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rk = ZPy(A)Z'1°. (5)

For any other k™ degree polynomial pxePg, we have

I < 12020 < K(Z) max )] 1P, 6
where k(Z) = ||Z|| |Z"|| is the condition number of Z and || - || here, and
elsewhere, denotes the 2-norm for vectors and the corresponding spectral
norm for matrices. The bound in (6) is minimized by taking pj to be the
k" degree minimax polynomial on the discrete set of eigenvalues M, A},
and (6) can be written in the form

”rk“ S IC(Z) min max |Pk()‘i)|- (7)

”r()” pkePr 1=1,...,n

The columns of the matrix Z can be normalized arbitrarily in order to make
k(Z) as small as possible. Throughout this paper, however, we will assume
that the columns of Z have norm 1. This scaling usually gives a near optimal
value for £(Z).

If the matrix A is normal, then k(Z) is one, and it was recently shown in
several different ways [8,9,11] that this bound is sharp; i.e., that for each k,
there is an initial vector r° (depending on k) for which equality holds in (7).
In many cases of interest, however, the matrix A is not normal and the factor
k(Z) in (7) may be quite large. (See, for instance, [15] for some interesting
physical examples.) In such cases, the bound (7) may be a large overestimate
of the actual residual.

To deal with such problems, Trefethen has introduced bounds based on

the e pseudo-eigenvalues of the matrix [18]. There are two equivalent defini-
tions of the e-pseudo-spectrum of a matrix A:

Definition 1. The e-pseudo-spectrum of A, denoted A.(A), is the set of
points z € C such that [|(z] — A)7|| > ¢!,

Definition 2. The e-pseudo-spectrum of A is the set of points z ¢ C which
are eigenvalues of some matrix A + F with ||E|| < e.



For any analytic function f, it is known [2, p. 560] that f(A) can be
written in the form

F(A) = 5 [T = A f(2)e ®)

where T is any simple closed curve or union of simple closed curves containing
the spectrum of A. Taking norms on both sides and replacing the norm of
the integral by the length £(T') of the curve times the maximum norm of the
integrand factors gives

1A < 5= £0) max (eI = A" max |f(2). 9)

Note that the inequality (9) will be close to an equality if and only if the
integrand in (8) is nearly constant in norm over the curve I' and cancellation
does not cause the norm of the integral to be much smaller than the length
of the curve times the norm of the integrand.

A reasonable set of curves to consider, then, are the curves I'c on which
the resolvent (zI — A)™! has constant norm 1/¢; i.e., the boundaries of the
e-pseudo-spectra of A. In this case, the bound (9) becomes

1A < EED e 11(2)1. (10)

e

Taking the function f to be the polynomial pxePy for which this bound is
minimal gives the following bound on the residual in (4):

”rk” LT .
— < —_—
17| e Jhip max Ipk(2)]. (11)

pkc'Pk ZCFC

While, for properly chosen values of €, the bound (11) sometimes gives
a much better estimate than (7) of the actual size of the residual, there are
other cases in which even the bound (11) is a large overestimate, for any
value of e. Consider, for example, a matrix A of the form ZAZ~!, where

1 1-6 0 ... 0 20
0 V& 0 .. 0 10

Z=10 0 1 ... 01, 6<<l, A= 5 . (12)
0 0 0 1 1




Frobenius norm of the strict upper triangle of the Schur form is also quite
large — in this case about 105. Thus, the matrix A is far from normal in all
of the usual senses, and yet the GMRES iteration converges very well.

The problem of deriving a sharp bound on the convergence rate of the
GMRES method, in terms of eigenvalues or pseudo-eigenvalues or other sim-
ple properties of the matrix, appears to be a difficult one. In this paper,
we take a different approach to this problem. While it does not yet achieve
the ultimate goal of giving a sharp or nearly sharp bound for all cases, it
does yield certain insights into the behavior of the GMRES method when
applied to linear systems with non-normal coefficient matrices. We relate the
behavior of the method applied to a non-normal matrix to its behavior when
applied to certain normal matrices. Since the convergence rate of the method
applied to normal matrices is determined by the eigenvalues of the matrix,
if the eigenvalues of the normal matrix could be related to some properties
of the original matrix, then (7) would give a bound on the convergence rate,
in terms of these properties.

