit of 2500 seconds on the Amdahl 5890. Clearly we needed an efficient
strategy to eliminate a chosen variable and we used a procedure which breaks down
the calculation into manageable portions. First we simplify f,g and A by returning
to the variables A,,A4; and A,. Recalling that A; # 0, we set 4, = 4,;4; and
A, = Ay;A,. Then both f and g are quintics in A2 with coefficients that are
polynomials in 4,, and A,,, while k is of degree six in A2.
Let z = A7? and define F = 2%f, G = 2%g, H = 2%h. We write
F=F,+ Fiz+ F,2* + F,2° + F,2* + F,2°,
G = Gy + Gz +G,22 + G,2° + G 2* + G2
and H =H0+H1z+szz+H3z3+H4z4+H5z5+H6z6.
To eliminate z from the relations ¥ = 0 and G = 0 we construct a sequence of
polynomials of successively lower degree in z and at each stage remove all common
factors of the coefficients. The first step is to calculate the coefficients p, of

p = F,G — Gy F, which is quartic in z. The bivariate coeflicients p, are computed

11



and factorised using REDUCE; they have two common factors, namely ¢, and

4
Y = 4A,, + 5A4,; +12. Define P = c{lw,b_lp = Z szk; the degrees of P, range
k=0

from 8 to 20. Then F =G =0 if and only if F = P = 0, provided that F.c,9 # 0.

We also factorise Fy itself, and find that F; = =192y, where

x = 12543, + 45042, A, + 1800A%, + 5254, A, + 41404, 4,

54004,, + 19643, + 226842, + 64804, — 5400.

3
The next step is to substitute z¢ = —P;! E P.z* into F =0 (provided that
k=0

3
P, # 0). This gives a cubic in 2: ¢ = quzk, say. Now it can be proved
k=0

by some straightforward algebra that x is a common factor of the ¢,. So we let

3
Q=x"¢= Z kak; the degrees of the @, range from 24 to 32. Thus F=G =0
k=0

if and only if P =Q =0 as long as c;3xP, # 0. From @ = 0 we substitute for z°

into the relation P = 0, provided, of course, that @, # 0. We obtain a quadratic

2
in z: t= Ztkzk. It can be shown, again by straightforward algebra, that P}
k=0

is a common factor of the ¢,, and computation shows that (A4, + 4;,)* is also a

common factor. We have already supposed that P, # 0, and the case A,,+ A4;, =0

2
will be considered in Section 3. Let T = P %(4,, + 4,,) %t = Z T, z"; the degrees
k=0

12



of the T}, are 47,44 and 41. From T = 0 we take 22 = T; (T, 2+ T;) provided that
T, # 0. Substituting this into @ = 0 gives a linear relation w = w; + w;2 =0.

Because of the large expression swell involved, it was not possible to set up w,
and w,; as such in the 64 mbytes available. Instead we exploited the fact that both
w, and w, are divisible by Q3P} (this can again be confirmed by straightforward
algebra). For example, one can write w, in the form Q3(¢,P? + £, P, 4+ ¢,). Since
w, is divisible by P?, £, =0 or £, is divisible by P,; in fact {; is divisible by P}
and similarly ¢, is divisible by P,. In this way the expressions W, = P;?Q;w,
(k = 0,1) were computed. It was then found that (4,, + 4;,)° is a common factor
of W, and W, ;let W = (A, + Ayy) "2 (B +8,2) = Wy + W, 2. Both W (of degree
65) and W, (of degree 62) are irreducible over Q.

Now we consider the relation H = 0. The above substitutions from P, and
T are used to reduce H and this leads (not without considerable effort) to another
relation B = By + B;z = 0, where B, is of degree 54 and B, is of degree 51.
Common factors are again removed at each step of the procedure, but none arise
which have not occurred previously. Thus F=G=H =0iffandonlyif T=W =
B = 0 provided that 9, x, P,,@,,T,, W, and A,,+A,,; are non-zero (and, of course,
v—2kK,¢,,C #0).

