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Abstract

Reliable shortest path (RSP) problem reflects the variability of travel time and is more re-

alistic than standard shortest path problem which considers only the average travel time. This

thesis describes an algorithm for solving the mean-standard deviation RSP problem considering

link travel time correlations. The proposed algorithm adopts the Lagrangian substitution and co-

variance matrix decomposition technique to deal with the difficulty resulting from non-linearity

and non-additivity of the Mixed Integer Non-Linear Program (MINLP). The problem is decom-

posed into a standard shortest path problem and a convex optimization problem whose optimal

solution is proved and the Lagrangian multipliers ranges are related to the eigenvalues of the

covariance matrix to further speed up the algorithm. The complexity of the original problem

is notably reduced by the proposed algorithm such that it can be scaled to large networks. In

addition to the sub-gradient Lagrangian multiplier updating strategy integrated with projection,

a novel one based on the deep-cut ellipsoid method is proposed as well. Numerical experiments

on large-scale networks show the efficiency of the algorithm in terms of relative duality gap and

computational time. Besides, there is evidence showing that, though having longer computa-

tional time, the ellipsoid updating method tends to obtain better solutions compared with the

sub-gradient method. The proposed algorithm outperforms the existing one-to-one Lagrangian

relaxation-based RSP algorithms and the exact Outer Approximation method in the literature.
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Chapter 1

Introduction

1.1 Background and Motivation

In transportation, shortest path algorithms have wide applications in problems such as vehicle rout-

ing, traffic assignment, and network design. To some extent, the shortest path problem is the most

fundamental component and lays the foundation of many complex and advanced transportation stud-

ies.

The most widely applied shortest path algorithm only solves the problem with respect to the

mean travel time, which ignores the variability of the traffic conditions in real networks. However,

in reality, travel time is not constant but is subject to change due to congestions, demand variations,

traffic accidents, and so on. Mutable link travel times also have interactions with each other. Thus,

path travel time reliability is significantly influenced by the link travel time variations and correla-

tions. Nowadays, with the requirements of real-time travel information and travel models shifting

from static to dynamic, the shortest path problem with travel time variability, or the so-called “reli-

able shortest path problem” (RSP), has started to receive more attention.

In the literature, the stochasticity of travel time is usually described either with prior travel time

distributions or with the means and standard deviations of link travel times. Depending on how travel

time stochasticity is embodied, reliable shortest path problem is addressed with two mainstream

approaches - maximizing the on-time arrival probabilities or path reliability and minimizing the

path travel time. Approaches in the first category explicitly deal with travel time distributions for

development of probability-based conditions, in contrast, methods that belong to the second category

are more or less characterized by optimization techniques. In our study, we adopt the latter approach
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1.2. Literature Review

using mean and standard deviation to formulate an optimization problem, which is straightforward

in the sense that data required for the problem can be directly obtained from real data and relieves

the need for either finding a good distribution or making assumptions on variable travel times.

The RSP problem in this study is addressed as minimizing the sum of mean and standard devi-

ation of path travel time. Due to the non-additive and non-linear property, the problem cannot be

solved by standard labeling algorithms because Bellman’s optimality principle does not hold any

longer. Including the correlation between link travel times significantly increases the complexity of

the problem due to the variable dimension increase and the inclusion of the quadratic term of more

cross-multiplications of integer variables.

These difficulties make the problem harder yet intriguing and interesting. The goal of this study

is to find the one-to-one reliable shortest path, defined as the path with the minimum sum of mean

and standard deviation travel time, taking into account link travel time correlations.

1.2 Literature Review

Reliable shortest path problem can be addressed from various perspectives. In this section, a sum-

mary of problem formulations and solution approaches to the reliable shortest path problem is pro-

vided, together with research contributions and their limitations.

One mainstream approach to tackling RSP problem is to define the stochasticity of path travel

times by the summation of average travel times and standard deviation travel times with or without

correlations. Uchida and Iida (1993) are believed to be the pioneers of studying the mean-standard

deviation defined shortest path problem [1].

To model the correlated link travel times defined by the aforementioned objectives, the following

mentioned work contributed to solution algorithms. Having a mean travel time minimization prob-

lem as part of the optimization problem formulated, it is very natural for the researchers to make

use of the standard shortest path problem algorithm for solving the RSP problem. In this category,

the solution algorithms are characterized by solving a standard shortest path sub-problem. Xing
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and Zhou (2011) modeled the correlations of stochastic link travel times by dealing with samples

of historical traffic data [2]. Formulating a relatively simpler form of the correlations in their ob-

jective function, they proposed a Lagrangian relaxation approach to solve the problem. Their dual

function can be decomposed into three sub-problems: a standard shortest path problem, a convex

optimization problem, and a constrained univariate concave optimization problem, all of which can

be easily solved. Along similar lines, Zeng et. al. (2015) proposed a Cholesky decomposition based

Lagrangian relaxation method for finding RSP [3]. They constructed a concave sub-problem by de-

composing the variance-covariance matrix using Cholesky decomposition technique, which differs

from Xing and Zhou’s implicit covariance method. However, unlike labeling algorithms for standard

shortest path finding a shortest path tree, both of these two approaches only gives the shortest path

between a single pair of origin and destination in each run. Besides, the duality gap of their method

may result from the fact that a non-convex sub-problem exists in their formulations. The most recent

work related to mean-standard deviation RSP problem is Zhang et al.’s study (2017) [4]. Using the

Lagrangian relaxation based method as is used by Xing and Zhou, they adopted a Lagrangian relax-

ation method based on Cholesky decomposition, and proposed two Lagrangian multipliers updating

methods. It is shown that their methods converge to the optimal solution with smaller duality gaps

compared with Xing and Zhou’s method. The method proposed by Khani and Boyles (2015), though

designed for an uncorrelated link travel time case, is an exact algorithm for solving an RSP without

link travel correlations [5]. They showed that potentially optimal solutions to the mean-variance

problem are potentially optimal to the mean-standard deviation problem. Based on this finding, they

proposed an exact one-to-all solution algorithm for the mean standard deviation problem. Numeri-

cal experiments showed that their algorithm took less computational time in comparison with other

algorithms in the literature. Nonetheless, the restricted applicability only to networks with uncorre-

lated link travel times was a limitation of their study. Having mentioned the mean-variance defined

RSP problem, it is worth noting that a recent study by Rostami et al.(2016) on the mean-variance

RSP problem developed a branch-and-bound algorithm in exploring the upper and lower bounds of

the shortest path [6]. The solution algorithm works by iteratively branching on the neighbors of the
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current node and solving shortest path sub-problems. In addition, the study showed that restricting

correlations within adjacent/consecutive links does not ease the complexity of the problem. Follow-

ing the results of this work, Hu and Sotirov(2017) studied some special cases of the mean-variance

RSP problem that can be solved in polynomial time [7].

A one-to-all exact algorithm for correlated link travel times is proposed by Shahabi et al. (2013,

2015) [8, 9]. The mixed-integer nonlinear programming (MINLP) was reformulated into a mixed-

integer conic quadratic problem. The Outer Approximation (OA) based algorithm iterates between

solving a mixed integer linear problem (MILP) and a continuous non-linear problem (NLP). The

conic constraint is approximated by the sole inclusion of the elements of the covariance matrix that

make up the shortest paths, making it applicable to huge covariance matrix cases but less compu-

tationally expensive. Under the problem structure, the NLP sub-problem can be easily evaluated

by the solutions obtained from MILP. Shahabi et al. (2015) later developed a robust optimization

strategy for uncertain link travel time [9]. This formulation differs from their previous work in the

expression of the uncertainty of travel times, but outer approximation method still forms the back-

bone of their solution algorithm. Table 1.1 summarizes the research work where the reliable shortest

path problem is defined as a combination of mean travel time and travel time standard deviation (or

variance).
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Literature

Review

Research
Work

With
correlations?

Solution
algorithm Methodology summary

Khani
et. al. (2015) No

Exact;
Labelling
algorithm;
One-to-all

Set up the relationship between uncorrelated travel time
shortest paths of mean-variance and mean-standard
deviation problems; Developed an efficient labelling
algorithm in finding efficient frontier in
additive mean-variance problem.

Shahabi
et al. (2013) Yes

Exact;
Outer
approximation;
One-to-all

Proposed the outer approximation method where in the
master mixed integer problem cutting planes are only
generated using existing shortest paths which avoids
the computation burden in large covariance matrix.

Xing
et. al. (2011) Yes

Lagrangian
substitution;
One-to-one

Proposed Lagrangian substitution method; Decomposed
the problem into standard shortest path problem, a
univariate convex problem and a univariate concave
problem; Proposed sub-gradient method in updating
Lagrangian multipliers.

Zeng
et. al.(2015) Yes

Lagrangian
substitution;
One-to-one

Proposed Cholesky decomposition method to deal with
covariance matrix, using variable splitting techniques the
problem is decomposed into three sub-problems of the
same types as Xing’s.

Zhang
et. al (2017) Yes

Lagrangian
substitution;
One-to-one

Applied Cholesky decomposition method, the problem
is decomposed into a standard shortest path problem and
a convex problem; Lagrangian multipliers updating method
using sub-gradient projection and by solving a quadratic
constrained convex problem were brought forward.

Proposed method Yes
Lagrangian
substitution;
One-to-one

Proposed eigendecomposition method to transform the
problem into a standard shortest path problem and a convex
problem; Proposed Lagrangin multipliers updating methods using
sub-gradient and deep-cut ellipsoid method with projections.

Table 1.1: Algorithm comparisons of closely related studies in the literature
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The variability of travel times in the preceding category is embodied in their variances and co-

variances. On the other hand, the RSP problem can be modeled by utilizing the travel time distri-

butions properties. In this line of research, concepts such as “travel time budget”, “on-time arrival

probability”, “𝛼-reliable path” are proposed. Normal distribution of path travel times assumption is

commonly adopted by researchers to derive optimal conditions and solution algorithms. Seshadri

and Srinivasan (2010) developed a sufficient condition for the optimal path. Combined with Monte-

Carlo path generation approach, K-shortest expected travel time paths were found to find the optimal

solution [10]. Chen et al. (2012, 2013) studied a RSP problem where only neighboring links’ travel

times are correlated. They developed dominant conditions and an algorithm based on these conid-

tions [11,12], and later a k-reliable shortest path problem was studied which extended the idea of de-

viation path algorithm in K shortest paths [13]. In dominance theory approach, studies that focus on

developing stochastic dominance theory for reliable shortest paths received attention as well [14,15].

Fan et al. (2005) proposed a method to maximize the probability of arriving to the destination on

time or sooner based on a model applying Bellman’s optimality principle [16]. Later in the work

of Nie and Fan (2006), they improved the computational efficiency of the stochastic on-time arrival

solution algorithm [17]. Along similar lines, Nie and Wu (2009) provided a label-correcting method

and extended the problem to time-dependent traffic network [18]. Reliable shortest path problems

are also studied with a link to route choice model and traffic assignment problem in these studies, Lo

et al., Walting , Wang et al. and Shao et al.. Lo et al. (2006) brought up a concept named “travel time

budget” and defined a within travel budget reliability to reflect the probability that actual travel time

is within travel time budget [19]. Walting (2006) addressed the travelers’ aversion of late arrival

for uncertain travel in a user equilibrium traffic assignment study [20]. The last two studies were

followed by the research on a bi-objective UE problem, where travelers were assumed to minimize

their expected travel time and travel time budget at the same time [21]. Shao et al. (2006) formu-

lated a Variation Inequality problem for a traffic assignment problem where travel time reliability is

considered and is assumed to be normally distributed [22].