Unfortunately, it is only in special cases that we are able to relate the
eigenvalues of the normal matrix to meaningful properties of the original
matrix. It is shown that any behavior that can be seen with the GMRES
method can be seen with the method applied to a unitary matrix. While
certain properties of the original matrix — e.g., positive definiteness — appear
to guarantee large gaps in the spectrum of this unitary matrix, we have not
been able to prove this. It is shown that if zero is outside the field of values of
the original matrix A, then the GMRES method behaves just as it would for
a certain Hermitian positive definite matrix. If A is close to Hermitian, then
the GMRES method behaves just as it would for a Hermitian matrix whose
eigenvalues are close to those of A. In this case, then, the eigenvalues of
A essentially determine the behavior of the GMRES algorithm. In general,
however, eigenvalue information alone cannot be sufficient to ensure fast
convergence of the GMRES algorithm. Any behavior that can be seen with
the method can be seen with the method applied to a matrix having any
nonzero eigenvalues.

Throughout this paper, matrices and vectors will be assumed to be com-
plex, unless otherwise stated. A superscript * will denote the Hermitian
transpose. The space spanned by a set of vectors {v!,...,v*} will be denoted
[v!,...,0%], and the set of vectors of the form v plus a linear combination of
{v',...,v*} will be denoted v + [v?, ..., v¥]. The symbol ||-|| will always denote
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the 2-norm of a vector or matrix and || - || will denote the Frobenius norm
of a matrix. The usual Euclidean inner product will be denoted < -,- >.

In section 2 we characterize those matrices B = B(r°) for which the
GMRES method, with initial residual r°, generates the same residual vectors
at each step as the GMRES method applied to a linear system with coefficient
matrix A and initial residual °. Letting K(A,r°) denote the Krylov space
[r%, Ar®, ..., A¥=11°), we know that the residual r* has the smallest 2-norm
among all vectors of the form

r® 4+ AKi(A,r°). (13)

If the spaces BK(B,r°) are the same as the spaces AK.(A,r°), for all k =
1,...,n, then the GMRES method applied to B, with initial residual r°, will
generate the same residual vectors at each step as the method applied to A,
with initial residual °. For lack of a better name, we refer to these spaces as
Krylov residual spaces, which should not be confused with the Krylov spaces
Ki(A,r°) and Ki(B,r°). The Krylov spaces Ki(A,r°) and Ki(A + al,r°),
where « is any scalar, are the same for all £, but the GMRES method behaves
very differently when applied to A and to A + al! Note also that it is not
required that individual vectors, Ar?,..., A¥r® and Br?, ..., B¥r® be equal,
only that the spaces they span be the same; i.e., Br® must be a scalar multiple
of Ar®, B?r® must be a linear combination of A?r® and Ar?, etc. Note further
that if r* is written in the form (4), r* = Py(A)r® = P(B)r° then the
polynomials P, and P, will be different. Thus, this approach cannot be
used to analyze eigenvalue approximations generated by the algorithm, since
these will be very different for A and for B. In section 3, we consider normal
matrices B for which the Krylov residual spaces, with a given initial vector
r0, are the same as those of a given matrix A. In section 4, we show that
any sequence of Krylov residual spaces can be generated by a matrix having
any nonzero eigenvalues. Section 5 gives conclusions and discusses remaining
open questions and possible applications of this technique of analysis.



2 Matrices that Generate the Same Krylov
Residual Spaces

Given an n by n nonsingular matrix A and an n-vector v, we wish to char-
acterize the matrices B = B(v) for which the spaces

AK(A,v) = [Av, ..., A*v] and BK(B,v) = [Buv, ..., B*v] (14)

are the same, for all £ = 1,...,n. Throughout this paper, we will assume that
the vectors Av,..., A"v are linearly independent. If they are not, however, or
if one wishes to consider conditions in which only, say, the first m of these
spaces are the same, then the characterizations given here can be modified
accordingly. The class of matrices B for which the first m such spaces are
the same will, of course, include the class discussed in this paper.