The next stage is to make the substitution z = —W,/W,, from W =0, in B

and T to form 8 = ByW, — B,W; and v = T,W} — T,W, W, + T,W} respectively.

13



Unfortunately the resources available at the Manchester Computing Centre were not
adequate to set up these expressions, let alone to factorise them. These tasks were
performed on the Cray 2 at the Minnesota Supercomputer Center. The factorisation

of A, a bivariate polynomial of degree 116, took 7 hours and 10 minutes cpu time.

After factorisation 8 and 7 are of the form
B=T,ESL, r=T2E*SU
where F,L,U are polynomials of degree 27,44,30 respectively and

S =d4AL +1TAS, A, + 2443, + 2742, A%, + 9042, A,,36A4%, + 194,,43,

+ 1084,, AL, + 1174,, 4,541, + 4243, + 9042,

Having expressed the polynomials C and D, which arose in the expression for L(4)
derived early in this section, in terms of A,,, 4;, and A, we found that E is a factor
of the resultant of C and D with respect to AZ. Hence the possibility that £ =0
is contained in the case C = D = 0 which will be discussed in Section 3. Thus the
origin can be a centreonlyif S=0o0r L=U =0oroneof C,c,, ¥, x, P, @5, T,, W,,

A, + Ay, and v — 2k vanishes.

THEOREM 2.2 Suppose that S =0, u=—-D/C and A;, A, are given by (2.2),(2.3)

respectively. Then the origin i3 a cenire.

14



PROOF: Under the conditions of the theorem we have seen that L(k) =0 for ¥ < 6.
The sufficiency of these conditions is proved in [3] and follows from the existence of

an invariant conic. The orbits are the level curves of
9;;%"“"3(3444':1:2 +Azy+ 34,z +y — 3) 2 (w(z))™t - Ax(w(u))_zeﬁ(“)du
where
8(z) = v,z +v,2%, v, = 34, +24,, v, = (184, + 64, + 947 +2)/6
and w(z) = A2* + A,z - 1. O
The conditions given in Theorem 2.2 can be expressed in terms of the original
coefficients a, as follows:
ay = 2(18a3y — 4aj — 2Ta2a} — 81a})/81al,
a, = —(36a3y + 8aj + 90a3a? + 243a3) /96,
ag = aya,(27y — 202 - 9a3)/6,
ag = —2a2(144a2y + 2430 — 324} — 270a24a? — 567a3)/81426,
Gy = —%az(a?,é' + 274 + 14a3 + 72a3)/6,
where ? = (242 + 9a3)* /16242 and 6 = 16a3 + 81a3.
These conditions for a centre are again not covered by the Kukles conditions

(K1)-(K4). We proceed to confirm that there are no other conditions for a persistent

centre.

15



Consider first the possibility that L = U = 0. Both L and U are irreducible
over Q, and to confirm that they do not have a common factor over R we use the

following straightforward result.

LEMMA 2.3 Suppose that k is an infinite field and K is an eztension of k. Suppose
that f,g € k[z,y] and that £ € K[z,y] is a common factor of f and g. Then either

L€ K[z]UK][y] or f and g have a common factor in k[z,y|\(k[z] U k[y] ).

Lemma 2.3 is prc;ved by applying the Euclidean algorithm to f and g consid-
ered as elements of K(z)[y] and noting that all polynomials arising are elements of
k(x)[y] -

To check that L and U do not have a common factor in just one of the variables
Ay7,Ay; we evaluate L and U for specific values of one variable at a time. We chose
to consider the three cases A,, =1,4,;, =0 and A,, = —A,,; let the corresponding
expressions for U be U,,U, and U,. We found that U, = Aj2U, where 0U, = 18
and

Uy = A37(344; — 1)*(Ag; — 80)(Ay7 — 3)U, U,

where U, = 3 and O0U; = 4; U,,U,,U; and U are irreducible over Q. We
computed the resultants of U, and U,, and of U, and U,: both are non-zero. It
follows that there are no (real) factors common to U,,U, and U;, and so U has no

single variable factors in A,,. Similarly, there are no factors involving A,; alone.

