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ABSTRACT

In this paper we use the equivariant Morse theory to give an estimate of

the minimal number of central configurations in the N-body problem in BB.

In the case of equal masses we prove that the planar central configurations

are saddle point for the potential energy.

From this we deduce the presence of nonplanar central configurations, for

every N> 4.

The principal difficulty in applying Morse theory is that the potential
function is defined on a manifold on which the group O(3) does not act freely. This
suggests using the equivariant cohomology functor in order to obtain the Morse

inequalities.



Introduction

It is known [17_] that if ql, ee ,qN denote the positions of N bodies with

masses ml, e mN respectively, the problem of finding central configurations

is equivalent to looking for the critical points of the potential energy

m.m,
V(ql,...,qN) = - 'IE—-'ELI
i<j "9

restricted to a particular manifold in the configuration space.

The collinear problem (that is, when the bodies are on the same line) has
been studied by F.R. Moulton, who proved the existence of N! / 2 collinear central

. . _ N
configurations for every m = (ml. 2sse mN) € R+ .

Regarding the planar problem, many interesting results have been achieved
by J. Palmore [9 - 12] applying Morse theory to a '"quotient' manifold obtained by

considering the symmetries acting on the problem.

In fact, while the collinear problem admits a Z_-symmetry, the planar

2
problem is symmetric under the action of the group Sl. However, since this
action is free, to find the homology of the quotient space does not present much

difficulty.

Using Morse theory, J. Palmore is able to give an estimate of the minimal
number of planar central configurations whenever melR*l\_I is such that the cor-

responding potential energy has only nondegenerate critical points.

In this paper we consider the general situation when the bodies are not
constrained to move in the same plane. In this case the use of Morse theory pre-
sents some difficulties because the action of the orthogonal group O(3) on the mani.
fold M on which V is defined is not free. Thus the quotient space M/O(3) fails

to be a manifold.

This is not necessarily a problem since we could use the generalization of

Morse theory due to C. Conley f3, 4], which applies to topological spaces. But in



our case we do not know the cohomology of the quotient space; for this reason we

will use the ""equivariant" Morse theory [1, 2, 8].

The main steps to obtain the ""equivariant Morse relationd' (Theorem 2. 1)
are to compute the equivariant cohomology of the manifold M and take account of

the different isotropy groups of the critical points of V.

Then we use some estimates of the Morse indices to obtain finer "Morse
inequalities" (3.21). In fact, it is possible to compute the index of the collinear

central configurations by proving that the hessian of V is positive definite in

M
the normal direction to the submanifold of M corresponding to the collinear prob-

lem.

We conjecture that a similar result should be true also for the planar central
configurations. For these types of configurations, in the case of equal masses, we
are able to prove that the hessian of V M is positive definite on a subspace of

dimension greater than or equal to 1.

From this result we deduce the presence of nonplanar central configurations,

for every N > 4.

In Section 4 we examine the case of 4 equal masses, providing the precise

form of the Morse inequalities.

1. Preliminary

Let Qgs-ee €]R3 denote the positions of N bodies with masses

4
N
m,..., mN respectively. Their motion is described by the following equations:

Z (q.-q)

(1.1) miiji = - mimj --—1--]-3- = ¥V(q)

it] Iqi-qjl
q=(q1:'°'3qN), 1\<1,]<N



where

mm,
V(g = ‘ZF{IZT{L

i<j'i o7
is the potential energy.

The kinetic energy is

N
1 2 1l .. 1 -1
EQ = 3, m " = $<4,M&> = S<p,M p>
i=1
where
m_I
13. 1 0 0
M = , L={o 1 0},
. 0O 0 1
myls
_dq _
q'dt and .p = Mq

Denoting by H(q,p) the total energy, that is,

1 -1
(1.2) H(q,p) = S<P, M p>+ V() ,

the equations (1.1) can be written as a Hamiltonian system:

. oH -1
= — (q, =M
q 30 (a, p) p
(1.3)
. oH
= -— = -V .
p 5q (q,p) V(g)
N N
From (1.3) it follows that Z p')i is equal to zero on solutions. Therefore 2 pi
i=1 1=
N
is constant and can be assumed equal to zero. Then miqi = 0 and this implies
N i=1

that Z m.q, is also constant on solutions; we suppose that this last constant is
i=1

N
zero which is equivalent to fix the center of mass, z miqi, in the origin of BS.
i=1



Thus, considering the 3N -3 dimensional linear space

N
_ 3N|§ _
X —{(ql,...,qN)elR - miqi—O}

the configuration space is X\A where A = |J Aij CX is the set of the '"diagonals'':
i<j
Aij = {(qls'- -:CIN) €X‘q.i = q]}: 1 <1: J<N’

DEFINITION 1.1. A point (i = (il, ceey c_lN) €X\A is a central configuration if there

exists a scalar-valued function @(t) such that a solution of (1.3) is in the form @(t)q.