Among other solution approaches, some heuristic and simulation-based algorithms were also
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explored in the literature [23–25]. Interested readers are referred to these paper for details.

1.3 Proposed Method

There are two main challenges for solving the mean-standard deviation defined RSP problem. One

is dealing with link travel time correlations, albeit there is an exact solution algorithm for mean-

standard deviation problem without correlations [5]. The other concern is the computational com-

plexity and efficiency of the solution algorithm, because efficient algorithms that can generate so-

lutions fast are always favored for solving real traffic problems. Our work aims to tackle these two

significant difficulties in RSP problem.

Variance-covariance matrix decomposition and Lagrangian substitution are the two main break-

throughs that greatly ease the complexity of the problem. Utilizing variable substitution method of

Lagrangian relaxation and decomposed matrix, we introduced an auxiliary variable to the problem

and by dualizing the linking constraints, the original mixed integer quadratic problem is decom-

posed into two separable sub-problems. One sub-problem is a standard shortest path problem, and

the other is a convex problem of the auxiliary variable. Solving them separately is much easier than

solving the original one. In addition, we proved the optimal solution to the the second sub-problem

which further reduces computational costs. This research incorporates the efficient standard label-

ing algorithm into the proposed solution algorithm for the RSP problem, which greatly enhances the

algorithm efficiency. The contribution of our work is briefly presented below.

Novel decomposition approach. Matrix decompostion method, such as Cholesky decomposi-

ton, has been used in the literature in solving RSP problems [3,4,8]. It is believed, however, that the

eigen-decomposition technique which is studied in this thesis has not been used in the same research

field. The proposed eigen-decomposition method relates the Lagrangian multipliers and the eigen-

values of travel time correlation matrix together. Eigen-decomposition is a more general method in

that a Cholesky decomposition can be easily converted from the eigendecomposition.

Sub-problem convexity. Convexity of the resulting problems has been proved and the optimal

7
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value and solution of the sub-problem are found. This further reduces computational time without

relying on optimization solver package for getting the optimal solution. Furthermore, the ranges that

Lagrangian multipliers should vary within are exploited and related to the the eigenvalues of the

matrix, and a projection technique is proposed in the Lagrangian multiplier updating method.

Computational efficiency. Comparisons with the existing Outer Approximation method [8]

and one-to-one Lagrangian substituion solution algorithms, namely the sampling based method [2]

and sub-gradient projection based method [4], were carried out. Tests reveals that the proposed

Lagrangian substitution based sub-gradient updating method takes at most about 1.5 seconds for

Barcelona Network and about 7 seconds by deep-cut ellipsoid method. Comparing these figures

with the OA method, the computational time decrease at least 95% on average. It is also shown

that our algorithm outperforms sampling based method in terms of duality gap. Comparing with the

sub-gradient projection based method, it is found that our algorithms converge to a smaller gap, and

is faster in terms of computational time.

Deep-cut ellipsoid updating strategy. Another contribution of this work is that we compared

and explored two Lagrangian multiplier updating methods, the sub-gradient method and deep-cut

ellipsoid method. Sub-gradient method enjoys its popularity due to its extreme simplicity and ease

of implementation. However, it comes at the cost of a potentially bad updating direction [26]. Our

results reveal evidence on this and show that even though deep-cut ellipsoid method usually takes

longer to convergence, it is capable of giving better solutions, whereas sub-gradient method may

converge to a local optimum.

The remainder of the thesis is organized as follows. Chapter 2 formulates the minimum mean-

standard deviation path problem with link travel time correlations. Chapter 3 provides the detailed

Lagrangian substitution based solution algorithm and two Lagrangian updating methods — the sub-

gradient and deep-cut ellipsoid method. Computational experiment results on an illustrative example

and large-scale networks, and comparisons with existing RSP solution algorithms are summarized

in Chapter 4, together with evaluations of the proposed algorithm. Finally, Chapter 5 concludes the

thesis by providing major contributions, limitations of this study and future work.
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Chapter 2

Problem Statement

This chapter first introduces notations that are used throughout the thesis and proposes the mathemat-

ical formulation of the mean-standard deviation form of RSP problem with travel time correlations.

Then, the reformulation of the RSP problem is presented.

2.1 Notation Preliminaries

Problem-related

ℕ: Set of nodes, |ℕ| = 𝑛

𝔸: Set of links, |𝔸| = 𝑚

𝑖, 𝑗: Node index with 𝑟 representing the origin and 𝑠 representing the destination, 𝑖, 𝑗 ∈ ℕ

𝑖𝑗, 𝑘𝑙: Link index, 𝑖𝑗, 𝑘𝑙 ∈ 𝔸

𝑐𝑖𝑗: Avereage link travel time of link 𝑖𝑗

𝑐: 𝑚-dimensional link travel time vector

𝜎𝑖𝑗: Standard deviation link travel time of link 𝑖𝑗

𝐶𝑜𝑣(𝑖𝑗, 𝑘𝑙): Covariance of travel times of link 𝑖𝑗 and link 𝑘𝑙

Σ: 𝑚 × 𝑚 variance-covariance matrix of link travel times

𝑥𝑖𝑗: Binary decision variable, equals 1 if link 𝑖𝑗 is on the shortest path connecting origin and desti-

nation

𝑥: 𝑚-dimensional decision variable vector

𝑦: 𝑚-dimensional auxiliary variable vector

𝜂: Reliability coefficient

9



2.2. Problem Formulation

Algorithm-related

𝑍: Objective value for the RSP problem with link time correlations

𝑍𝑈𝐵: Upper bound of the objective value 𝑍

𝑍𝐿𝐵: Lower bound of the objective value 𝑍

𝜇: 𝑚-dimensional Lagrangian multiplier vector

𝐿(𝑥, 𝑦, 𝜇): Lagrangian function of decision variables and Lagrangian multipliers

𝐿(𝜇): Lagrangian dual function

𝐿𝑥(𝜇): Lagrangian dual sub-problem of 𝑥

𝐿𝑦(𝜇): Lagrangian dual sub-problem of 𝑦

𝐿⋆
𝑥(𝜇): Optimal value of 𝐿𝑥(𝜇) for a given 𝜇

𝑥⋆: Optimal solution of 𝐿𝑥(𝜇) for a given 𝜇

𝜖: Duality gap threshold

𝑠: Iteration number index

𝐾: Maximum iteration number

2.2 Problem Formulation

The RSP problem to be addressed is defined as a mean-standard deviation shortest path problem

with correlated link travel times.

Let 𝐺(ℕ, 𝔸) represent a directed transportation network. For each link 𝑖𝑗, its travel time is

stochastic, which is characterized by its average link travel time 𝑐𝑖𝑗 and the standard deviation travel

time, 𝜎𝑖𝑗. Let 𝑥𝑖𝑗 be a binary variable denoting the decision of whether link 𝑖𝑗 is included in the

reliable shortest path from the origin 𝑟 to the destination 𝑠. 𝑥𝑖𝑗 takes the value of 1 if and only if 𝑖𝑗 is

a component of the reliable shortest path, otherwise, it takes the value of 0. Thus, a mean-standard

deviation RSP problem which does not consider link travel time correlations can be formulated as a

minimization program with the objective function,

∑
𝑖𝑗∈𝔸

𝑐𝑖𝑗𝑥𝑖𝑗 + 𝜂√ ∑
𝑖𝑗∈𝔸

𝜎2
𝑖𝑗𝑥𝑖𝑗, (2.1)

10



2.2. Problem Formulation

and constraints on decision variables of flow conservation, ∑𝑗∶𝑖𝑗∈𝔸 𝑥𝑖𝑗−∑𝑗∶𝑗𝑖∈𝔸 𝑥𝑗𝑖 = 𝑣, where 𝑣 = 1

if 𝑖 = 𝑟, 𝑣 = −1 if 𝑖 = 𝑠, and otherwise 𝑣 = 0. In the formulation, 𝜂 captures the risk aversion towards

travel time, which we will refer to as “reliability coefficient” in the sequel. We treat this parameter as

a known constant, interested readers can find more on parameter calibration from the work [27,28].

Compared with a standard shortest path problem, where the objective function only contains

the term that decisions are only involved in average path travel time, the RSP problem increases its

complexity in that it introduces a non-linear term that captures the variability of path travel time.

Non-additivity of the RSP problems makes the Bellman’s optimality condition not valid any longer,

which forms the backbone of solution algorithms of the standard shortest path problem.

An RSP problem defined above assumes that there are no interactions between link travel times.

However, this may not be true in the real world. The links adjacent to a heavily congested link, for

example, are likely to have longer travel times due to the higher density of surrounding links. Thus,

a more realistic model would be considering the travel time correlations among links. To extend the

preceding defined problem to a more general case, we formulate the following objective function,

where 𝐶𝑜𝑣(𝑖𝑗, 𝑘𝑙) denotes the link travel time covariance of link 𝑖𝑗 and 𝑘𝑙.

∑
𝑖𝑗∈𝔸

𝑐𝑖𝑗𝑥𝑖𝑗 + 𝜂√ ∑
𝑖𝑗∈𝔸

𝜎2
𝑖𝑗𝑥𝑖𝑗 + ∑

𝑖𝑗,𝑘𝑙∈𝔸
𝐶𝑜𝑣(𝑖𝑗, 𝑘𝑙)𝑥𝑖𝑗𝑥𝑘𝑙. (2.2)

Noticing that the decision variables are binary, a formulation of the RSP problem in a compact

form is proposed as follows:

(ℙ)

Min 𝑍 = 𝑐𝑇𝑥 + 𝜂√𝑥𝑇Σ𝑥 (2.3)

s.t. ∑
𝑗∶𝑖𝑗∈𝔸

𝑥𝑖𝑗 − ∑
𝑗∶𝑗𝑖𝔸

𝑥𝑖𝑗 =

⎧{{{
⎨{{{⎩

−1 𝑖 = 𝑟

0 𝑖 ∈ ℕ − {𝑟, 𝑠}

1 𝑖 = 𝑠

(2.4)

𝑥𝑖𝑗 ∈ {0, 1} (2.5)
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The RSP problem with correlated link travel times formulated in ℙ is a mixed integer nonlinear

problem. The objective function is a combination of the standard shortest path problem (minimizing

the mean travel time) and a variance-covariance matrix characterizing the path travel time variability.

The complexity of the problem lies in that the efficient labeling algorithms cannot be used to find the

optimal path due to the failure of Bellman’s optimality conditions. A MINLP is typically solved by

outer approximation techniques, but in this study, noting that the variance-covariance matrix, Σ, is

always symmetric and positive semi-definite, exploring and making the best of this property makes

it possible to use methods like Lagrangian relaxation.