Let w!,...,w* be an orthonormal basis for [Av, ..., A¥v], and let W be the
matrix with orthonormal columns w?,...,w™. Then it is well-known that the
unitary matrix W satisfies

AW = WH, (15)

where H is an unreduced upper Hessenberg matrix. The following theorem
characterizes all matrices B = B(v) that generate the same Krylov residual
spaces (14) with the vector v.

Theorem 1. Using the above notation, let B be of the form

B = WRHW™, (16)

where R is any nonsingular upper triangular matrix. Then

BK(B,v) = AKi(A,v), k=1,..,n, (17)
and, conversely, any matrix B that satisfies (17) is of the form (16).

Proof: Suppose the order one Krylov residual spaces are the same; i.e.,

Bv = cAv (18)



for some nonzero scalar ¢. The higher order spaces BK(B,v) and AK(A,v),
k > 1, will be the same if B satisfies

BW = WH (19)

for some unreduced upper Hessenberg matrix H. To see that this is so,
assume that BK;_;(B,v) = AKj_1(A,v). The (k—1)* column of equation

(19) can be written as
k . ~
Bw' = 3w Hjpoy.
j=1

It follows that Bw*~!, and hence BFv, is a linear combination of w!, ..., w*,
and since the coefficient of w* is nonzero, B*v is linearly independent of
[w!,...,w*1] = [Bv,..., B¥"'v]. Thus the order k spaces are the same and
the proof is by induction. Conversely, it is clear that (18) and (19) are
necessary conditions in order for (17) to be satisfied.

Taking B to be of the form B = WHW?*, then, the condition (18) be-
comes, upon multiplying each side by W*,

HW*v = cW*Av. (20)
But W*Av is just a constant times e;, the first unit vector,
W*Av = ¢e,,
and W*v satisfies
W= W*A ' Av = W*(WH'W*)Av = ¢H e;.
Therefore (20) can be written as

fIH_lel = ce;. (21)

Clearly, if f{ is of the form RH, where R is a nonsingular upper triangular
matrix, then H is an unreduced upper Hessenberg matrix satisfying (21).
Conversely, if H is an unreduced upper Hessenberg matrix satisfying (21),
and if we write H in the form X H, then the first column of X must be a
scalar multiple of e;. But the requirement that X H be upper Hessenberg



then implies that the elements below the diagonal in subsequent columns of
X are also zero, and the requirement that X H be unreduced implies that the
diagonal elements of X are nonzero. Thus, the only matrices B satisfying

(17) are of the form B = W HW*, where H = RH. D

The characterization of Theorem 1 will prove useful in later sections, where
we consider normal or near normal matrices of the form RH, for various
nonsingular upper triangular matrices R.

There are many equivalent ways to characterize the matrices B that gen-
erate the same Krylov residual spaces. We give two such characterizations
which will prove useful in later sections. The following theorem can be de-
rived from Theorem 1, but it is just as easy to prove it directly, which we do
below.

Theorem 2. Using the above notation, suppose B is of the form

B=WRHW* (22)
where R is any nonsingular upper triangular matrix and
0. .0 1/ <v,w™ >
) 1 L=< >/ <vuw" >
H = . . . . (23)
0 .. 1 —<vul>/<v,w">

Then (17) holds, and, conversely, any matrix B that satisfies (17) is of the
form (22, 23).

Proof: Let V4 be the matrix with columns (Av, ..., A"v). The condition (17)
is equivalent to
ViR, = B(v,w',...,w"™"), (24)

for some nonsingular upper triangular matrix R;. To see that this is so, note
that (24) implies that Bv is a nonzero multiple of Av (and hence of w!),
that Bw' (and hence B?v) is a linear combination of A%v and Av, with the
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L(X)=L(H)D, D diagonal, (27)

and if L(H™!) has no zero columns, then all solutions to (26) are of the form

(27).