It follows immediately from the definition that if (_—1 is a central configuration
then C(_l is also, for any Ce€R. Therefore to study the central configurations we
may restrict our attention to the ""mass ellipsoid" €= {le :<q,Mq> = 1}. Now

suppose that (i is a central configuration. From (1.3) and the homogeneity of V(q)

we have

(1.4) sMa = -4 2wV ,

that is,

(1.5) Mg = VV(Q) , X = -44% = -v@ .

Conversely, if we suppose that )LMc—l = VV(Ei) and <¢-i, Mfi> = 1 then a solution §(t)
of the equation: ¢ = ¢—2V(c-]) provides a solution of (1.4), hence q is a central

configuration.

This proves that q is a central configuration on €& iff (i is a critical point
of V restricted to €. This is the reason why, in order to study the central configur-

ations, we will investigate the critical points of V(q) on E\A.

2. The equivariant Morse inequalities

The aim of this section is to write the equivariant version of the Morse

inequalities for the potential V(q) defined on &\A.



First of all we observe that the manifold €\A is not compact and since we
want to apply the equivariant Morse theory [2, 3, 8] we need some compactness
condition. This comes from the behavior of V(q) near A, namely V(q) = -
for q —>qe€A, and the existence of a neighbourhood of A in € in which there are
no critical points of Vle (for example, see [14]). This implies that in order to
compute the critical points of V(q) we can consider the function V(q) defined in a
compact K contained in E\A. Then we observe that, if N> 4, the manifold € is

invariant under the diagonal action of the group O(3) = {matrices 9| 676 = id}.(l)

The diagonal A is also invariant under this action and the potential V(q)

as well.

It is obvious that, as O(3)-manifold, € is homotopically equivalent to the
unitary sphere S3N -4 with the same diagonal action of O(3). Of course also
E\A and SBN—4\.A are homotopically equivalent, as O(3)-manifolds, and the com-

pact set KCE\A can be taken homotopically equivalent to S3N

-4
\A by an equivariant
homotopy.

It is easy to see that the action of O(3) on S3N _4\A is not free(Z) but there

3
are no fixed points. In fact the isotropy g'roups( ) are: O(2), if q represents a

collinear configuration, and the identity otherwise.

Actually if there are some equal masses there are further symmetries;
but since we are not interested in distinguishing the cases of equal or different

masses we will not consider these symmetries.

(1)

Diagonal action means:
6q = (Oql,...,eqN) qe€ , 6¢€0(3)
(2)

The action of a group G on a space X is fre iff
geGand g # 1 =>gx #x , forevery xeX .
(3) The isotropy group of a point x€X is the set:
G, = {gsGlgx=x} .

5



In order to avoid some technical difficulties in using the equivariant theory
we would like to have only connected isotropy groups, while O(2) is not. For this

4 -
(4) on SBN 4\A, and to use

reason we prefer to consider only the action of SO(3)
the invariance under O(3), which is a double covering of SO(3), when we write the
Morse inequalities. In this way, all the isotropy groups, different from the identity,
are isomorphic to S1 which is connected. From now on we denote by G the group

SO(3) and M the manifold E\A.
The equivariant Morse inequalities are [8]:

n

Gon .G
(2.1) M, (V) -j:zlpt(thj)) = P(M) + (1+0Q,(V)

where:

(i) {Mj}, j=1,...,n, is a Morse decomposition of M given by
G-invariant Morse sets, with respect to the gradient flow
4= VViy

(ii) h G(Mj) is the equivariant-homotopy index of Mj'

(iif) P?(M) is the Poincaré series which represents the equivariant

cohomology of M with rational coefficients.

(iv) Q t(V) is a series with nonnegative coefficients.

We recall that the equivariant cohomology of M is the cohomology of
(M XE)/SO(3) where E is a contractible space on which the action of SO(3) is free

and which is unique, up to homotopy.