2.3 Problem Reformulation

Given a square matrix, the decomposition technique, eigendecomposition, can be applied to decom-

pose the matrix into a diagonal matrix, Λ, whose elements are eigenvalues, and a matrix 𝑉 whose

columns are corresponding normalized eigenvectors. The decomposition takes the following form:

Σ = 𝑉Λ𝑉−1. (2.6)

A variance-covariance matrix is always positive semi-definite [29]. An imporant property of a

positive (semi-)definite matrix is that it can be decomposed in such a way that its eigenvectors are

pairwise orthogonal [30, 31]. This property makes it possible to store all its eigenvectors in one

orthogonal matrix, and this implies that 𝑉𝑇 = 𝑉−1. Thus, the eigendecomposition for the variance-

covariance matrix, Σ, can be expressed equivalently as the following:

Σ = 𝑉Λ𝑉𝑇. (2.7)

Substituting Σ with Λ and 𝑉 and defining a new continuous auxiliary variable 𝑦, the objective

function defined in ℙ is reformulated as equation (2.8) with a link constraint defined in equation

(2.11). Together with the constraint sets equation (2.4) and (2.5), we get an equivalent RSP problem

ℙ′.
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2.3. Problem Reformulation

(ℙ′)

Min 𝑐𝑇𝑥 + 𝜂√𝑦𝑇Λ𝑦 (2.8)

s.t. ∑
𝑗∶𝑖𝑗∈𝔸

𝑥𝑖𝑗 − ∑
𝑗∶𝑗𝑖∈𝔸

𝑥𝑖𝑗 =

⎧{{{
⎨{{{⎩

−1 𝑖 = 𝑟

0 𝑖 ∈ ℕ − {𝑟, 𝑠}

1 𝑖 = 𝑠

(2.9)

𝑥𝑖𝑗 ∈ {0, 1} (2.10)

𝑦 = 𝑉𝑇𝑥 (2.11)

In the following chapter, a solution algorithm that works directly to find the optimal solution for

the problem ℙ′ is proposed, the solution of which is also the optimal solution for the problem ℙ.
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Chapter 3

Matrix Decomposition-based Lagrangian Substitution Solution Method

This chapter first introduces the construction of a Lagrangian relaxation problem, then explores

the convexity of the sub-problem, and discusses two Lagrangian multiplier updating strategies, and

finally presents the complete solution algorithm for the link travel time correlated RSP problem.

3.1 Lagrangian Relaxation Problem Construction

Lagrangian relaxation is a commonly adopted technique to solve constrained optimization problems

( [2,32,33]). By introducing Lagrangian multipliers, the method imposes penalties when inequality

constraints are violated, hence forces improvement of the optimal value in the direction in accordance

with the constraints.

Defining Lagrangian multipliers 𝜇 for the equality constraint, equation (2.11), and moving them

to the objective function, we construct a new Lagrangian function, 𝐿(𝑥, 𝑦, 𝜇):

𝐿(𝑥, 𝑦, 𝜇) = 𝑐𝑇𝑥 + 𝜂√𝑦𝑇Λ𝑦 + 𝜇𝑇(𝑉𝑇𝑥 − 𝑦). (3.1)

Now, we can construct the Lagrangian dual function, 𝐿(𝜇) which is a function of the Lagrangian

multiplier 𝜇. The Lagrangian dual function is rearranged according to decision variables, and to-

gether with the other two original constraints the complete Lagrangian dual function is presented as

following:

𝐿(𝜇) = 𝑖𝑛𝑓
𝑥,𝑦

{𝑐𝑇𝑥 + 𝜂√𝑦𝑇Λ𝑦 + 𝜇𝑇(𝑉𝑇𝑥 − 𝑦) ∶ (2.4)(2.5)} (3.2)

= 𝑖𝑛𝑓
𝑥,𝑦

{(𝑐 + 𝑉𝜇)𝑇𝑥 + 𝜂√𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦 ∶ (2.4)(2.5)} (3.3)

=𝐿𝑥(𝜇) + 𝐿𝑦(𝜇) (3.4)

14



3.1. Lagrangian Relaxation Problem Construction

Where, 𝐿𝑥(𝜇) and 𝐿𝑦(𝜇) are defined as follows:

𝐿𝑥(𝜇) = 𝑖𝑛𝑓
𝑥

⎧{{{{
⎨{{{{⎩

(𝑐 + 𝑉𝜇)𝑇𝑥 ∣ ∑
𝑗∶𝑖𝑗∈𝔸

𝑥𝑖𝑗 − ∑
𝑗∶𝑗𝑖∈𝔸

𝑥𝑖𝑗 =

⎧{{{{
⎨{{{{⎩

−1, if 𝑖 = 𝑟

0, if 𝑖 ∈ ℕ − {𝑟, 𝑠}

1, if 𝑖 = 𝑠

, 𝑥𝑖𝑗 ∈ {0, 1}

⎫}}}}
⎬}}}}⎭

(3.5)

𝐿𝑦(𝜇) = 𝑖𝑛𝑓
𝑦

{𝜂√𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦} (3.6)

After regrouping the variables, the Lagrangian dual function can be regarded as a combination

of two new sub-problems equation (3.5) and (3.6). The first sub-problem, 𝐿𝑥(𝜇), is a standard

shortest path problem considering fixed penalties on some of the links, which can be solved efficiently

with labeling algorithms. The penalty is determined by the eigenvector matrix 𝑉 and the current

Lagrangian multipliers 𝜇. The other sub-problem, 𝐿𝑦(𝜇), is an unconstrained problem of auxiliary

variable 𝑦. In the next subsection, we will prove the convexity and show the solution for the problem.

Before the convexity proof, we present the Lagrangian dual problem for the sake of completeness

of solution algorithm. The Lagrangian dual problem is important in Lagrangian relaxation method

because its solution provides a lower bound to the primal problem. A series of increasing lower

bounds approaches the primal optimum gradually. With decreasing upper bounds, the difference

between lower bound and upper bound decreases until an optimal solution is found.

The dual problem is a constrained maximization problem, with decision variables being the La-

grangian multipliers. Interested readers are referred to the Lagrangian relaxation tutorial by Guig-

nard [34]. They referred to this Lagrangian relaxation method as dualizing “linking constraint”,

where the linking constraint refers to the constraint 𝑉𝑇𝑥 = 𝑦 that were introduced to link the original

variables 𝑥 and auxiliary variables 𝑦. Note that the Lagrangian multipliers do not have to be non-

negative since the linking constraint is an equality.
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3.2. Sub-problem Convexity and Solution Proof

(ℙ2)

𝑚𝑎𝑥
𝜇∈𝑅𝑚

𝐿(𝜇) = 𝐿𝑥(𝜇) + 𝐿𝑦(𝜇) (3.7)

3.2 Sub-problem Convexity and Solution Proof

This section first proves the convexity of the second sub-problem, gives its optimal solution and also

develops the ranges that the Lagrangian multipliers should vary within so as to obtain optimal value.

Lemma 1 Function ℎ(𝑦) = 𝜂√𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦 is convex.

To prove the convexity of the function 𝑔(𝑦), it suffices to prove the convexity of 𝑓 (𝑦) = √𝑦𝑇Λ𝑦

with the default setting that 𝜂 > 0. Take any two vectors 𝑢, 𝑣 ∈ 𝑅𝑛 and a scalar 𝑘 ∈ 𝑅, then the

following equation always holds.

𝑓 (𝑘) = √(𝑢 + 𝑘𝑣)𝑇Λ(𝑢 + 𝑘𝑣) = √(𝑣𝑇Λ𝑣𝑘2 + 2𝑣𝑇Λ𝑢𝑘 + 𝑢𝑇Λ𝑢)

Recall that the matrix Λ is a diagonal matrix, whose elements are the eigenvalues of the variance-

covariance matrix, so Λ is also a PSD matrix. Viewing the above as a function with respect to

variable 𝑘, thus the inequality 𝑣𝑇Λ𝑣𝑘2 + 2𝑣𝑇Λ𝑢𝑘 + 𝑢𝑇Λ𝑢 ≥ 0 holds for any 𝑘. And this indicates

that (𝑣𝑇Λ𝑢)2 − (𝑣𝑇Λ𝑣)(𝑢𝑇Λ𝑢) ≤ 0.

Then take the second derivative of the function 𝑓 (𝑘), and check that

𝑓 (𝑘)″ = −(𝑣𝑇Λ𝑢)2 + (𝑣𝑇Λ𝑣)(𝑢𝑇Λ𝑢)

(𝑣𝑇Λ𝑣𝑘2 + 2𝑣𝑇Λ𝑢𝑘 + 𝑢𝑇Λ𝑢)
3
2

≥ 0

Thus, 𝑓 (𝑘) is convex with respect to 𝑘, and consequently the convexity of 𝑓 (𝑦) = √𝑦𝑇Λ𝑦 is proved.

Lemma 1 proves the convexity of the problem, the following lemma shows the optimal solution

of the problem. Having this proved, there is no need for using an optimization solver to solve the

problem.

Lemma 2 The optimal value of the second sub-problem, 𝐿𝑦(𝜇) = 𝜂√𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦, is 0, and 𝑦 = 0

is one optimal solution for the problem.
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3.2. Sub-problem Convexity and Solution Proof

The optimal value of the Lagrangian dual problem, 𝐿𝜇, servers as a lower bound to the original

problem, thus the optimal value of the sub-problem, 𝐿𝑦(𝜇) = 𝜂√𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦, should be bounded.

Let’s transform variables 𝑦 from Cartesian coordinates (𝑦1, ..., 𝑦𝑛) to n-spherical coordinates

(𝑟, 𝜃1, ..., 𝜃𝑛−1) through the following equations:

𝑦𝑖 = 𝑟 𝑓𝑖(𝜃) ; ∀𝑖

where 𝑟 ≥ 0 is the radius from the reference point, in this case the origin point in the Cartesian

coordinates, 𝜃 is the vector of angles with reference directions/planes, and 𝑓𝑖(𝜃) are the functions

to determine the direction of the vectors, e.g. in two-dimensional space, 𝑓1 = 𝑐𝑜𝑠(𝜃), 𝑓2 = 𝑠𝑖𝑛(𝜃)

where 𝜃 is the polar angle. The transformed subproblem will be:

𝐿𝑦(𝜇) = 𝜂√∑
𝑖

𝜆𝑖𝑦2
𝑖 − ∑

𝑖
𝜇𝑖𝑦𝑖

𝐿𝑟,𝜃(𝜇) = 𝜂√∑
𝑖

𝜆𝑖𝑟2𝑓 2
𝑖 (𝜃) − ∑

𝑖
𝜇𝑖𝑟𝑓𝑖(𝜃)

𝐿𝑟,𝜃(𝜇) = 𝑟(𝜂√∑
𝑖

𝜆𝑖𝑓 2
𝑖 (𝜃) − ∑

𝑖
𝜇𝑖𝑓𝑖(𝜃))

where 𝜆𝑖 is the element in 𝑖 − 𝑡ℎ column and 𝑖 − 𝑡ℎ row of the diagonal matrix Λ. In other words,

𝜆𝑖’s are the eigenvalues of the travel time variance-covriance matrix.

Let’s define 𝐶 = 𝜂√∑𝑖 𝜆𝑖𝑓 2
𝑖 (𝜃) − ∑𝑖 𝜇𝑖𝑓𝑖(𝜃), which is only a function of vector 𝜃. Then

𝐿𝑟,𝜃(𝜇) = 𝑟𝐶

It is clear that for 𝐶 < 0, the optimal value is 𝐿∗
𝑟,𝜃(𝜇) = −∞ at 𝑟∗ = ∞, for 𝐶 > 0, the optimal

value is 𝐿∗
𝑟,𝜃(𝜇) = 0 at 𝑟∗ = 0, and for 𝐶 = 0, the optimal value is 𝐿∗

𝑟,𝜃(𝜇) = 0 for any value of 𝑟

including 𝑟 = 0.

Because we are interested in a lower bound for the dual problem, the case with 𝐿∗
𝑟,𝜃(𝜇) = −∞ is

not acceptable, therefore, we adopt 𝐿∗
𝑦(𝜇) = 𝐿∗

𝑟,𝜃 = 0. In this case, 𝑟 = 0 indicates that the optimal

point is indeed the origin point:

𝑦∗
𝑖 = 0 ; ∀𝑖 (3.8)
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3.2. Sub-problem Convexity and Solution Proof

which proves the lemma.