16




Hence L and U certainly cannot have a common factor, and so thecase L =U =0
does not give rise to conditions for a persistent centre.

It remains to consider the cases which have been excluded in the course of the
argument. We illustrate our approach by considering the case Fy = 0; recall that
Fy is a constant multiple of y3. First suppose that x = 0. This case leads to a
persistent centre only if x and R(F,G), the resultant of F and G with respect to
z, have a common factor. Of course, R(F,G) cannot be computed explicitly,. We
know that x is irreducible over Q; as for U above we show that x does not have
single-variable factors and so, by Lemma 2.3, the only possibility is that x is itself a
factor of R(F,G). We show that this is not so by finding explicit values of 4,, and
A,y , namely A, = —6 and Ay, = 0, for which x = 0 but R(F,G) # 0. Finding
such pairs of values is, of course, an experimental process. Turning to ¢ = 0 there
are obviously no single variable factors, and we find that ¢ = 0 but R(F,G) # 0

The excluded cases P, =0, @, =0 and T, = 0 are treated in a similar way.
It was confirmed that none of them is a factor of R(F,G) and that they have no
single variable factors ; therefore persistent centre conditions do not arise. The case
P, = 0 was slightly harder than the others, for simple integer values of A, and A,,
such that P, = 0 were not found; however the relation A,, = —4A4,,/5 simplified

P, sufficiently to enable us to show that P, is not a factor of R(F,G) in this case.

17



It follows without restriction that P, is not a factor of R(F,G).

For the case W, = 0 we must have W, = 0 also (because W = 0). Both W,
and W, are irreducible over Q and we use Lemma 2.3 to show that this case cannot

give rise to persistent centre conditions.

3. Excluded Cases

In this section we cover the four remaining cases, namely
)v—-26=0, (ii)c,=0, (iii)C=0and(iv) 4 +4,=0

In (i) and (iv) we also prove that non-persistent centres do not occur. We again

suppose that A, # 0.

(i) Suppose that v — 2x = 0. In terms of the A;, we have
Ay = (24, + 43)/3 (3.1)
and L(1) = 34, + 24, + A;. We take
Ay =—3(34, + 4y) (3.2)
whence L(1) =0 and
L(2) = —30A,A, — 64,4, —3A3 + 3AZA, + 154, A2 — 304, 4,
—4A, + 945 — 64,4, +4A..

Now let
Ay =(~3A] + 3434, + 154, A7 — 304, A, — 4A, + 94}

— 6454, +4A)/6(54, + 4) (3.3)

18



where we suppose that 54, + A; # 0. Then
L(3)=d, A2+ dA, + 4, (3.4)
where d, = —288(54; + A;)%(4, +24;) and d,,d; are polynomials in A; and A,
of degree 5,7 respectively.
Suppose that A, +2A, # 0 and let A2 = —(d,;A, +d;)/d,. Then L(4) =
e, + e, A, where e, = (54, + As)‘*ég and e, = (54, + A5)5é’1 ; € and &, are
polynomials in 4, and Ay of degree 12 and 9 respectively. If ¢, # 0 let
A, = —¢eyfe,. (3.5)
The cases e¢; =0 and d, =0 will be considered later. We now have
L(5) = (54, +A5)7(A1 + 2A5)2(A1 - A5)KZ,
and
L(6) = (54, + A5)° (A, +24,)%(4, - A)K Z,
where
K =9A +2TAZA, + 2TA A + 2A, + 9A; + 4A4;,
Z, is a polynomial of degree 19in A; and A;, and Z, is of degree 23. For consistency
we substitute A, = —e;/e, into (3.3) and obtain
(54, + A A, +24,)%(A, —A)KZ, =0
where Z, is of degree 19. We have already supposed that 54, + A, and A, +2A; are

non-zero, and if A — A, =0 then A, =0. If K =0 and A,, 4,,A,, A, are given

19



by (3.1),(3.2),(3.3) and (3.5) respectively, we have a particular case of the conditions
given in Theorem 2.1 (which are also covered by the Kukles condition (K1)).