Proof: The condition that HX be upper triangular means that the elements
of the lower triangle of X must satisfy

(HX)Z']’ = Z Hikaj = 0, ] < 1. (28)
k=i-1

Since H;;_, is nonzero for all ¢, we can solve these equations for X;_1;,
i =n,n—1,...,5 + 1, in terms of X,;, to obtain (26). If the elements X,;
are taken to be of the form de;jl, for some scalars d;, then, since H™'D
also satisfies equations (28) when D = diag(dy,...,d,), the lower triangle of
X must be equal to the lower triangle of H=!D. Moreover, all solutions are
of this form unless H~! has a zero element in its last row, and, in this case,

the equations (28) imply that all elements of that column of £L(H™!) must
be zero. O

According to Theorem 3, matrices H of the form RH, as described in
Theorem 1, are essentially those matrices whose inverses have lower triangles
of the form L(H~')D, or, more generally, of the form (26). The strict upper
triangle of the inverse of such a matrix is arbitrary. In a later section we will
consider the Hermitian matrix obtained by taking the strict upper triangle
to be the Hermitian transpose of the strict lower triangle.

3 Decompositions of the Form H = RN

For a given matrix A and vector v, let W and H be defined as in the previous
section. In light of Theorem 1, it will be instructive to consider matrices H
of the form RH, for some upper triangular matrices R; for if we then define
the matrix B to be WHW?*, then the Krylov residual spaces generated by
B with initial vector v will be the same as those generated by A with initial
vector v. Since the GMRES algorithm minimizes the 2-norm of the residual
vector over the linear variety consisting of the initial residual plus the Krylov
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residual space, it follows that if the GMRES method is applied to a linear
system Az = b, with initial residual b — Az® = v, then it will generate the
same residual vectors at each step as the GMRES method applied to a linear
system By = f, with initial residual f — By® = v. We will express this by
writing

GMRES(A,v) = GMRES(B,v). (29)

If, for each vector v, we can find a matrix B of the given form, for which
we can analyze the behavior of the GMRES method applied to B, then we
can also analyze the behavior of the GMRES method applied to A. Since
the behavior of the GMRES method for normal matrices is well-understood
in terms of the eigenvalues of the matrix (cf. equation (7)), it is desirable to
find an upper triangular matrix R such that RH is normal, or, equivalently,
to write H in the form H = RN, where R is upper triangular (the inverse of
the upper triangular matrix in Theorem 1) and N is normal. Alternatively,
using Theorem 3, we will look for normal matrices N such that the lower
triangle of N~! is equal to the product of the lower triangle of H~! and a
diagonal matrix.

There are many decompositions of this form, a few of which will be de-
scribed in this section. If such a decomposition could be found for which
the eigenvalues of N could be related to eigenvalues or pseudo-eigenvalues
or other simple properties of the matrix A, then the convergence rate of the
GMRES method applied to A could be explained in terms of these proper-

ties. In general, we have not been able to find such a decomposition, but in
special cases this can be done.

3.1 Equivalent Unitary Matrices

Any upper Hessenberg matrix H can be written in the form

H = RQ, (30)

where R is upper triangular and @ is unitary (and also upper Hessenberg).
Thus, any behavior that can be seen with the GMRES algorithm applied
to any matrix can be seen with the GMRES algorithm applied to a unitary
matrix! Which unitary matrix will depend on the initial residual as well as
the matrix, but for any matrix A and any initial residual r°, if W is the
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matrix whose columns are the orthonormal basis vectors and H the upper

Hessenberg matrix generated after n steps of GMRES(A,r°), and if H = RQ
is the RQ-decomposition of H, then

GMRES(A,r°) = GMRES(WQW*,r°). (31)

We have not been able to establish any interesting relationships between
the eigenvalues of the unitary matrix B = WQW™ and special properties
of A, although it appears that such relationships exist, at least in certain
cases. Fig. 2a shows the eigenvalues of the unitary matrix B obtained from
a GMRES computation with a random 19 by 19 matrix A and a random
initial residual. Note that the eigenvalues are fairly uniformly distributed
around the unit circle. The solid line in Fig. 2b shows the convergence of the
GMRES algorithm, applied to either A or B, with this same initial residual,
while the dotted line in the figure shows the convergence of the GMRES
algorithm applied to B with a different random initial residual, uncorrelated
with B. Note that the GMRES algorithm behaves similarly, when applied
to either A or B, with an arbitrary initial vector, indicating that the typical
behavior of the algorithm applied to B is similar to that of the algorithm
applied to A. In both cases, we see slow convergence, which is characteristic
of the GMRES algorithm applied to a random matrix or to a unitary matrix
with eigenvalues all around the unit circle.