Lemma 3 If the second sub-problem 𝐿𝑦(𝜇) = 𝜂√𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦 is bounded, then the Lagrangian

multipliers 𝜇𝑖 are constrained by −𝜂√𝜆𝑖 ≤ 𝜇𝑖 ≤ 𝜂√𝜆𝑖.

From Lemma 2, 𝐿𝑦(𝜇) is bounded when 𝐶 ≥ 0, therefore:

𝐶 ≥ 0 → 𝜂√∑
𝑖

𝜆𝑖𝑓 2
𝑖 (𝜃) − ∑

𝑖
𝜇𝑖𝑓𝑖(𝜃) ≥ 0

For n=1, 𝑓1 = ±1. Therefore, −𝛽√𝜆1 ≤ 𝜇1 ≤ 𝛽√𝜆1.

For n=2, 𝑓1 = 𝑐𝑜𝑠(𝜃), 𝑓2 = 𝑠𝑖𝑛(𝜃). Therefore,

𝜂√𝜆1𝑐𝑜𝑠2(𝜃) + 𝜆2𝑠𝑖𝑛2(𝜃) ≥ 𝜇1𝑐𝑜𝑠(𝜃) + 𝜇2𝑠𝑖𝑛(𝜃)

While it is difficult to find a relationship for each 𝜇𝑖 in terms of other parameters, some can be

achieved by considering the extreme cases as following:

• Case I: 𝜃 = 0. In this case, 𝜆2 and 𝜇2 disappear and the remaining term is 𝜇1 ≤ 𝜂√𝜆1.

• Case II: 𝜃 = 𝜋
2 . In this case, 𝜆1 and 𝜇1 disappear and the remaining term is 𝜇2 ≤ 𝜂√𝜆2.

• Case III: 𝜃 = 𝜋. In this case, 𝜆2 and 𝜇2 disappear and the remaining term is 𝜇1 ≥ −𝜂√𝜆1.

• Case VI: 𝜃 = 3𝜋
2 . In this case, 𝜆1 and 𝜇1 disappear and the remaining term is 𝜇2 ≥ −𝜂√𝜆2.

For 𝑛 = 3, 𝑓1 = 𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃2), 𝑓2 = 𝑠𝑖𝑛(𝜃1)𝑠𝑖𝑛(𝜃2), 𝑓3 = 𝑐𝑜𝑠(𝜃1) and therefore the following

inequality should hold:

𝜂√𝜆1𝑠𝑖𝑛2(𝜃1)𝑐𝑜𝑠2(𝜃2) + 𝜆2𝑠𝑖𝑛2(𝜃1)𝑠𝑖𝑛2(𝜃2) + 𝜆3𝑐𝑜𝑠2(𝜃1) ≥

𝜇1𝑠𝑖𝑛(𝜃1)𝑐𝑜𝑠(𝜃2) + 𝜇2𝑠𝑖𝑛(𝜃1)𝑠𝑖𝑛(𝜃2) + 𝜇3𝑐𝑜𝑠(𝜃1).

One can still use extreme cases to find some bounds on Lagrangian multipliers: the case where

𝜃1 = 𝜃2 = 0 and 𝜃1 = 𝜃2 = 𝜋 leads to −𝜂√𝜆3 ≤ 𝜇3 ≤ 𝜂√𝜆3; the case where 𝜃1 = 𝜃2 = 𝜋
2 and
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3.3. Lagrangian Multiplier Updating Strategies

𝜃1 = 𝜃2 = 3𝜋
2 leads to −𝜂√𝜆2 ≤ 𝜇2 ≤ 𝜂√𝜆2; the case where 𝜃1 = 𝜋

2 , 𝜃2 = 0 and 𝜃1 = 3𝜋
2 , 𝜃2 = 0

leads to −𝜂√𝜆1 ≤ 𝜇1 ≤ 𝜂√𝜆1.

One can continue extending these to higher dimensions, therefore, some bounds on 𝜇 are as

following:

− 𝜂√𝜆𝑖 ≤ 𝜇𝑖 ≤ 𝜂√𝜆𝑖 ; ∀𝑖 (3.9)

which proves the lemma.

Now, the intractable nonlinear mixed integer part, √𝑥𝑇Σ𝑥 , has been converted into an uncon-

strained convex problem of 𝑦 whose optimal solutions have been proved. In terms of the range of

the Lagrangian multipliers, they will be incorporated using projection in the Lagrangian multiplier

updating strategy that will be briefly discussed in the complete algorithm.

Thanks to the matrix decomposition technique and the variable substitution, a complicated MINLP

is successfully decomposed to two convex problems that brings a great simplification in computa-

tional efforts, which will be shown in Chapter 4. One taxonomy of decomposition method-based al-

gorithms in the literature that were designed for RSP problems, is the convexity of the decomposed

subproblems. The algorithm proposed by Xing and Zhou [2] results in sub-problems involving a

concave minimization problem as well as convex minimization problems. In contrast, the Cholesky

decomposition method proposed by Zhang et al. [4] admits two convex minimization problems and

it was proved that their method has a smaller gap. Our method indeed falls into the second category.

It is noteworthy to point out that the proposed eigen-decomposition encompasses the Cholesky

decomposition as a special case when the diagonal matrix Λ is the identity matrix. Take the square-

root of the matrix of Λ and we can perform a QR factorization to get a Cholesky decomposition.

Therefore, the method proposed in Zhang et al. [4] can also be applied for the convexity proof.

3.3 Lagrangian Multiplier Updating Strategies

The Lagrangian dual problem is provided in ℙ2. By duality theory, the solutions of the Lagrangian

dual problem provides a lower bound to the original problem ℙ. In an iterative process, an increasing
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3.3. Lagrangian Multiplier Updating Strategies

trend for the lower bound is favorable because it reduces the duality gap. To this end, the goal of

solving the Lagrangian dual problem is to find a solution that increases the objective value.

This section provides two methods for updating the Lagrangian multipliers: sub-gradient method

and deep-cut ellipsoid method. The sub-gradient method has been widely used to find a direction for

solution updating. Its simplicity and good practicality make itself a popular method when there is

no necessity for getting an exact direction and step size. Ellipsoid method, the first polynomial-time

algorithm to solve a linear problem, is efficient in theory with proved convergence and slow but steady

in practice. The ellipsoid method to be discussed in this thesis is the “deep-cut ellipsoid method”,

compared to the basic ellipsoid method, deep-cut version cuts more volume at each iteration and

hence improves its performance. This stimulates us to compare these two methods in an RSP problem

setting. To our best knowledge, this study is the first one comparing ellipsoid method and sub-

gradient method in an RSP problem setting, which is one of the contributions of the work.

3.3.1 Sub-gradient method

The search direction is given by the sub-gradient of the Lagrangian dual problem 𝐿𝜇.

∇𝐿(𝜇) = 𝑉𝑇𝑥 − 𝑦 = 𝑉𝑇𝑥 (3.10)

The second equality follows from the Lemma 2 that the optimal solution of 𝐿𝑦(𝜇) is zero.

Define a scalar 𝜃, which controls the step size towards the alteration to the direction indicated

by the sub-gradient. The step size is controlled by the duality gap (𝑍𝑈𝐵 − 𝑍𝐿𝐵). Following Fisher’s

method [35], the final updating scheme is as follows, where 𝑍𝑈𝐵 is defined as the best upper bound

(𝑍 in equation (2.3)) found so far, 𝑍𝐿𝐵 is the best lower bound found by the Lagrangian dual problem

𝐿(𝜇(𝑠)) and the coefficient 𝛽 is a positive adjusting factor.

𝜇(𝑠+1) = 𝜇(𝑠) + 𝜃(𝑠)∇𝐿(𝜇) = 𝜇(𝑠) + 𝛽𝑍𝑈𝐵 − 𝑍𝐿𝐵
‖𝑉𝑇𝑥(𝑠)‖2 (𝑉𝑇𝑥(𝑠)). (3.11)

where, 𝑠 is used as the iteration index, and 𝑥(𝑠) is the solution of the sub-problem obtained from

iteration 𝑠.
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3.3.2 Deep-cut ellipsoid method

The ellipsoid method was first developed in 1970’s by Soviet Union mathematicians and it is the

first proved solution algorithm for solving linear program in polynomial time. It has been observed

that the solution algorithm suffers from slow convergence in practice but very steady. In addition to

application in solving linear program, the ellipsoid method has also been used in solving Variational

Inequalities (VI) problems, combinatorial optimization problems, and etc. Interested readers can

refer to the related work [36–38] for understanding the mechanism and the developement of the

algorithm, but specific applications in transportation field have not been aware of by the authors of

the thesis.

The basic idea of the method is present as follows. The ellipsoid method generates a sequence

of ellipsoids with decreasing volumes and in each iteration it is guaranteed that the optimum value

is within the ellipsoid. Ellipsoid method also applies the sub-gradient to obtain a half-space that is

guaranteed not to contain any optimal point. Given a series cutting-planes, it can sequentially reduce

the volume of ellipsoids so as to get the optimal point.

Any ellipsoid in ℝ𝑛, 𝔼, can be represented in the following mathematical form with the vector,

𝑜, being the center of the ellipsoid and matrix, 𝐴, depicting the shape of the parameters, whose

eigenvalues are the lengths of principal semi-axes.

𝔼 = {𝑥| (𝑥 − 𝑜)𝑇𝐴−1(𝑥 − 𝑜) ≤ 1} (3.12)

Take minimization problem with the objective function ℎ as an example. By taking the sub-

gradient 𝑔𝑇 ∈ 𝜕ℎ at the center, the half-space where the objective value goes down can be deter-

mined, that is, the space defined by the following,

{𝑥| 𝑔𝑇(𝑥 − 𝑜) ≤ 0}. (3.13)

A half-ellipsoid which contains the minimizer can the be defined as the intersection of the original

ellipsoid and the half-space:

𝔼 ∩ {𝑥| 𝑔𝑇(𝑥 − 𝑜) ≤ 0}. (3.14)
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A new ellipsoid is then generated by forming an minimum volume ellipsoid that contains the half-

ellipsoid. For the brevity of the purpose, the proof for the following is left out only showing the

results. Interested readers can refer to the work by [38]. The new ellipsoid center and shape matrix

is updated as follows:

𝑜(𝑠+1) = 𝑜(𝑠) − 1
1 + 𝑛𝐴(𝑠) ̃𝑔(𝑠) (3.15)

𝐴(𝑠+1) = 𝑛2

𝑛2 − 1
(𝐴(𝑠) − 2

𝑛 + 1𝐴(𝑠) ̃𝑔(𝑠) ̃𝑔(𝑠)𝑇𝐴(𝑠)) (3.16)

̃𝑔(𝑠+1) = 1

√𝑔(𝑠)𝑇𝐴(𝑠)𝑔(𝑠)
𝑔(𝑠) (3.17)

where, ̃𝑔(𝑠) is the normalized sub-gradient and 𝑛 is the dimension of the ellipsoid. Iteration index 𝑠

is presented to make the updating method clear. One can interpret the updating method in equation

(3.15) as an sub-gradient alike method with fixed step-size of 1
𝑛+1 .

Deep-cut ellipsoid method can be derived in a similar way, it but instead excludes a half-space

bigger than the space excluded in the basic version. The excluded space is defined by {𝑥|𝑔𝑇(𝑥 −

𝑜) ≥ 𝑢, 𝑢 ≤ 0}. Since 𝑢 is a non-positive real number, the excluded space defined precedingly is

bigger than {𝑥|𝑔𝑇(𝑥 − 𝑜) ≥ 0}, which is the complement of the space defined in equation (3.13).