Our aim is to make explicit the relation (2. 1) in order to have an estimate

of the number of critical orbits of V M

4 so(3) = {pe0(3)|deto = 1}.



As a first step we will compute P?(M) .

The universal contractible space E associated to SO(3) is the space

Vv = |J V, ,, given by the union of the (orthonormal) 3-frames in R (k>3).
, 3 k>3 k,3
The mamfold M is homotoplcally equivalent to the space

3
(R)“{(ql TN )€1R A #q forl#]} rR°N\A. In fact, we can

construct a fibration:

{(qlx"':q )€R \Aqu —O} X\A

where 7 is the map which translates the center of mass to the origin. Since the

fiber is contractible ]RSN\A is homotopically equivalent to X\A and hence to
3N- 3

M=S N 4\A The space IE‘N(B ), N> 3, has been studied in [-5} and its

cohomology with any coefficients is the following:

N1 .
o (F (R %) = QW “(8°V...vsD

k times
where @ is the tensor product and V the wedge sum.

Therefore the Poincaré polynomial of ]FN(]Rg) is
3 2
(2.2) p(IF (R) = PM) = (1+¢ 1+2t). .. L+ -1t2) .

To compute the G-equivariant cohomology of M we will consider the fibration

[2, 8]:



MXV
0,3
SO(3)
lp
A’
s = =23
00, 3 SO(3)
where p is the projection, SGoo 3 = U SGk' 3 is the union of the Grassmann
V ’ k>/3 ’
varieties SGk 3= Eg‘(—g-) of oriented 3-dimensional subspaces of ]Rk(k> 3).

SGoo 3 is called the classifying space of SO(3) and is usually denoted by BSO(3).

The cohomology of BSO(3), [7],with rational coefficients is given by the series

_ 4m _ _1
(2.3) P (BSO(3)) = Zt = —3 .

Finally, from (2.2), (2.3) and the spectral sequence associated to the previous

fibration we obtain

(1+t2)g1+2t2). L (1+(N -1t2)

4
1-t

(2.9 PU(M) =
Now, if we suppose that each critical orbit of V(q) is nondegenerate (5) we can
write M?(V) in a more explicit way. In fact, in this case, a Morse decomposition
of M is given by the critical orbits of V which, by virtue of the nondegeneracy

hypothesis, are G-invariaunt isolated invariant sets and are a finite number.

(5) An orbit Z eM/ G is a nondegenerate critical orbit of V(q) iff:

(i) each point in Z is a critical point of V(q).

(i) the hessian of V is nondegenerate in the normal direction to Z
(see [2, 8] for more details).



Let us denote by Z., j=1,...,n, the critical orbits of V(q). Then, since
6 G c . .
all the isotropy groups are connected( ), [8:], Mt (V) has this simple expression:

n

G A,
(2.5) M (V) = § :t 'p (BG)
t o t j
j=1

where

a) G. is the isotropy group of each point of Zj and BGj is its

J
classifying space.
b) X. is the number of the positive eigenvalues of the hessian HV

in the normal direction to Zj at each point of Zj.
For simplicity we will call )\j the index of each point of Zj.

From (2. 4) and (2.5) we deduce the following

THEOREM 2. 1. (Equivariant Morse inequalities). For each system of N bodies,
N > 4, with masses my, ..., mN such that the corresponding potential energy

V(q) has only nondegenerate critical orbits we have:

n

Y 2 2 2
§ : j @) +2e). . -t
(2.6) j=1t Pt(BGJ.) = A +(1+t)Qt(v)

1-t

3. Main results

In this section we will use the Morse inequalities (2.6) to obtain some
estimates of the number of the central configurations, whenever the potential V(q)

has only nondegenerate critical orbits.

(6)

If the isotropy group of some critical point was not connected then local
coefficients might be needed in the computation of the cohomology of BG,.
This is the reason for considering the action of SO(3) instead of that of J
0o(3).



We begin by observing that from Moulton's theorem [17] we already know
that there are exactly N!/2 critical orbits of V given by collinear configurations.
For each of these configurations the isotropy group is Sl, hence the total contri-

bution of the corresponding critical orbits in (2.5) is the following:

N!/2 N!'/2
A 1 t!
(3.1) t 'P(BS) = - . N>4

i‘:l i=1 1-t

\Y

where BS1 is the classifying space of S1 whose cohomology is expressed by the

series 1 /(1-t2) and ki indicates the index of the critical points of each orbit.