The remaining possibility is that Z, = 22 = Z, =0 with 54, + A,, A, +24,
and e, non-zero. If e; =0 then we must have e, = 0 also. We suppose that Ag # 0
andset A, = A, A, . (When A, = 0 wehave Z, = AZ, and Z, = AYZ, , where Z,
and Z, are polynomials in A? whose resultant is non-zero, and since 54, + A; # 0

we cannot have A, = 0.) We compute the following resultants with respect to Aj:

R(eg,e;) = (54,5 + 1)9(A15 - 1)6(A15 + 1)2(‘415 +2)%,2,,
R(Zl'.' Za) - (5A15 + 1)25(4415 - 1)25(-‘415 + 1)16(A15 + 2)5(*415 - 4)@3(33@55
R(Z,,Z,) = (5A15 + 1)30(A15 - 1)25(A15 + 1)16(A15 + 2)5(A15 - 4)¢’2¢’4¢’5:

where & ,®,,®,,®, are irreducible polynomials of degree 7, 17, 30, 71 respectively,
and @, = Al + 243, + 342, + 24, + 4 which is positive definite. We require
R(Z,,Z,) = R(Z,,Z,) = 0 while R(e,,e;) # 0. Thus we need to consider the two
possibilities A4, = 4 and &, = ®, = 0. When A,, = 4 we find that Z, = A2Z,
and Z, = A?Z,. Now A, # 0 and R(Z,,Z,) # 0; hence A, = 4 does not give
rise to a centre. The polynomials ®; and @, are univariate and irreducible over Q.
They cannot have a common zero, for suppose that o« is such a zero and let p_ be
its minimum polynomial (that is, the monic polynomial with rational coefficients of

minimum degree of which « is a zero). By minimality, p_, divides all polynomials
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of which o is a zero. Because &, is irreducible, p, = ®;; then &, divides @,,
contradicting the fact that @, is irreducible.

We now turn to the possibility that 54, +A4, = 0. Taking A, and A, as defined
by (3.1) and (3.2) with 4, = —A,/5 we have L(2) = A;(32A2 +25). Thus the only
possibility is that A, = 0 in which case A; = 0.

If A, +2A; =0, again with A, and A, satisfying (3.1) and (3.2), then
L(2) = A(184; + 5AZ + 184, + 4). Since A, = 0 implies that A, = 0 we take
Ag = —(5A% + 184, +4)/18 and obtain

L(3) = A,(—475A5 + 567AZA, + 304A2 + 2884,).
Now take A, = —19A2(—25A: + 16)/9(63AZ + 32); then L(4) = A30, and L(5) =
A O, where O, and O, are polynomials in A, whose resultant is non-zero. Again

no centre conditions arise.

The remaining situation to be considered is that e, = e¢; = 0. In this case
L(4) = 0 and L(5) = (54; + 45)°(fo + f144), L(6) = (5A; + A5)* (9o + 94 A,) Where
fo»f1190, 9, are polynomials in A,,A,. We now take A, = —f,/f, with f, # 0
and consider L{6) = 0 together with e; = ¢, = 0. Since 54, + A, # 0 we have
J =gofy —9,fo =0. Now

J = (A4, +24,)° (54, + A)(4, — 45T, J,
where J; and J, are polynomials of degree 26 and 3 respectively. If J, = 0 we

obtain a particular case of the centre conditions given in Theorem 2.1. We compute
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the resultant with respect to A2, R(e,,J;) = (54,5 + 1)21 (45 — 1)1°(4,5 +1)%T,,
where ¥, is of degree 61. We supposed that 54, + 1 # 0 and A, +2 # 0.
Both when A4,;, = 1 and A;; = —1 we find that ¢y = ¢, = 0 only if A, =0,
a contradiction. Since ¥,,®, and ®, are irreducible over Q, they cannot have

common roots (as explained above). Hence e, = ¢, = J, =0 cannot occur.