Now we discuss how the real number 𝑢 should be chosen. By definition of the sub-gradient, the

following inequality, ℎ(𝑦) ≥ ℎ(𝑜) + 𝑔𝑇(𝑦 − 𝑜), holds for any 𝑦 where 𝑔𝑇 ∈ 𝜕ℎ(𝑜). Thus, it is true

for the optimizer, say 𝑦∗. Then we have the following: ℎ∗ = ℎ(𝑦∗) ≥ ℎ(𝑜) + 𝑔𝑇(𝑦∗ − 𝑜). Note

that the ellipsoid method does not guarantee a monotonically decreasing objectives, in other words,

the current objective value ℎ(𝑜(𝑠)) may be greater than the best upper bound ℎ(𝑠)∗ that has been

generated so far. In addition, note that ℎ∗ ≤ ℎ(𝑜(𝑠)∗), therefore, the negative number can be chosen

as the difference of the current objective value and the best objective value found so far, which gives

the following space.

{𝑥| 𝑔𝑇(𝑥 − 𝑜) ≥ ℎ(𝑜(𝑠)∗) − ℎ(𝑜(𝑠))}. (3.18)

It is because of cutting off a larger plane every iteration that the deep-cut ellipsoid method performs

better than its basic version. Center and shape matrix updating method for deep-cut ellipsoid method
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3.3. Lagrangian Multiplier Updating Strategies

should also be adjusted accordingly as follows with same updating method for the normalized sub-

gradient as is in equation (3.17).

𝑜(𝑠+1) = 𝑜(𝑠) − 1 + 𝑛𝛼
1 + 𝑛 𝐴(𝑠) ̃𝑔(𝑠) (3.19)

𝐴(𝑠+1) = 𝑛2(1 − 𝛼2)
𝑛2 − 1

(𝐴(𝑠) − 2(1 + 𝑛𝛼)
(𝑛 + 1)(1 + 𝛼)𝐴(𝑠) ̃𝑔(𝑠) ̃𝑔(𝑠)𝑇𝐴(𝑠)) (3.20)

𝛼 = ℎ(𝑜(𝑠)) − ℎ(𝑜(𝑠)∗)

√𝑔(𝑠)𝑇𝐴(𝑠)𝑔(𝑠)
(3.21)

The convergence of the ellipsoid method largely relys on the constant decreasing rate of ellipsoid

volume that depends on 𝑛. Theoretically, the number of iterations needed to achieve a 𝜖−optimal

solution is 𝒪(𝑛2) [38]. For the sake of brevity, we refer readers to the work [38] for the proof of the

convergence.

To put the deep-cut ellipsoid method in the context of our problem which is maximizing the

Lagrangian dual problem, i.e, 𝑚𝑎𝑥 𝐿𝜇. Thus, when using the sub-gradient to define the half space,

the space that should be excluded is the complement to the space introduced above. This explains

the sign change for updating the ellipsoid center presented in Algorithm 1. The bigger half-space is

obtained by comparing the best optimal value found so far (𝑍𝐿𝐵 in our case) and the objective value

at the current solution (𝐿(𝜇(𝑠))).

The complete deep-cut ellipsoid method is described as follows. Given an initial ellipsoid cen-

tered at 𝜇(0) with initial lengths of principal axes depicted by 𝐸(0), (𝐸(0), 𝜇(0)), and the best lower

bound (𝑍𝐿𝐵) found so far, the deep-cut ellipsoid method for updating the Lagrangian multipliers is

as follows. Note that the presented deep-cut ellipsoid method is different from the standard one,

where there is an iterative process for determining the optimal solutions for the optimization prob-

lem. Since in our problem setting, the Lagrangian multiplier updating is just for the current solution,

and this solution may not already be the optimal solution, thus there is no necessity to obtain the

optimal Lagrangian multiplier for the intermediate solutions. In this regards, the deep-cut ellipsoid

method is only performed once in each iteration of the complete algorithm to simply get a direction
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3.3. Lagrangian Multiplier Updating Strategies

for updating the Lagrangian multipliers. This also benefits the algorithm in the way that it saves

computational time.

To initialize the deep-cut ellipsoid method, one can begin with a ball centered at the origin. One

want to have relatively longer principal axes so as to avoid the problem that optimizer is excluded in

the initial ellipsoid. The authors have carried out some experiments, although the results show that

the computational cost are not very sensitive to the initial lengths of semi-axis, it is recommended

to take larger value for the initial lengths of principal axes.

Algorithm 1: Deep-cut ellipsoid method for updating Lagrangian multipliers
Input: (𝐸(0), 𝜇(0)), 𝑍𝐿𝐵

Result: Updated Lagrangian multipliers 𝜇
begin

Compute the sub-gradient ℎ(𝑠) = 𝑉𝑇𝑥(𝑠)

Normalize the sub-gradient ̃ℎ(𝑠) = ℎ(𝑠)

√ℎ(𝑠)𝑇𝐸(𝑠)ℎ(𝑠)

Calculate 𝛼 = 𝐿(𝜇(𝑠))−𝑍𝐿𝐵

√ℎ(𝑠)𝑇𝐸(𝑠)ℎ(𝑠)

Update Lagrangian multiplier 𝜇(𝑠+1) = 𝜇(𝑠) + 1+𝑚𝛼
𝑚+1 𝐸(𝑠) ̃ℎ(𝑠)

Update ellipsoid shape matrix
𝐸(𝑠+1) = 𝑚2

𝑚2−1(1 − 𝛼2)(𝐸(𝑠) − 2(1+𝑚𝛼)
(𝑚+1)(1+𝛼)𝐸(𝑠) ̃ℎ(𝑠) ̃ℎ(𝑠)𝑇

𝐸(𝑠))

3.3.3 Dealing with negative link costs

During the process of updating the Lagrangian multiplers, it is possible that with some certain up-

dated 𝜇, the adjusted link travel costs, 𝑐+𝑉𝜇, in the standard shortest path problem become negative.

Though the label correcting algorithm can still deal with the negative link costs if there is no nega-

tive cycle formed, the safest way to avoid generating negative cycles is proportionally adjusting the

stepsize until none of the adjusted link costs is non-positive. This same method has been used in

Xing and Zhou’s paper [2].

To be specific, for the sub-gradient updating strategy, when a negative link cost occurs, the second

term in equation (3.11), 𝜂𝑍𝑈𝐵−𝑍𝐿𝐵
‖𝑉𝑇𝑥(𝑠)‖2 (𝑉𝑇𝑥(𝑠)) is proportionally adjusted until there is no more negative
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link costs. For the deep-cut ellipsoid updating strategy, similarly, non-negative link costs can be

obtained by adjusting the term 1+𝑚𝛼
𝑚+1 𝐸(𝑠) ̃ℎ(𝑠).

3.4 Complete Solution Algorithm

Having introduced the decomposition of the original problem into two sub-problems, proved convex-

ity and optimal solution for the sub-problem of 𝑦, and discussed two Lagrangian multiplier updating

strategies, this subsection provides the complete solution algorithm for the RSP problem with link

travel time correlations. The major idea of the following presented Lagrangian substitution based

method is generating upper bound and lower bound series until sufficient small gap is achieved. The

lower bound can be obtained by maximizing the Lagrangian dual function, equation (3.7), and the

Lagrangian dual function has already been decomposed to two sub-problems for which sub-problem

of 𝑦 has an analytically proved optimal solution. Thus the lower bound reduces to solving the sub-

problem of 𝑥. An upper bound can be evaluated by equation (2.3) using the solution of sub-problem

of 𝑥. Figure 3.1 presents the logic flow of the algorithm in brevity.

Starting with solving a standard shortest path problem, this provides an initial feasible solution

and an upper bound for the optimal path’s standard deviation. Apply the standard labeling setting

algorithm to solve sub-problem 𝐿𝑥(𝜇). The optimal solution to the second sub-problem, 𝐿𝑦(𝜇)

is proved to be zero, thus the lower bound 𝑍𝐿𝐵 = 𝐿𝑥(𝜇) can be found. Evaluating the solutions

obtained by solving the first sub-problem with equation (2.3), a candidate of upper bound (𝑍𝑈𝐵)

is available. A series of decreasing upper bounds is favorable, thus if there is no improvement of

upper bound we keep the previous solution and upper bound from the previous iteration. In other

words, the solution and the upper bound are updated only when the value evaluated by equation

(2.3) decreases. The Lagrangian multipliers are updated in an iterative process until a convergence

criterion is satisfied. Be noted that if, by any one of the Lagrangian multiplier updating strategies,

the updated 𝜇 is outside the range derived in equation (3.9), the corresponding element 𝜇 should

be projected back to the feasible range. The algorithm for solving the RSP problem with link travel
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3.4. Complete Solution Algorithm

Figure 3.1: Major steps of the solution algorithm

time correlations is summarized in Algorithm 2.
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Algorithm 2: Decomposition based Lagrangian substitution solution algorithm
Input: Relative duality gap threshold 𝜖, maximum number of iteration 𝐾
Result: Reliable shortest path solution 𝑥, and duality gap
begin

Step 1: Variance-covariance matrix decomposition
Decompose the variance-covariance matrix, Σ, into the diagonal matrix Λ and 𝑉 by
eigendecompostion.

Step 2: Initialization
Set iteration number 𝑠 = 0 and initialize lower bound (𝑍𝐿𝐵) = – ∞;
Choose an initial Lagrangian multiplier 𝜇0 ≥ 0;
Solve a standard shortest path, compute 𝑍 as the upper bound (𝑍𝑈𝐵);
Step 3: Solve Lagrangian relaxation problems
Solve 𝐿𝑥(𝜇), denoting solutions as 𝑥 and optimal value as 𝐿⋆

𝑥(𝜇);
Compute 𝑍 with solution 𝑥⋆, set it as ̃𝑍𝑈𝐵;
if 𝑍𝑈𝐵 ≤ ̃𝑍𝑈𝐵 then

Set 𝑍𝑈𝐵 = ̃𝑍𝑈𝐵

Set 𝑥(𝑠) = 𝑥⋆

else
Set 𝑥(𝑠) = 𝑥(𝑠−1)

Set 𝐿(𝜇) = 𝐿⋆
𝑥(𝜇) ;

if 𝐿(𝜇) ≥ 𝑍𝐿𝐵 then
Set 𝑍𝐿𝐵 = 𝐿(𝜇)

Step 4: Update Lagrangian multiplier
Update Lagrangian multipliers using either sub-gradient method (equation (3.11)) or
deep-cut ellipsoid method using Algorithm 1;

Project Lagrangian multipliers back to the feasible region using equation (3.9);
Step 5: Termination check
if 𝑍𝑈𝐵−𝑍𝐿𝐵

𝑍𝐿𝐵
≤ 𝜖 or 𝑠 ≥ 𝐾 then

Terminate the algorithm
Report 𝑥(𝑠) as the RSP solution and duality gap 𝑍𝑈𝐵−𝑍𝐿𝐵

𝑍𝐿𝐵

else
Go to step 3
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Chapter 4

Numerical Experiments

4.1 Illustrative Example Computational Tests

For the purpose of demonstrating the algorithm steps and its characteristics, the results of a small

illustrative network borrowed from Shahabi et. al. [8] are presented in this section. Figure 4.1 shows

the network topology and the variance-covariance matrix of link travel times, where the numbers on

the arcs correspond to the mean costs. 𝑎𝑖𝑗 represents the link (𝑖, 𝑗), so that in the variance-covariance

matrix, 𝐶𝑜𝑣(12, 25) = 0.75 and 𝐶𝑜𝑣(34, 32) = 0.70 for instance.