Note that each critical orbit coming from a collinear configuration is a

2-dimensional manifold isomorphic to SO(3)/ st

On the other hand, each point of a critical orbit of V(q) different from
these has the identity as isotropy group. Hence the contribution, in (2.5), of each

of these other critical orbits is given by a monomial t ].

In the next theorems we will give an estimate of the index of the collinear
and planar configurations. Before doing this, let us observe that if c-l = (c-ll, oo ,c-lN)

is a central configuration, from (1.5) we have

- mmk - -
(3.2) Am.q, = z : —1 L (q, -q.) k=1,2,...,N .
k'k - =3k 7
itk qu—qjl

Hence, for he {1,. ..,N}, h # k, we obtain

(q -q) (g .-q) m_+m
E m k 7§ h 7§ + h k

. - (a,-9,) -
, - -3° - -3 - - 3 Gy
j#h,k qu-qjl Iqh-qj| qu-th

) =

(3.3) x(cik-&h

Then, taking the inner product with (c_lk- (-lh) and dividing by I(ik-ihlz, we get

- - - - i oo .
3.4 A = E o <a-9p 49> <99 qk3 e W mlg .
: — -2 - -3 - - - -
j#h’k qu-th ,qk—qj' Iqh_qjl lqk-th

10



We denote by Y the submanifold of M given by the planar configurations

and by T the one defined by the collinear configurations.

THEOREM 3.1. If El = (c-ll, - ,(_iN), N > 3, is a critical point of V M corresponding

to a collinear configuration, then the hessian HV((-]-) is positive definite in the normal

direction to T and to the orbit of i

A result like this is stated and used in many papers of J. Palmore [9 - 13:]
but we were not able to find the complete proof anywhere. The following proof is

due to C. Conley. Before stating the proof we will make some remarks.
Given any matrix A with real eigenvalues, the differential equation
X = AX

induces a flow on the space of lines through the origin. The rest points of this flow
are the lines corresponding to eigenvectors of A; in fact, if AE = uE, then g =u&

and this implies that the line determined by & does not change with the time.

Suppose the smallest eigenvalue of A is simple. Then the corresponding
rest point is a repeller in the sense that all solutions through nearly points tend to

this point in backward time. This is obvious from the expression of the solutions:

Ajt
x(t) = cj e " x,

j J

where cj are constants, xj the eigenvectors and xj the eigenvalues ordered so

that 7&1<7\2<.... <Xn.

ALt t
If c, # 0 then, in backward time the ratios c e ! /cke goes to o if
k # 1, i.e., the line x(t) tends to the line X, -

We will use this idea in the proof which follows with A the matrix with

entries:
m, m,
L. = -l s A, = z :——l—
ij - =3 ii — 3
l;-ay] i#1 la;-aj]

11



and restricting the differential equation to the hyperplane normal to the eigenvector
(1,1,...,1). We use a standard argument to show that the line corresponding to
the eigenvector for X is a repeller, namely we construct a repeller neighbourhoad,

i.e., one such that every boundary point leaves in forward time.

Proof. The quadratic form associated to the hessian of VI M’ at the point a is

_ mm, 3< q A V >
(3.5) DZV((])(V,V) = —_‘—1—:‘]'5 |:lVi— Vj,2 - ql :] )\Zm [v ]Z
i<j lq.l—qjl lqi_qjl

v = (Vl, e ,VN) being a vector in the space tangent to M. In particular, if we take

v normal to T (3.5) reduces to

(3.6) D V(q)(v v) = Z—-—*L [vi = vl -hzmilvilz
i

i<j g, q]
Equation (3.6) can be written as

(3.7) DAV, V) = (v,AV) - A(v, MV)

where A is the N x N matrix with elements

L .
it la,- q!

"N

The eigenvalue equations for the matrix A are

12



(3.8) Z———’—-(sk §) = uE,
Er RN

In particular (3.2) shows that A is an eigenvalue of A with corresponding eigen-

vector i

Then, to prove that (3.7) is positive for the vectors v satisfying
Z myv, = 0 is equivalent to proving that all the positive eigenvalues of the matrix

A,l different from A, are greater than X.

Note that the minimum eigenvalue of A is 0; this corresponds to the

eigenvector (1,1,...,1).

The subspace orthogonal to this vector is the space of the vectors v
satisfying the condition Z myv, = 0. We are considering A restricted to this
subspace. We order the nllasses ml, ..
the configuration is collinear this is always possible.