We must still look at the possibility f; = 0. We compute
Riey, fi) = (54,5 + 1) (A5 — 1)° (45 + 1)2(A15 + 2)3‘112

where ¥, is of degree 24. The cases not already considered are ®, = ¥, = 0 and
®, =¥, =0. Neither can happen because the three polynomials are irreducible and

distinct.

This completes case (i) - there are no new centre conditions of any kind.

(ii) Suppose that ¢, = 0, and let A, and A, be as given in (2.2) and (2.3).
From L(3) = 0 we take yu = —¢,/¢,, provided that ¢, # 0, and then

6 8

L(4)=A4,2° Z rkzk, L(5) = A,2® Z 5 2"
k=0 k=0

where z = A? and r,,s, are polynomials in A4,, and A,,. Since A, # 0, the
resultant R of L(4) and L(5) with respect to z is a function of A;; and A,, only,
as is ¢y. If R is irreducible over Q then we can have conditions for a persistent

centre only if ¢, and R have a common factor involving 4,, or A;, alone. We
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verify that c, has no such factors. If R factorises over Q then a persistent centre
can arise only if c, is itself a factor of R. To show that ¢, is not a factor of R we
evaluate R for specific values of A;; and A,, such that ¢, =0 but R # 0. If on
the other hand ¢; = 0 then we require ¢, = ¢, = ¢, = 0. The resultant of ¢, and
¢; with respect to z is again a function of A,, and A,,, and ¢, is not a factor of

it. Hence there are no persistent centre conditions.

(iii) For the case C = D = 0 we express C and D in terms of A,,,4,, and
z = A%. Let C = C, +Ciz+ C,2* and D = D, +D1z+D2z2 —I—D3z3. The
resultant of C' and D with respect to z has four factors, namely v — 2x and ¢,
which are non-zero, and T, and T',, say, which are bivariate polynomials of degree
14 and 27 respectively. So L(4) = Cu+ D =03 T, = 0 or T, = 0 provided
that D, and C, are not both zero. Using A, and A, as given by (2.2) and (2.3) let
#? = —(co+ec p)/cy, so that L(5) = 8,4 ub,, L(6) = Go+ué, and L(7) = o, + i, ,
where 6;,¢; and ¢, are polynomials in «,v and A;. When 6, # 0 let u = —4,/6,
then L(6) = ¢,68, — ¢,6, and L(7) = 4,6, — 9,6, . The evaluation of the resultant
T of L(6) and L(7) to eliminate one of the three variables is non-trivial, so we aim
to show that I, and I', are not factors of 7. Persistent centre conditions can arise
only if I'; or I', is a factor of 7 or either has a common factor with 7 in a single
variable. We confirmed that I, and I', cannot have factors in either of the variables

alone. We also showed that neither I’y nor I';, can be a factor of 7. When 6, =0
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we showed that I'; and T, are not factors of the resultant of 6, and #, with respect

to z. Hence in this case again there are no persistent centre conditions.

(iv) We now consider the case A, + A; = 0. Here L(1) = 3A, + A, and we take
A =—-A4,, A, = -1 A, to give
L(2) =3A4;A4; — 34,4, + 3A,A; +9A,A, +24,.