Also shown in Fig. 2b are sharp upper bounds for the residual at each
step of the GMRES algorithm applied to A (+) and to B (x). These were
computed numerically and then proven correct, as described earlier. (The
initial vector r° for which ||r*||/||r°|| is maximal was computed using an
optimization code or other technique, and then it was determined that ||r*|| =
| Pc(A)|| - [|r°]|, where Py is the GMRES polynomial.) It is interesting to
note that the computed sharp bound for A is 1.0000 for steps 1 through 18
— indicating that there is an initial residual for which the GMRES algorithm
applied to A makes no progress at all until step n = 19! This is frequently
observed to be the case for random matrices. Had we used this initial residual
for our first experiment, the equivalent unitary matrix WQW* would have
had its eigenvalues uniformly distributed around the unit circle. This can be
seen from the characterization of Theorem 2. In this case, < % w’ > is zero
foryj=1,.,n—1and | <rw" > | = |Jr°||, which we can assume without
loss of generality is 1. Then the matrix H defined in Theorem 2 is a unitary
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shift matrix, and since the RQ decomposition is unique, up to multiplication
by a unitary diagonal matrix, the matrix @ in (30) must be the product of
a unitary diagonal matrix with H. Matrices of this form have eigenvalues
uniformly distributed about the unit circle.

In contrast, Fig. 3a shows the eigenvalues of the unitary matrix B ob-
tained from a GMRES computation with a diagonal matrix A of order n = 19
whose eigenvalues are uniformly distributed between 1 and 10, again using a
random initial residual. Note the large gaps in the spectrum of this unitary
matrix. The solid line in Fig. 3b shows the convergence of the GMRES
algorithm, applied to either A or B, with this same initial residual, while
the dotted line in the figure shows the convergence of the GMRES algorithm
applied to B with a different random initial residual, uncorrelated with B.
Again, the GMRES algorithm behaves similarly, when applied to either A or
B, with an arbitrary initial vector. Now the convergence is faster, which is
characteristic of the GMRES algorithm applied to either a well-conditioned
symmetric positive definite matrix or a unitary matrix with large gaps in its
spectrum.

Also shown in Fig. 3b are sharp upper bounds for the residual at each
step of the GMRES algorithm applied to A (+) and to B (x). Again, the
sharp bounds for A and B are similar, and each is not much worse than the
typical behavior of the algorithm for that matrix.

Although it seems surprising at first, it is perhaps not totally unexpected
that any behavior that can be seen with the GMRES method can be seen with
the method applied to a unitary matrix. It is known that the worst possible
behavior — no progress at all until step n — can occur with a unitary shift
matrix [1,14], (this will be discussed further in section 4), and, of course, the
best possible behavior — convergence in one step — occurs with the identity.
We have shown that any convergence behavior between these two extremes
can also occur with a unitary matrix.

3.2 Equivalent Hermitian Positive Definite Matrices

If zero is outside the field of values of A, then zero will also be outside
the field of values of H = W*AW. In this case, H can be factored in the
form H = UL, where U and L are nonsingular upper and lower triangular
matrices, respectively. This decomposition can also be written in the form
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H = (UL™)(L*L), (32)

where the first factor UL™* is upper triangular and the second is Hermi-
tian positive definite (and also tridiagonal). Thus, in this case, the GMRES
method applied to A behaves just as it does when applied to a certain Her-
mitian positive definite matrix!

GMRES(A,r°) = GMRES(WL*LW*,1°). (33)

Since B = W L*LW* is positive definite, the GMRES algorithm converges
strictly monotonically. This gives a new proof of the known fact that if zero
is outside the field of values of A, then the GMRES method converges strictly
monotonically. (See [3] or [4] for a different proof.)