.,m 50 that if i< j then iimij. Since

Then we consider the flow
(3.9) v = Av

but as a flow on the space of lines through the origin and define the set
S = {vli <j= v, < vj } Of course q is in S. We will prove that q is the only
eigenvector of A which belongs to S.

In fact, since A is symmetric in the sense that miA,J =m.A, y all the
eigenvectors § corresponding to some eigenvalue n different from K have to be

orthogonal to 51, that is,

(3.10) Z misi&i =
i

But since Z miEi = 0 and Z miii = 0, we have
i i

13



(3.11) <Z >Zm< 51>=me<5 E q1q>.

Then (3. 10) is equivalent to Z mim,< Ei-é‘;’j, 51“_5’ = 0 which implies that there
i<j - -

exist i and j, i <j such that Ei > Ej, otherwise each scalar product <§i—€j, q- q.>
J

would be positive and consequently (3. 10) could not be verified.

We claim that S is a repeller neighborhood of q. In fact, from (3.9) we

have:

(3.12) Y—J—— (V=¥ -
7 g, - ql

Then, as in (3.3), for h # k we obtain:

VvV, -V, VvV, -V m. +
d(v -v)= m. kL— h_) +——E-—nik-(v -v.)
"k i#nk S\|a -]’ [3-4

’ T Y

m, +m (V-V)Z
=.__L__k_(v _v)+_..l.{._._ll.. m.-l- +-1-3

(3.13)

- 3 'k 'h 2 j _ _
|a, -9, ik Na-al”  la-ql
+ = z :m(vh+v -ZVJ) = 1_ 3 " l_ 3
2 i#nk la-q”  la,-q

If v is a boundary point of S, there is an index k such that Vie = Vet

Then from (3. 13) we have for the solution through vk:

d E 1 1
at Yk Vi m(v—V)__3—_ —5 />0

e CRCH I TN

which implies that the vector v leaves S.

14




But, if q is an eigenvector of A and is a repeller, then from what we have
previously observed we deduce that the other positive eigenvalues must be greater

than A and hence the assertion is proved.

THEOREM 3.2. If all the masses are equal and (.i = (c_ll, - ,a ), N>4, isa

N
critical point of V| M corresponding to a planar configuration, then the subspace

of the space normal to Y and to the orbit of q on which the hessian HV(q) is

positive definite is at least 1-dimensional.

Proof. We choose a vector v normal to Y given by Vi, = (0,0,1), Vi = (0,0, -1),
Vj =(0,0,0) for j # h,k. Supposing that each mass is equal to 1, from (3.6) we

have

(3.14) Dzv(a)(v,v) = Z L. L + 4 -2 .
i#nk\ja-a la-al/ |a-al
? k 7 h 75 k "h

Since (-1- is a central configuration from (3. 4) we get

(3.18) DV(@(v,¥) = Z L, 1 .

; 3 - -3

<-——,---> <q -q., 9 -q

T 3 3
lq, -, | [qh-qjl qu-qjl
For each je {1, e ,N}, j =/- h,k, let us consider the triangle formed by
-,,—,_ and call the sides |q -q = A, q ——, =B, q -q.| = C. and th
9> dy G he IcilE q, | |a, qu ; la, qJI J. e
angles BCj = aj, ACj = Bj‘ ABj = Yj' From (3. 15) we have:

3 3 3
9 AB? +AC) - 2B.C’ cosv, - 2B°C. cosB.
(3.16) D V(g)(v,v) = z : : s .L31 3 = 1l 1
j#h,k ABj cj

Since A = Cj cosBj+ B], cos ‘Yj, (3. 16) reduces to

15



: 3 3
(C.-B.)(C,cosB. - B.cos?v.)

9 - I(C, . . .