4.1.1 Complete Algorithm Review

Both sub-gradient and deep-cut ellipsoid updating strategy are used to give some insights of how the

complete Lagrangian substitution algorithm works for finding RSP solutions. The problem setting

is 𝜂 = 1.0, 𝜖 = 0.5%, 𝜇 = 1.0. Table 4.1 and 4.2 show how Lagrangian multipliers, lower bound

and upper bound, and relative gap evolve to get the optimal solution.

The algorithm starts with initial Lagrangian multipliers all set to 1.0, and the estimated 𝑍𝑈𝐵 is

calculated from a standard shortest path (1-2-5-6), which results in the initial upper bound 15.30.

The lower bound is evaluated from equation (3.5) by solving the standard shortest path problem

𝐿𝑥(𝜇). At iteration 2, solving the sub-problem 𝐿𝑥(𝜇) gives us a new shortest path (1-3-4-6) and

the 𝑍𝑈𝐵 evaluated at this solution lowered to 14.43. Continuing the algorithm, the shortest path

solution of 𝐿𝑥(𝜇) keep unchanged, but with the adjustment of Lagrangian multipliers, lower bound

keeps increasing until the gap at iteration 6 reaches 0.29% so that the predefined gap threshold is

met. Deep-cut ellipsoid method also starts with all Lagrangian multipliers set to 1.0, same with the
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Figure 4.1: Illustrative network topology and link travel time variance-covariance matrix

sub-gradient method, it finds the new shortest path at the second iteration. The similar increasing

lower bound and decreasing relative gap is observed, and the only difference is that deep-cut ellipsoid

method takes fewer iterations than sub-gradient method. The convergence trajectories for these two

examples are shown in Figure 4.2 and 4.3.
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Table 4.1: Results of Lagrangian substitution algorithm using sub-gradient method for the illustrative network with 𝜂 = 1.0

iteration 𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 𝜇9 𝐿𝑥(𝜇) 𝑍𝐿𝐵 𝑍𝑈𝐵
relative
gap(%)

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.42 10.42 15.30 31.90
2 -0.172 0.184 0.540 -0.367 0.123 0.573 0.927 0.004 -1.472 11.88 11.88 14.43 17.67
3 0.267 -0.418 0.652 0.239 0.140 0.324 0.782 -0.097 -1.850 13.75 13.75 14.43 4.67
4 0.268 -0.577 0.682 0.400 0.145 0.258 0.744 -0.123 -1.950 14.16 14.16 14.43 1.85
5 0.268 -0.666 0.679 0.488 0.147 0.222 0.723 -0.139 -2.005 14.32 14.32 14.43 0.73
6 0.268 -0.676 0.699 0.498 0.148 0.218 0.721 -0.140 -2.011 14.25 14.39 14.43 0.29

Table 4.2: Results of Lagrangian substitution algorithm using deep-cut ellipsoid method for the illustrative network with 𝜂 = 1.0

iteration 𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜇6 𝜇7 𝜇8 𝜇9 𝐿𝑥(𝜇) 𝑍𝐿𝐵 𝑍𝑈𝐵
relative
gap(%)

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.84 10.84 15.30 29.18
2 -0.267 -0.082 0.408 -0.773 -0.130 0.459 0.921 -0.286 -2.220 12.18 12.18 14.43 15.59
3 0.267 -0.690 0.544 -0.038 -0.110 0.156 0.746 -0.410 -2.678 14.34 14.34 14.43 0.62
4 0.268 -0.690 0.553 0.007 -0.108 0.137 0.735 -0.417 -2.718 14.41 14.41 14.43 0.12
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4.1.2 Lagrangian Multiplier Updating Method Comparison: Sub-gradient and Deep-cut

Ellipsoid

Table 4.3 compares the solutions obtained from the sub-gradient method and deep-cut ellipsoid

method with different reliability coefficient settings. In the sequel, Lagrangian substitution based

sub-gradient method deep-cut ellipsoid method will be referred to as LS-SG and LS-DE for con-

venience, respectively. The case where reliability coefficient is set to 0 corresponds to a standard

shortest path problem. With reliability coefficient increasing to 1.0, shortest paths for both OD pairs

deviate from the standard shortest paths. Continuing increasing value of the reliability coefficient,

the reliable shortest paths keep unchanged with respect to the case where 𝜂 equals 1.0. One can

expect the same reliable shortest path for even higher values of reliability coefficient since when the

standard deviation of path travel time dominates the average travel time, a higher weight of reliability

coefficient will only foster the reliable path. Thus, to find a critical point of reliability coefficient

where reliable shortest path first changes would be an interesting problem to explore. Here, the

example shows that standard shortest path may be different from a reliable shortest path.

For the tests shown in Table 4.3, the relative duality gap threshold was set to 0.5%. Comparing

sub-gradient and deep-cut ellipsoid Lagrangian multiplier updating methods, RSP solution and the

optimal value of both methods are exactly same. Computational time, the number of iterations and

relative duality gap are also comparable. It shows in the table LS-DE algorithm solves problem

slightly faster than the LS-SG for the illustrative network.

Figure 4.1 and 4.2 respectively show the convergence trajectory for the two updating strategies

with cases that reliability coefficient setting to 1.0 and 2.0 respectively. Sub-gradient method tends to

find the optimal solution at the beginning of the algorithm, which finds both reliable shortest paths at

the second iteration, whereas ellipsoid method needs more iterations for finding the optimal solution.

Compared with the deep-cut ellipsoid method, the sub-gradient method has a better convergence

trend due to the adjustable step size according to the relative difference between the upper bound

and the lower bound.
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Table 4.3: Solution summary for Lagrangian substitution algorithm with sub-gradient and deep-cut ellipsoid method of illustrative network

RSP
solution

Optimal
value

Computational
time (s)

# of
iterations

Relative
duality gap (%)

Reliability
coefficient 𝜂 OD pair LS-SG LS-DE LS-SG LS-DE LS-SG LS-DE LS-SG LS-DE LS-SG LS-DE

0 (1,6) [1-2-5-6] [1-2-5-6] 11.0 11.0 0.000 0.000 2 1 0.0 0.0
(2,6) [2-5-6] [2-5-6] 6.0 6.0 0.000 0.000 2 1 0.0 0.0

1.0 (1,6) [1-3-4-6] [1-3-4-6] 14.43 14.43 0.016 0.000 6 4 0.29 0.03
(2,6) [2-4-6] [2-4-6] 8.84 8.84 0.06 0.013 7 5 0.33 0.17

2.0 (1,6) [1-3-4-6] [1-3-4-6] 16.86 16.86 0.015 0.016 8 4 0.34 0.47
(2,6) [2-4-6] [2-4-6] 10.69 10.69 0.06 0.015 7 4 0.49 0.37
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a) reliability coefficient 𝜂 = 1.0

b) reliability coefficient 𝜂 = 2.0
Figure 4.2: Convergence trajectory for the sub-gradient Lagrangian multiplier updating method
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a) reliability coefficient 𝜂 = 1.0

b) reliability coefficient 𝜂 = 2.0
Figure 4.3: Convergence trajectory for the deep-cut ellipsoid Lagrangian multiplier updating method
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4.1.3 Comparison with GUROBI

We also compared our solution algorithm with the commercial optimization solver GUROBI 7.5.0.

GUROBI claims to solve mixed integer quadratically constrained problem (MIQCP). To solve this

mean-standard deviation RSP problem, we slightly modified the problem in ℙ to accommodate the

solver as following, where 𝑡 is an auxiliary continuous variable.

(ℙ3)

𝑚𝑖𝑛 𝑍 = 𝑐𝑇𝑥 + 𝜂𝑡 (4.1)

s.t. 𝑡2 ≥ 𝑥𝑇Σ𝑥 (4.2)

∑
𝑗∶𝑖𝑗∈𝐴

𝑥𝑖𝑗 − ∑
𝑗∶𝑗𝑖∈𝐴

𝑥𝑖𝑗 =

⎧{{{
⎨{{{⎩

−1 𝑖 = 𝑟

0 𝑖 ∈ ℕ − {𝑟, 𝑠}

1 𝑖 = 𝑠

(4.3)

𝑥𝑖𝑗 ∈ {0, 1} (4.4)

GUROBI is readily available for solving the problem formulated above. Besides, as is mentioned

in the literature review section, the RSP problem defined as mean-variance is another way to model

the variability of path travel times. We referred to this mean-variance problem as ℙ4 in the sequel,

whose objective function is 𝑐𝑇𝑥+𝜂𝑥𝑇Σ𝑥 . It would also be an interesting problem to solve the mean-

variance problem and compare the results. Here, we slightly modified our algorithm to solve the

mean-variance problem. The second sub-problem ̄𝐿𝑦(𝜇) now becomes 𝑖𝑛𝑓𝑦{𝜂𝑦𝑇Λ𝑦 − 𝜇𝑇𝑦}, and the

convex optimization problem can be solved by any convex optimization solution algorithm. After

obtaining the solutions for 𝑦, the same sub-gradient method for updating the Lagrangian multipliers

can be applied and the only difference is that the sub-gradient, in this case, is ∇𝐿(𝜇) = 𝑉𝑇𝑥 − 𝑦.

Follow the LS-SG algorithm proposed for the mean-standard deviation problem, the mean-variance

problem can be solved.

We obtained solutions from our proposed method for mean-variance and mean-standard devia-

tion problems, and compared the results with the commercial optimization solver GUROBI for this
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Figure 4.4: Comparison with GUROBI solver of mean-variance and mean-standard deviation problem

illustrative network example with 𝜂 = 1.0 and 𝜖 = 0.5%. A detailed comparison is presented in

Figure 4.4. To compare the mean-variance problem first, experiment results show that both our pro-

posed algorithm and GUROBI found the optimal path (1-3-4-6) whose travel time is 17.9. There is

a 0.45% relative duality gap by our method in contrast to 0 relative gap of GUROBI for the mean-

variance problem (4.4). In terms of computational time, our proposed algorithm spends more time.

As to the mean-standard deviation problem, again both the proposed algorithm and GUROBI found

the optimal RSP (1-3-4-6) with total travel time being 14.30. Computational time for LS-SG is

around half of the GUROBI’s with a 0.29% relative duality gap. Later in the large-scale network

experiments, however, GUROBI fails to solve an RSP problem within a reasonable amount of time.

The algorithm GUROBI mainly adopts for solving mixed integer programming is branch-and-cut.

To sum up, the comparison with the commercial solver GUROBI, shows that the proposed al-

gorithm is accurate and the performances are comparable to the branch-and-cut algorithm. More

experiments will be tests on larger networks and sample sizes in the following section.

4.2 Real Network Computational Tests

Numerical tests on several large-scale real transportation networks were conducted to evaluate the

performance of the proposed solution algorithm. The algorithm was coded in Python. All the tests
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were executed on a 2.60 GHz Core i7-6700HQ computer with the 64-bit version of the Windows

10 operating system and 8GB RAM. To show the necessity of considering link travel time correla-

tions, travel times computed with and without link travel time correlations were first analyzed. In

terms of the algorithm performance, we compared the proposed algorithm with the existing outer

approximation method [8] and sampling based Lagrangian relaxation method [2], and also compared

with the sub-gradient projection algorithm [23]. These analysis will be presented in the following

subsections.