If, in addition to having its field of values separated from the origin, the
matrix A is close to Hermitian, then H = W*AW will be close to Hermitian,
and one might expect that if the matrices U and L in (32) are scaled properly,
then the Hermitian matrix L*L would be close to H = UL. In this case the
eigenvalues of L*L would be close to either eigenvalues or singular values of
A, indicating that either of these quantities would essentially determine the
convergence rate of the GMRES algorithm. We will not go through a formal
perturbation analysis here (for such an analysis, see [17]), but make only
the following simple observation about the condition number & of the matrix

L*L:

k(L*L) < k(L*UY) - k(H) (34)
Any conditions on A that would ensure that, for any unitarily similar
upper Hessenberg matrix H, the properly scaled factors of the UL decom-
position of H satisfy x(L*U~') < k(H), would ensure that the condition
number of B = W L*LW™ is less than that of A*A. If the eigenvalues of A*A
are fairly uniformly distributed throughout the interval, this would then im-
ply that the GMRES algorithm applied to A converges in fewer iterations
than the algorithm applied to the normal equations A*A (though, of course,
the comparison of total work would depend on the number of steps taken and
the cost of applying A and A*). Unfortunately, we do not know of simple
and interesting conditions on the matrix A that guarantee this property.
One can derive rough bounds on the size of the U and L factors separately,
based on the distance from the field of values of A to the origin. Similar
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bounds on the size of U=! and L~! can be expressed in terms of the distance
from the field of values of A~! to the origin. If both of these distances are
fairly large, then we believe that the typical or worst-case behavior of the
GMRES algorithm applied to L*L will be similar to that of the algorithm
applied to A. This is in contrast to the case in which the field of values of
A contains the origin. For such problems, it may still be possible to factor
the matrix H in the form (32) but now the matrix L*L may be arbitrarily
ill-conditioned. In such cases, the typical behavior of the GMRES algorithm
applied to L*L may be much worse than that of the method applied to A,
even though the behavior is identical for the particular initial vector r° used
in generating L* L.
As an example, we considered the matrix of Lenferink and Spijker [12].
This is a non-normal tridiagonal matrix of the form
tridiag] 1/(: + 1), -3-2¢, :+1], 1=1,..

, M.

It is strongly diagonally dominant and its field of values is well-separated
from the origin [19]. Rather than using a random initial vector this time, for
each step k, we determined an initial residual r° that gave rise to a residual of
largest possible norm at step k. This was done using an optimization code, as
described previously. For each of these initial vectors, we then computed the
Hessenberg matrix H and the factorization (32), where U and L were scaled
to have the same diagonal elements. The goal was to determine how ill-
conditioned L*L is for these "worst-case” initial vectors. We used a matrix
A of order n = 16. The condition number of A was 10.6. The condition
number of L*L ranged from 15.6 to 27.3 — greater than that of A, but less
than that of A*A.
Fig. 4 shows the residual bound

VE— 1, VE+14]™
)+ (ED)
based on the most ill-conditioned matrix L*L , with k = 27.3 (solid line).
From (33), this is also a bound on the convergence rate of the GMRES
method applied to A. The dashed line in Fig. 4 shows the sharp error
bound, which was computed numerically. Note the similarity between the
two, at least in the early steps of the computation. This suggests that if
a reasonable bound on the condition number of L*L could be established a

(35)
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priori, then (35) would give a realistic bound on the convergence rate of the
GMRES algorithm applied to A.