(3.17) D V(Q(v,v) = E , ——
i#h,k AB;C;
J ]

where each addendum is nonnegative because Cj cos Bj and B, cos?, represent
j j ’

respectively, the projections of Cj and B, on the side A.
J

Thus D2V(c_1)(v, v) > 0 unless Cj = Bj’ for every j # h,k, thatis, unless
all the triangles formed by &j’ cih, &k are ’isosceles on the base A. But if this
happens, the vector v does not give a direction normal to the orbit of a Conse-
quently, the subspace of the space normal to Y on which HV(q) is positive definite

is at least 1-dimensional. M

REMARK 3.1. If c-l is a collinear configuration then HV(c_l) never vanishes in the
direction tangent to the submanifold T [9] Thus from Theorem 3.1 it follows that

this type of configuration gives nondegenerate critical orbits of the potential Vlm'

REMARK 3.1'. In [-16] J. Palmore proves that the planar configurations of 4
equal masses are nondegenerate in the direction tangent to Y. Since, for N = 4
the space normal to Y and to the orbit of a planar central configuration is 1-dimen-

sional, Theorem 3.2 proves that these critical orbits are nondegenerate also for

the potential V M

q ), N> 4, is a critical point of V| _ corresponding

’qN
to a collinear configuration, then its index is 2N -4.

THEOREM 3.3. If q = (&1, ...

M

Proof. The submanifold T defined by the collinear configurations has dimension
(7)

N -2 and is invariant under the diagonal action of 22.

Also, if c-l is a critical point of V on T then a is a nondegenerate local

maximum of V T this implies that the hessian of V has N-2 negative eigenvalues

(7)

Then, fixing the center of mass in the origin, the configuration space is N-1
dimensional. By the restriction to the ellipsoid we get the manifold T. It is
obvious that the only symmetry acting on T is the Zz—action so that each orbit
in T contains 2 points.

16

If N bodies are on the same line their positions are described by N real numbers.

»



which correspond to the dimension of the space tangent to T in ci On the other

hand, from Theorem 3.1 we know that the hessian of V‘M is positive definite in

the normal direction to T and to the orbit of q. Thus, since M is 3N-4 dimen-
sional and the orbit of (-1, under SO(3), is a 2-dimensional manifold in M, the

index of q is 2N-4.

The planar central configurations are also called relative equilibria. The
indices of these configurations are not all the same, but using the results of [9]

and [12] we can obtain some bounds.

THEOREM 3.4. If (i = (0_11, - ’aN)’ N > 4, is a critical point of V,M corresponding

to a planar configuration, then:

(3.18) 05 AQ < 2N-5 .

Moreover, if all the masses are equal:

(3.19) 1< Mg < 2N-5 .

Proof. Having fixed the center of mass, every planar configuration is represented
2N -2

by an element of R N . Consequently the submanifold Y given by the planar con-

figurations has dimension 2N-3. This submanifold is invariant with respect to the
1 . R
diagonal action of S, and this action is free. So, to every planar central configur-

ation there corresponds a 1-dimensional critical manifold Z' in Y.

On the other hand, to each planar central configuration there corresponds
also a 3-dimensional critical orbit Z'" in M. The space tangent to V and normal
to Z' on which the hessian HV is negative definite is at least N-2-dimensional [5]
Hence k((]) <3N-4-3-(N-2) = 2N -5. When all the masses are equal, from
Theorem 3.2 we know that HV((]) is positive definite on a 1-dimensional subspace

normal to Y and Z". Hence we have Mq) > 1. ll

COROLLARY 3.1. If N >4 and all the masses are equal, then every critical point

corresponding to a planar configuration is a saddle point of V M

Regarding the spatial configurations we have the following:

THEOREM 3.5. If (i is a critical point of V corresponding to a spatial configuration

17



then :
(3.20) 0< g < 2N-5 , N> 4.

Proof. (3.20) follows from [12], where it is shown that at any spatial central
configuration the hessian of Vl M is negative definite on a subspace of dimension
greater than or equal to N-2. Since M is 3N -4 dimensional and the critical
orbit corresponding to a spatial configuration is 3-dimensional, we get the

assertion. W

Using (2.6), (3.1) and the previous three theorems we obtain:

2N-5

2N -4 2 2 2
Tt 1+t )(1+ .. 1+(N -
(3.21) E (@ +B) + 5 _ @x)aret).. . (HINCDE) |y eo ()
2 4 t
1-t 1-t
Z 721 t21
0LigN=-2
- sisli +(1+9Q V)
1-t
where cr>L is the number of spatial critical orbits whose points have index A, B)t
is the number of planar critical orbits whose points have index X and '72 are the

(8)

Betti numbers

REMARK 3.2. As observed in the previous section, the manifold M and_ the potential
V are invariant not only for the actions of SO(3) but also for that of O(3). The

group O(3) is obtained by adding to SO(3) the reflections with respect to the planes
intersecfing the origin in ]R3. This implies that, as far as the planar or collinear
configurations are concerned, nothing changes (i.e., 0(2)c SO(3)), but since O(3)

is the double covering of SO(3), each spatial central configuration gives rise to two

orbits of critical points. Thus the numbers a)t are even numbers.