4.2.1 Data Preparation

Three real networks, Anaheim, Barcelona, and Chicago sketch, are used to conduct the tests. The

details of the test networks are presented in Table 4.4. The average travel time data come from

transportation test networks [39]. We also need standard deviation of link travel times to capture

the variability of link travel times. In this regard, we first generate the standard deviation by the

following equation and then generate the normally distributed random samples based on the average

and standard deviation. Note that in this study, link travel time spatial correlation is not limited,

which means that link travel time on link 𝑖𝑗, for instance, is possibly correlated with all the other

links in the network. Given link travel time samples, then the variance-covariance matrix can be

determined. The standard deviation of link travel time was generated randomly in (0, 𝑣) range.

This is the same method adopted by Shahabi [8]. Parameter 𝑣 controls the maximum value of the

coefficient of variation. Different values of 𝑣 will be tested on real networks.

𝜎𝑖𝑗 = 𝑈𝑛𝑖𝑓 𝑜𝑟𝑚(0, 𝑣)𝑐𝑖𝑗 (4.5)

Due to the numerical issues of the covariance matrix computation, following the above-mentioned

method may not necessarily return a variance-covariance matrix that is PSD. An alternative method

is to approximate the generated matrix to the nearest PSD matrix to obtain a valid variance-covariance

matrix. We refer readers to the work by Higham [40], which is the method we adopted to get a PSD
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matrix. Table 4.5 shows the parameters and their values that are used in the real network experiments.

Table 4.4: Test network summary

Test network Number of links (𝑚) Number of nodes (𝑛)
Anaheim 914 416
Chicago sketch 2950 933
Barcelona 2522 1020

Table 4.5: Experiment parameters

Parameter Selected testing values Parameter description
𝑣 {0.15, 0.25, 0.5} maximum value of coefficient of variation
𝜂 {1.0, 2.0, 3.0} reliability coefficient (risk aversion weights)

4.2.2 Comparison Between Correlated and Uncorrelated Link Travel Times

We generalized the mean-standard deviation defined RSP problem from the one without link travel

time correlations (see equation (2.1), which can be solved to optimality [5]. However, the solution of

the problem defined in equation (2.1) leaves out the interactions of the links on the shortest path that

can potentially affect the travel time of the current shortest path. Therefore, we feel the necessity of

carrying out the comparison of shortest travel times with and without link travel time correlations.

We randomly selected some OD pairs from the Chicago sketch and Barcelona network, computed

shortest path travel time under different cases and recorded the results in Table 4.6. Shortest path

travel time with link correlations was computed using the LS-SG method. Shortest path travel time

without link correlations was computed using the same algorithm, where the only difference is that

the off-diagonal elements of the variance-covariance, Σ, were modified to zero leaving a diagonal

PSD matrix that only contains the variances of link travel times. Using the solution obtained from

the case without correlations, we computed the correlated travel time, which is presented in the table

as “corrected travel time”.
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Table 4.6: Comparison of shortest travel time for correlated and uncorrelated link travel time

Network OD pair
Shortest travel time
with correlations
(sec)

Shortest travel time
without correlations
(sec)

Corrected
travel time
(sec)

Chicago
Sketch

(426, 885) 5750.93 5804.34 (+) 5791.28 (+)
(390, 778) 4905.68 4976.82 (+) 4974.48 (+)
(526, 549) 2252.96 2248.26 (-) 2290.00 (+)
(608, 501) 2622.61 2601.97 (-) 2622.61
(403, 883) 4728.69 4734.64 (+) 4728.69

Barcelona

(286, 1007) 672.82 673.72 (+) 679.08 (+)
(70, 24) 736.28 743.61 (+) 741.09 (+)
(272, 759) 294.15 293.28 (-) 294.15
(919,259) 533.92 538.38 (+) 533.92

In the table, the plus and minus sign following the travel times are indicators of whether the fig-

ure is greater or smaller than the shortest travel time with correlations. For example, in the Chicago

sketch network the travel time of OD pair (426, 885) is 5750.93 seconds with correlations. If cor-

relations are ignored, the shortest path travel time is 5804.34, which is greater than the one with

correlations, and if we compute the travel time using the solution, the travel time is 5791.28, which

is smaller than 5804.34 but still greater than 5750.93. Other records can be interpreted similarly. It

has been observed that the shortest path travel time without correlations can be greater or smaller

than the one with link travel correlations, but the corrected travel time is always no less than the

shortest travel time without correlations. In other words, if someone follows the path that has min-

imum travel time without link travel times, he/she may end up experience longer actual travel time

due to the exclusion of link travel time correlations. Therefore, it is necessary that link travel time

correlations are considered when the goal is to find reliable paths.

The cases where corrected travel time equals travel time with correlations reveal the fact that

some paths travel time variations are dominated by the link travel time variance per se, which is in-

tuitive. The authors have also observed that around half of the paths’ travel time without correlations

coincide with the corrected travel time. Nonetheless, in either case, the inclusion of link travel time

correlations is necessary.
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4.2.3 Real Network Comparisons

The purpose of tests summarized in Table 4.7 is to compare computational efficiency of the proposed

algorithm with both of the Lagrangian multiplier updating methods, varying reliability coefficients

and variation coefficients. For all the tests reported in Table 4.7, 100 OD pairs from the tested net-

work are randomly drawn, and both the Lagrangian substitution algorithm with sub-gradient method

and deep-cut ellipsoid method for finding the RSP were conducted. The relative gap threshold was

set to 1% and the maximum number of iterations 𝐾 was set to 200. Table 4.7 recorded the average

computational time, average duality gap, and average number of iterations. Note that all statistics

related to computational time reported are ones only for the main algorithm time (step 2 to step 5),

which does not include the variance-covariance decomposition time. This is true for all the following

tests.
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Table 4.7: Large scale network experimental results summary-Sub-gradient and Deep-cut ellipsoid method

Average
computational
time (s)

Average
relative gap
(%)

Average
number of
iterations

Max
computational
time (s)

Min
computational
time (s)

𝜂 𝑣 LS-SG LS-DE LS-SG LS-DE LS-SG LS-DE LS-SG LS-DE LS-SG LS-DE

Anaheim

1.0
0.15 0.02 0.10 0.64 0.45 2.4 2.2 0.08 0.29 0.01 0.04
0.25 0.09 0.28 0.83 0.83 6.7 6.0 0.47 0.03 0.03 0.07
0.50 0.15 0.46 0.83 0.81 11.2 9.2 0.69 1.19 0.04 0.08

2.0
0.15 0.04 0.15 0.68 0.66 2.8 3.2 0.08 0.56 0.02 0.07
0.25 0.12 0.46 0.84 0.82 9.6 9.3 0.51 1.51 0.02 0.13
0.50 0.22 0.54 0.86 0.82 17.0 11.4 2.30 2.00 0.05 0.12

3.0
0.15 0.05 0.18 0.65 0.59 3.1 3.5 0.10 0.51 0.02 0.09
0.25 0.13 0.56 0.80 0.84 10.1 12.2 0.28 3.21 0.04 0.13
0.50 0.21 0.69 0.88 0.84 15.9 14.6 0.58 3.07 0.25 0.09

Chicago
sketch

1.0
0.15 0.45 0.82 0.85 0.65 8.3 3.2 6.80 4.16 0.10 0.50
0.25 0.57 1.07 0.87 0.62 13.9 3.7 6.92 3.29 0.15 0.52
0.50 0.90 1.39 0.89 0.65 15.2 4.7 4.25 3.15 0.22 0.53

2.0
0.15 0.50 1.06 0.86 0.66 9.4 3.8 1.35 3.38 0.15 0.52
0.25 0.74 1.81 0.87 0.71 12.8 6.9 3.40 10.34 0.12 0.53
0.50 1.18 2.76 0.87 0.75 19.9 8.9 7.66 15.09 0.16 0.56

3.0
0.15 0.66 1.56 0.91 0.65 12.3 5.6 1.90 7.99 0.21 0.51
0.25 1.29 1.99 0.85 0.70 21.0 6.9 10.40 9.24 0.11 0.50
0.50 1.37 3.08 0.92 0.72 25.8 10.7 4.12 25.61 0.20 0.54

Barcelona

1.0
0.15 0.29 1.43 0.87 0.85 3.8 4.1 0.81 9.94 0.14 0.68
0.25 0.53 1.90 0.83 0.79 7.3 5.1 1.55 9.44 0.14 0.69
0.50 1.39 4.36 0.86 0.82 18.1 12.4 11.11 28.52 0.15 0.69

2.0
0.15 0.71 2.94 0.83 0.83 10.2 7.3 2.36 18.22 0.14 0.69
0.25 0.82 3.67 0.88 0.78 10.8 10.2 2.62 27.06 0.15 0.69
0.50 1.35 6.16 0.85 0.84 17.8 17.1 4.24 26.78 0.28 0.74

3.0
0.15 0.94 3.13 0.88 0.83 11.5 8.2 5.36 12.92 0.15 0.69
0.25 1.28 4.19 0.87 0.75 15.7 11.7 10.62 30.53 0.23 0.67
0.50 1.47 7.33 0.87 0.85 21.2 18.3 10.77 22.83 0.24 1.05
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Both Lagrangian substitution algorithm with sub-gradient updating method (LS-SG) and with

deep-cut ellipsoid updating method (LS-DE), are sensitive to reliability coefficient and variance

coefficient. For the same network, say Anaheim, with fixed 𝜂 = 1.0, we observe an increase for

computational time with increasing variance coefficient 𝑣. Similarly, with fixed 𝑣 = 0.15, increasing

computational time and iterations can be observed with increased reliability coefficient. As a result,

for Anaheim network, the problem with largest 𝜂 and 𝑣 takes the longest computational time, and

this is true for both methods (on average 0.21 seconds and 0.69 seconds for LS-SG and LS-DE,

respectively). Comparison between networks shows that computational effort also relates to the

network size, which is not surprising. OD pair drawn from larger network tends to have longer

travel time and thus it takes longer for convergence. In this problem setting, LS-SG takes as long as

1.37 seconds for finding a reliable shortest path in Chicago sketch network with 𝜂 = 3.0, 𝑣 = 0.50.

For LS-DE, this number increases to 3.08 seconds, more than twice as much as LS-SG. Similar

patterns also exist among other cases that LS-DE usually takes longer than LS-SG for meeting the

same duality gap threshold. The LS-SG solves all the problems within 1.47 seconds, and the LS-

DE solves all the problems within 7.33 seconds, which both of the longest running time happen in

Barcelona network with 𝜂 = 3.0, 𝑣 = 0.50. In terms of average number of iterations, numbers vary

according to network sizes, reliability coefficients and variance coefficients. For LS-SG, it varies

from 2.4 to 21.2 and for LS-DE it changes in the range of (2.2, 18.3). Longer computational time for

LS-DE is not surprising considering the Lagrangian multiplier updating method in deep-cut ellipsoid

method. To update the multipliers, inverse matrix calculation and matrix multiplication are needed,

which is the main reason that slows down the LS-DE method despite fewer iterations.

