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Abstract. In this note we characterize those rank one perturbation of symmetric matrices which

change only one eigenvalue. Then we apply the result to study how the Laplacian spectrum of a graph

change when adding an edge.

1. Rank one perturbation. In this section, we study rank one perturbation of

symmetric matrices. Given that A and B are symmetric matrices. Let �1 � . . . �
�n; �1 � . . . � �n and 1 � . . . � n be the spectra of A;B and A + B respectively.

Then the Weyl's inequalities are

i+j�1 � �i + �j � i+j�n

for 1 � i; j; i+ j � 1; i + j � n � n. For proof, we refer to [5]. As a consequence of it,

we have the following interlacing theorem.

Theorem 1.1. If B is a positive semide�nite symmetric matrix of rank one then

1 � �1 � 2 � . . . � �n�1 � n � �n:

Next we want to characterize those B of rank one such that the spectra of A and

A+ B overlap in n � 1 places. That means exactly one eigenvalue of A is changed by

the perturbation B. Let A be partitioned as

A =

 
a xT

x Z

!

where x is an (n� 1) vector, xT its transpose, and Z is an (n� 1)� (n� 1) symmetric

matrix.

Lemma 1.2. If the spectrum of Z is same as n� 1 eigenvalues of A then x = 0.

Proof. Suppose the spectrum of Z is �1 � . . . � �k�1 � �k+1 � . . . � �n: Then

trATA� trZTZ = �2
k

and trA� trZ = �k:

But, from the partition of A, we have

trATA = a2 + 2xTx+ trZTZ and trA� trZ = a:

Consequently, a = �k, and so xTx = 0. This implies x = 0.

Lemma 1.3. If the matrix C =

 
a+ � xT

x Z

!
with � 6= 0 has eigenvalues

f�1; . . . ; �k + �; . . . ; �ng for some k then x = 0.
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Proof. The characteristic polynomials of A and C are

det(�I �A) = (�� �1) � � � (� � �n)

and

det(�I � C) = (�� �1) � � � (� � �k � �) � � � (�� �n)

respectively. Hence we have

det(�I � C) = det(�I �A)� �(�� �1) � � � (� � �k�1)(� � �k+1) � � � (�� �n):

>From the partition of C, it follows that

det(�I � C) = det(�I �A)� �det(�I � Z):

Since � 6= 0, we have

det(�I � Z) = (�� �1) � � � (�� �k�1)(� � �k+1) � � � (�� �n):

This implies that the spectrum of Z is same as n� 1 eigenvalues of A . It follows that

x = 0 from Lemma 1.2.

Theorem 1.4. Let A and B be symmetric matrices with spectra (not necessary in

descending order) f�1; . . . ; �ng and f�; 0; . . . ; 0g respectively. If A+B has eigenvalues

f�1 + �; �2; . . . ; �ng then AB = BA.

Proof. Without loss of generality, we may assume B to be the diagonal matrix

Diag(�; 0; . . . ; 0). If � = 0 then the result is trivially true. For � 6= 0, from Lemma 1.3,

A is of the form

 
a 0

0 Z

!
. Hence it is clear that AB = BA.

The converse of Theorem 1.4 is obviously true. Actually a more general result is

true: Let H and K be (not necessary symmetric) matrices with spectra (not necessary

in descending order) f�1; . . . ; �ng and f�1; . . . ; �ng respectively. If HK = KH then

H +K has eigenvalues (relabelling of �'s if necessary) f�1+ �1; . . . ; �n + �ng. In view

of Theorem 1.4, it is tempting to conjecture that the converse (at least for symmetric

matrices) of this statement is also true. However we have the following example.

Take H =

0
B@

0 0 0

0 6�
p
2 2

0 2 4 + 2
p
2

1
CA and K =

0
B@

4 0 0

0 �4 0

0 0 0

1
CA. Both are symmetric

and have eigenvalues f8; 2 +
p
2; 0g and f4; 0;�4g respectively. H +K has eigenvalues

f6 +
p
2; 4; 0g, but HK 6= KH.

2. The Laplacian spectrum of a graph. Let G = (V;E) be a simple graph

on n vertices, where V is the set of vertices and E is the set of edges. The Laplacian

matrix of G (with respect to an ordering of V ) is de�ned as

L(G) = D(G) �A(G)
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where A(G) is the adjacency matrix, and D(G) is the degree matrix. We are interested

in the spectrum of L(G), which is called the Laplacian spectrum of G. Note that the

Laplacian spectrum of G is independent of the choice of ordering. There are a number

of interesting results and conjectures on the Laplacian spectrum of G [1,3,6]. In this

section, we want to study the e�ect on the Laplacian spectrum when adding an edge

to G.

Let G+ denote the graph by adding an edge fi; jg to G. With a suitable ordering,

we have

L(G+) = L(G) +K

where K =

 
1 �1
�1 1

!
� 0n�2: Since K is a positive semide�nte symmetric matrix

with rank equal to one, by Theorem 1.1, we have the following \Laplacian Folklore".

Theorem 2.1. The n � 1 largest eigenvalues of L(G) interlace the eigenvlaues of

L(G+).

Next result gives more information. For u 2 V , de�ne Adj(u) = fv 2 V : fu; vg 2
Eg.

Theorem 2.2. Adj(i) = Adj(j) if and only if the spectrum of L(G+) overlaps the

spectrum of L(G) in n� 1 places.

Proof. By Theorem 1.4, the spectrum of L(G+) overlaps the spectrum of L(G) in

n � 1 places i� L(G)K = KL(G). Then the result follows from the observation that

Adj(i) = Adj(j) i� L(G)K = KL(G).

Harary and Schwenk [4] studied those graphs G such that A(G) has integral spec-

trum. Similar problem for L(G) is also interesting [2]. We call G Laplacian integral if

L(G) has an integral spectrum. We list some examples of Laplacian integral graphs.

1. Complete graphs, Kn for all n.

2. Bipartite graphs, Kn;m for all n;m.

3. Star graphs, Sn for all n.

4. Path graphs, Pn for n � 3.

5. Cycle graphs, Cn for n � 4.

6. Wheel graphs, Wn for n � 5.

For the rest of this section, we concentrate on the problem of preserving Laplacian

integrality by adding an edge. Note that K is a positive semide�nite symmetric matrix

with trace equal to 2. In order to preserve Laplacian integrality, the perturbation K

must move up either (a) one eigenvlue of L(G) by 2 or (b) each of two eigenvalues of

L(G) by 1 . For case (a), it means that the spectrum of L(G+) overlaps the spectrum of

L(G) in n � 1 places. Hence Theorem 2.2 characterizes this situation and we have the

following su�cient condition for preserving Laplacian integrality by adding an edge.

Corollary 2.3. If Adj(i) = Adj(j) then G is Laplacian integral i� G+ is Lapla-

cian integral.

Easy examples on graph of three vertices show that such su�cient condition is not

necessary. It is well expected because of the presence of case (b). Hence it is highly

desirable to characterize the situation described in (b). Some progress has been made

by Grone and Merris [2]. However, as far as I know, it is still open.
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