(8)

The numbers 7,, can be computed by this formula:

S |
v, = (-t SNk
2i k=0 N

2i

where (_l)p—q Sq is the number of permutations of p elements with q cycles.

The numbers Sp are called Stirling numbers of the first kind.

18



N-2

REMARK 3.3. 2, Vo = N /2 which is similar to the result found by J. Palmore
i=0

for the planar problem.

From (3.21) we deduce the following:

THEOREM 3.6. If m,,...,mg are N masses (N > 4), such that the corresponding

potential energy V(q) has only nondegenerate critical orbits, then we have:

+ Y, t ... < -
(3.22) @, sz 2%t ”2]' 0< 7 <2N-5 .
Proof. From (3.21) we have
2N -5 IN-6
(2N-4 - :
(3.2 (- E ( +B )¢+ B2 N ) 1y B o) D Al
0<igN-2 j=0 !

Equating the coefficients of the even powers we get:

(3.24) a +B

2 B =y, . +A_ .+ A -A -A

2j " %2j-2 Poj-a T Yo7 hgyT Boj1 T Aoj2 T o3

where we have used the convention that if some subscript is negative then the cor-

responding number is 0. We will prove that:

+ =Y +Y t... +Y, tA_+ < 2j -
(3.25) 2, sz Tyt Yy Yo A2j A2j_1 0£2j<2N-5

from which (3. 22) follows. (3.25) is true for j = 0. Then supposing, by induction,

+ = v + + . i . .
that a2j—2 sz-2 'yo+ + 72j—2 A2j—2 A2j-3’ from (3. 24) we obtain (3.25).10

COROLLARY 3.2. If all the masses are equal then o, > 2.

0
Proof. (3.19) implies that BO = 0. Thus from (3.22) and Remark 3.2 we obtain
a/o > 2. i

The previous corollary shows that every time the potential energy is
nondegenerate, in the case of equal masses, there exist at least two SO(3)-orbits
of critical points of V which correspond to spatial central configurations and which

are nondegenerate maxima of V on M.
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Since each pair of SO(3)-orbits corresponds to one O(3)-orbit in M, this
means that, up to symmetry, there is at least one spatial central configuration
which gives a nondegenerate maximum of V on M. In the case N = 4 this spatial
central configuration corresponds to a regular tetrahedron and it is easy to see [17]

that it is the only nonplanar central configuration.

4, The case of 4 equal masses.

In this last section we examine the case of 4 equal masses.

In [10] it is shown that there are exactly 146 Sl -orbits of planar and

collinear configurations. They are:
a) 12 collinear.
b) 6 corresponding to square configurations.

c) 8 corresponding to configurations which have the shape of an equilateral

triangle with a mass at each vertex and the fourth mass in the center.

d) 24 given by isosceles configurations with a mass at each vertex and

another one on the axis of symmetry.

e) 96 given by two pairs of scalene configurations with a mass at each vertex

and one in the interior.

The indices of these configurations in the submanifold YCM are, respectively,

2, 0, 2, 1 and 0, 1 for the two pairs of scalene configurations.

From Theorem 3.3 the collinear configurations give rise to 12 SO(3)-orbits
with index 2N-4 = 4 in M. Because of the SO(3) symmetry on the planar configur-
ations we have three SO(3) orbits of b) type, four of ¢), 12 of d) and 48 of e).

On the other hand, from Theorem 3.2 and Remark 3.1', we know that on the
space normal to Y and to the critical orbits the hessian of V is positive definite
at the critical points. Then in order to compute the indices of the planar configur-

ations, as belonging to SO(3)-orbits in M, we have to add to each of the previous

20



indices the dimension of this space. It is easy to see that this number is
3N -6 -(2N+3) = 1. Hence, from the planar configurations we obtain exactly:

27 SO(3) orbits with index 1, 36 with index 2, and 4 with index 3.

With this information we have that the Morse inequalities (3.21) in the

case of 4 equal masses are exactly:

2 2 4
2 ¥
R + (14 0(1+ 26t +4t)
1-t 1-t

where the number 2 indicates the two SO(3) orbits coming from the unique spatial

configuration given by a regular tetrahedron.
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