From Table 4.7, we observe that deep-cut ellipsoid method usually takes more computational

time than the sub-gradient method to reach similar duality gaps. To test on the efficiency of these two

updating methods and to show if there is any benefit in applying ellipsoid method, we designed the

following experiments as well. The first two comparisons for the Anaheim (Chicago sketch) network,

we fix the maximum computational time as 0.1 (0.5) seconds and 0.5 (1.0) seconds respectively, in

order to compare which method gives the better solution within a fixed running time. The last test was

42



4.2. Real Network Computational Tests

designed in such a way that allows for long enough computational time (5 seconds and 10 seconds

respectively), and then compare the solution of the two methods. Tests were performed on Anaheim

and Chicago sketch networks with 𝜂 = 3.0, 𝑣 = 0.25. Figure 4.5 summarizes the results.

a) Anaheim network

b) Chicago sketch network
Figure 4.5: Fixed computational time solution comparison

Given a very short computational time, say, 0.1 seconds for Anaheim network and 0.5 seconds

for Chicago sketch network, solutions obtained by LS-SG are better than those obtained by LS-DE

for more instances. Increasing computational time for Anaheim to 0.5 seconds, LS-DE improves

solutions gradually, which is reflected from the decreased percentage of better solutions by LS-

SG, but LS-SG still outperforms LS-DE in obtaining more better solutions. Giving longer enough
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computational time, it is observed that solutions by LS-DE outperform those by LS-SG. Similar

trends for the Chicago sketch network exist. These tests show that though LS-DE has a relatively

slow convergence rate compared with LS-SG, it can find better solutions that are not found by LS-

SG. Given the fact that the duality gaps of LS-SG solutions are already small, this indicates that

the LS-SG method might converge to local optimal solutions. This partly explains why LS-DE

algorithm tends to obtain smaller gaps than LS-SG. It is because LS-DE are more robust in finding

better feasible solutions. Thus, if computational time is not a concern, deep-cut ellipsoid method

shall be applied to update the Lagrangian multipliers since the solutions by LS-DE usually finds

better solutions than LS-SG. On the other hand, considering the longer computational time LS-DE

consumes, if one wants to obtain some reliable shortest path solution very quickly, LS-SG is the

better choice.

In summary, tests in this section show that LS-SG converges faster than LS-DE, but LS-DE may

give better solutions even though computational time can be significantly longer(2-4 times) than LS-

SG’s. One may choose between the two Lagrangian multiplier updating methods based on whether

the speed of finding the solution is more crucial or not. Also, the multi-start strategy can be applied

to the sub-gradient method to make solutions more reliable.

4.2.4 Comparison with OA, Sampling based Algorithm, and GUROBI

In this section, we compared our proposed algorithm with existing algorithms in the literature, that is

the sampling-based algorithm and Outer Approximation, and the commercial optimization package,

GUROBI.

A comparison between GUROBI and our proposed algorithm is of interest as is shown in the

illustrative example. We transformed the problem to the form of ℙ3 and coded the problem in

Python. However, preliminary tests on Anaheim and Barcelona with GUROBI shows that the solver

was unable to handle the problem of size like these. It already took over 38,000 seconds for Anaheim

and 171,000 seconds for Barcelona with 𝜂 = 1.0 and 𝑣 = 0.15 but still no solutions were found.

Regarding of this, there is no necessity of carrying out the complete comparison with GUROBI any
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longer.

The following table shows the computational efficiency comparison between the proposed algo-

rithm and the Outer Approximation method. Note that the statistics selected for Outer Approximation

method are the ones reported in the paper [8] for corresponding variance coefficient with correlation

factor equal to 0, which are the cases usually with less computational time. All the tests were based

on 𝜂 = 1.0.

Table 4.8: Computation comparison between the proposed algorithm (LS-SG and LS-DE) and OA

Average computational
time (s)

Average number
of iterations

Average relative
duality gap (%)

𝑣 LS-SG LS-DE OA LS-SG LS-DE OA LS-SG LS-DE OA

Anaheim
0.1 0.02 0.08 5.64 2.2 2.3 2 0.83 0.68 0
0.3 0.08 0.28 5.66 7.2 6.3 2 0.81 0.86 0
0.5 0.15 0.46 5.77 11.2 9.2 2 0.83 0.81 0

Chicago
sketch

0.1 0.13 0.70 58.74 6.3 3.6 2 0.84 0.76 0.04
0.3 0.45 1.04 59.29 9.8 4.2 2 0.82 0.74 0.03
0.5 0.90 1.39 60.11 15.2 4.7 2 0.89 0.65 0.05

Barcelona
0.1 0.21 1.20 155.54 4.6 5.3 2 0.84 0.83 0.07
0.3 0.83 3.60 157.36 11.2 9.2 2 0.83 0.81 0.08
0.5 1.39 4.36 160.19 18.1 12.4 2 0.86 0.82 0.07

According to Table 4.8, the OA algorithm outperforms in terms of the relative gap and average

number of iterations. However, the OA needs more computational time compared with the proposed

algorithm. The fact that computational times of the same network is rather stable shows that the OA

algorithm is insensitive to the variance coefficient. The proposed algorithm’s computational time

increases with increasing network size and variance coefficient. Despite this, the total computational

times for all the tests are still significantly less than those of OA. For larger networks like Barcelona,

the RSP problem is solved within 1.4 seconds using LS-SG and less than 5 seconds using LS-DE

while it takes around 160 seconds for the OA method. The average computational time improvement

are 98.2% and 95.2%, respectively for methods LS-SG and LS-DE. The OA method finds a one-to-all

reliable shortest paths tree, whereas, the proposed algorithm finds the reliable shortest path between

a specific OD pair each time.
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In the literature, there is also a one-to-one algorithm, namely sampling based Lagrangian re-

laxation [2]. Since the test network is different in that study, and there is no computational time

available, we compared the relative gap. When 𝜂 = 1.27, the best relative gap from the sampling-

based algorithm is around 5.5%, and when 𝜂 increases to 4, the gap increases to around 13.5%. In

our case, the average relative gap is less than 1% with a very short computational time. Be noted

that the referenced network is larger with 53,124 nodes and 93,900 links.

4.2.5 Comparison with the Sub-gradient Projection based Lagrangian Substitution Method

Using Lagrangian substitution method that decomposes the problem into two convex optimization

problems, the most recent research work is believed to be conducted by Zhang et. al. [4], which shows

a smaller gap and faster computational time compared to the sampling based Lagrangian substitution

method. In this section, we compared our proposed algorithm with their proposed algorithm, namely

the Lagrangian relaxation method with sub-gradient projection (LR-SP). The authors implemented

their algorithm and all the tests were conducted in the same computation environment. To detect

negative cycle problem, Bellman-Ford labelling algorithm was used to find shortest paths in LR-

SP [41].

Table 4.9 compares the computational cost for the methods LS-SG and LR-SP. There are 6 sets

of tests on the three networks, and in each set 50 OD pairs were randomly drawn to perform the

experiment. The relative duality gap threshold was set to 0.1% and 𝑣 was set to 0.50 for all cases.

Comparing the computational time, LS-SG is 2-3 time faster than the LR-SP. Both of the algorithms

are comprised of finding the shortest path and updating Lagrangian multipliers these two main steps.

However, the main cause of the larger computational time for LR-SP is the negative cycle detection,

adjusts of Lagrangian multipliers, and additional computations of the auxiliary variable 𝑦, which are

not necessary in LS-SG. In terms of iteration number, LR-SG outperforms the proposed algorithm,

which indicates that LR-SG algorithm reduces the objective value more drastically in each iteration

than LS-SG does. The faster algorithm, LS-SG, takes more iterations to achieve similar duality gaps.

To shed more light on the convergence of the algorithms, a line chart that shows how the relative

46



4.2. Real Network Computational Tests

duality gap reduces with number of iterations of LS-SG, LS-DE and LR-SP is presented (Figure

4.6). The test were performed on Barcelona network with 𝜂 = 3.0 and 𝑣 = 0.50. Maximum number

of iterations was set to 50.

Table 4.9: Computation comparison between the proposed algorithm (LS-SG) and sub-gradient projection
method (LR-SP)

Network 𝜂
Average computational
time (s)

Average relative
gap (%)

Average number
of iterations

LS-SG LR-SP LS-SG LR-SP LS-SG LR-SP

Anaheim 1.0 0.21 0.63 0.091 0.076 10.0 4.6
3.0 0.34 1.01 0.084 0.085 11.8 7.2

Chicago
sketch

1.0 0.88 2.02 0.079 0.085 13.6 5.4
3.0 1.34 3.14 0.077 0.088 16.2 8.4

Barcelona 1.0 1.58 2.97 0.086 0.082 14.8 4.8
3.0 2.22 5.30 0.090 0.091 20.4 8.6

Duality gap of LR-SP drops faster than both LS-SG and LS-DE at the beginning of the algorithm,

which explains why LR-SP takes fewer iterations in achieving 0.1% gap than LS-SG. However, it

is noted that the final gap of LR-SP is greater than LS-SG and LS-DE. The LR-SP line crosses the

LS-DE and LS-SG line at around 20 and 30 iterations, respectively. This shows that the proposed

algorithms converge to a smaller gap than LR-SP. In this case, the relative duality gap at iteration 50

are 0.06%, 0.02% and 0.004% for LR-SP, LS-SG and LS-DE, respectively. Comparing LS-DE and

LS-SP, it again reflects the fact that the deep-cut ellipsoid method has a better convergence rate and

smaller gap compared with the sub-gradient projection Lagrangian updating method.

To sum up, the results reveal the following: LR-SG reduces the objective value faster initially

than both of the proposed algorithm; LS-SG reduces computational time by around 58% as opposed

to the LR-SG algorithm and improves the duality gap by around 67%, and LS-DE has an even better

duality gap.
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Figure 4.6: Convergence comparison of LR-SP, LS-SG and LS-DE
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Chapter 5

Conclusion

In this thesis, we studied the mean-standard deviation reliable shortest path problem with link travel

time correlations. Thanks to the matrix decomposition technique, it becomes possible to introduce

continuous variables to establish the relationship between the covariance matrix and the original

binary variables. Combined with the Lagrangian relaxation method, we decompose the non-linear

and non-additive original problem into two sub-problems. One of which is a standard shortest path

problem that can be solved efficiently with labeling algorithms and the other convex optimization

problem is proved to show its optimal solution which further saves computational time. The com-

plete algorithm was proposed with both sub-gradient and deep-cut ellipsoid method for updating

Lagrangian multipliers. An illustrative example was provided to shed light on the mechanism of the

proposed algorithm with two different Lagrangian multiplier updating strategies. Large-scale tests

were also conducted to evaluate the computational performances. We compared the relative gap,

running time and average iteration with the existing methods in the literature. From the large-scale

test results, following conclusions are drawn:

• The proposed algorithm is more efficient in terms of computational time compared with OA

with a speed improvement at least 98% for LS-SG, and it outperforms the sampling-based

Lagrangian relaxation method in terms of the relative duality gap.

• The proposed algorithm converges to a smaller gap than the LR-SP algorithm in the literature.

In addition, tests with the same input show that the proposed algorithm is computationally

more efficient even though more iterations are usually needed.

• Large-scale networks experiments show that even though deep-cut ellipsoid usually takes
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longer to find an optimal solution, it is promising for obtaining a better path compared with

the sub-gradient method whose strength is finding a solution faster.

With the increasing research and practical interests on the variability of traffic conditions, the

significant decrease in the computational time of the RSP problem provides promises for further

comprehensive studies and real applications. The contributions of this study include the proposal of

the Lagrangian substitution solution method based on eigendecomposition that has not been studied

in the literature, the efficiency improvement from OA method and sampling based and sub-gradient

projection based Lagrangian relaxation method, and the comparison between the widely adopted

sub-gradient method and deep-cut ellipsoid method for Lagrangian multiplier updating and its im-

plications.

Future research extensions include multiple directions. First, efficient matrix decomposition

method can be a research subject because larger network size makes decomposition of the variance-

covariance matrix computationally expensive. Second, closely related to the first direction, link

travel time spatial correlation can be explored, limiting the correlation of link travel time may give

some special structure of the variance-covariance matrix and provide simplicity in matrix decom-

position. Third, as mentioned in the text, exploration on the critical value of 𝜂 where the variability

of path travel time dominates the average travel time can be an interesting problem for future study.
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