Now suppose that 34, +9A4, +2 # 0 and let Ay =3A4,(A4, — A,)/(34, +94,+2).
Then L(3) = b, A3 +b, where b, = 12(A; — A, )bs, b, = (34, +9A4, +2)%b, and both
b, and b, are cubic polynomials in A, and A;. Let A2 = —b,/b,, where b, # 0,
then

L(4) = Ay(4g — 4,)% (A +34,)’ (34, + 94, + 2K N,

L(5) = Ay(Ag — A)%(Ag +34,)% (34, + 94, + 2)*KN,,

L(6) = Ay(As — Ay)*(Aq +34,)*(34, + 94, +2)°K N,

where K = 9AZ + 18A A, + 2A, + 942 +4A, and the N, are polynomials in A4,
and A,. For L(4) = L(5) = L(6) = 0 there are several subcases to be considered.
If A; =0 then A, =0 which we are supposing is not the case. If A, — 4, =0
then b, = 0, a contradiction. If Ag + 34, = 0 then A2 = —{ which we obviously
do not consider. If K = 0 and Ay, Ag, A2 are as defined above then the centre
conditions given in Theorem 2.1 are satisfied. We have verified that N,, N, and N,

cannot be simultaneously zero without violating our hypotheses.
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In the case 34 + 94, + 2 = 0, we take 4, = —(344 + 2)/9 then L(2) =
A (64, +1). If A; = 0 then L(3) = A (9A% + 124, + 947 — 8) and if A; =0
then A, = 0. With A; # 0 the quantities L(4) and L(5) are zero if and only if
Ag = %, but then A2 = —%. If A, # 0 and L(2) = 0 then 4, = —3, so that
L(3),L(4) and L(5) are functions of A, and Ay. We consider the resultant of L(3)
and L(4) with respect to A;, R, say, and of L(3) and L(5), 7; say. We have
R, = A (6A; —5)(6A, +5)['; and 7, = A;(64, — 5)(6A4, + 5)I',. The resultant of
I', and I, is non-zero so we consider only A, = £3 and it is easily shown that both

lead to centre conditions which are particular cases of Theorem 2.1.
We return to the case b, = 0. Recall that L(3) = b, + b,A42 so if b, = 0 then
we require b; = 0 also. We note that 34, + 94, +2 # 0 and if A; = A, then A

and hence A, are zero. We showed that all other possibilities are also inconsistent

with our hypotheses.

4. Conclusions

We noted at the beginning of the paper that if a, = 0 the origin is a centre
for system (1.2) if and only if the conditions (1.3) hold, and that if @, = 0 then the
origin is a centre if and only if (1.5) holds. The conclusions of this paper can be

summarised as follows.
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THEOREM 4.1 Suppose that a, # 0. The origin is a persistent cenire for (1.4) if
and only if the conditions given in Theorem 2.1 or Theorem 2.2 are satisfied. Non-
persistent centres can occur only if L =U =0 or one of C,c,,%,x,P,,Q4,T,, W,

18 zero.

Non-persistent centres occur only for a finite number of points in the space of
coefficients. We have shown that none occur if A, +A; =0 or 24, + 4, -34, =0,
two cases which were excluded in the course of the argument in Section 2. We

conjecture that there are no non-persistent centres at all.

CONJECTURE Let a, # 0. The origin is a centre for (1.4) if and only if the conditions

given tn Theorem 2.1 or Theorem 2.2 are satisfied.

The possibility of deriving necessary and sufficient conditions for a centre by
computing a Grdbner basis for the set of focal values is one which we have consid-
ered. We are grateful to Herbert Melenk and Winfried Neun at the Konrad Zuse
Center, Berlin for helping to explore this approach. Using their efficient REDUCE
Grobner basis code on a specially configured DEC 3100 workstation they obtained
Grobner bases in the two cases a, = 0 and a, = 0. The case a, = 0 proved to be
straightforward, but the case a, = 0 took over 7 days cpu time. So far, the general
case (the subject of this paper) has proved intractable. These computations enabled

the results of [2] and [11] to be confirmed.
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