3.3 Equivalent Hermitian Matrices

Using the characterization of Theorem 3, for most matrices A and initial
residuals r°, it is possible to define a Hermitian (not necessarily positive
definite) matrix B such that GMRES(A,r°) = GMRES(B,r°%). If the
matrix H~! of Theorem 3 has no zero columns in its lower triangle, then let
the Hermitian matrix X be defined by

X = L(H™Y)D + (L(H™Y)D), (36)

where D is any diagonal matrix such that £(H')D has real diagonal ele-
ments. (Recall that £L(H ') denotes the lower triangle of H~! including the
diagonal, while £(H™!) denotes the strict lower triangle of H-!. We will
also use the notation U(-) and U(-) to denote the upper triangle and strict
upper triangle of a matrix, respectively.) If H~! has a column of zeros in
its lower triangle, say, column j, then that column can be replaced by any
column of the form (26) provided the diagonal element X;; is real, and then
the strict upper triangle of X can be taken to be the Hermitian transpose of
the strict lower triangle. If the diagonal matrix D in (36), or, the elements
X,; in (26) can be chosen so that the Hermitian matrix X is nonsingular,
then, according to Theorem 3, H can be written in the form H = RX ! for
some nonsingular upper triangular matrix R, and so we have

GMRES(A,r°) = GMRES(WX™'W*,r°). (37)

If the matrix A~! is close to Hermitian, then H=! = W*A~1W will be
close to Hermitian, and one might expect that the Hermitian matrix X could
be chosen to be close to H™! and hence to have nearby eigenvalues. From
this it would follow that the inverses of the eigenvalues of B = WX~ 'W*
would be close to the inverses of the eigenvalues of A. We will quantify this
statement, limiting ourselves, for simplicity, to the case of real matrices A
and real initial residuals r°.

Suppose A™! is real and close to symmetric, say,

A'=M+E
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where M is symmetric and ||E||r < §. [We can take M to be the symmetric
part of A7!, 1(A~'+A"T), since this is the closest symmetric matrix to A1
in the Frobenius norm (see, e.g. [10]), and then E will be the skew-symmetric
part, 2(A™' — A"T)]. Then H™! is also close to symmetric:

H'Y=WTMW + WTEW =M+ F

where M = WT MW is symmetric and | F||p = |[WTEW||r < 6. If we define
X using (36) with D equal to the identity, then the difference between X
and H~! is given by

~

X — H'=L(M)+ L(F)+UM) + (L(F)T — M - F = (L(F))T —U(F),

and this satisfies

IX —HY < |X —H ' r SV2|Fr< V26 (38)

Since X is symmetric, this implies that the eigenvalues of X differ from
those of H~! by no more than V26, or, equivalently, that the eigenvalues of
B! = WXWT differ from those of A=! by no more than V26. If we make
the additional assumption that the absolute value of the smallest eigenvalue
of H™! is greater than /26, then this will ensure that the matrix X is non-
singular. Since é is a bound on the size of the skew-symmetric part of A, a
sufficient assumption in terms of A and its eigenvalues Ay, ..., A, is

WL gl AT
v R 9

With the assumption (39), then, the residual bound (7) can be replaced
by

||r'°|| < min max lpe(2)], (40)
HTOH PrePk z_lcU:;l B(/\i_l,\/iﬁ)ﬂR

where B(A\!,1/26) denotes the ball of radius /26 centered at A;! and R

denotes the real numbers.

If the eigenvalues of A~! are sufficiently well-separated that the disks
B(A!,1/26) do not overlap, then X will have exactly one eigenvalue in each
of these disks, and if the eigenvalues are ordered accordingly we can write
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[I*]
71l

The bounds (40) and (41) are frequently overestimates of the actual resid-
ual, because the bound /2§ on the distance from each eigenvalue of X to
that of A1 is a fairly large overestimate. Still, for matrices that are close to
symmetric but have ill-conditioned eigenvectors, the bounds (40) and (41)
may be much smaller than (7). For such problems they are often comparable
to the pseudo-spectral bound (11), for the best value of e.

< max min max |pr(u:)l|- 41
= {ul,...,un: |'3"—',\1:IS\/§61 wieR, i=1,...,n} pk€Pr i=1,..n Ip (:u’l)l ( )

4 Eigenvalue Information Alone Cannot En-
sure Fast Convergence

We have mentioned several cases in which the eigenvalues of A essentially
determine the convergence rate of the GMRES algorithm:

1. If the matrix Z of eigenvectors is well-conditioned, then the bound (7)
is nearly sharp.

2. If, for some fairly small value of ¢, the length of the boundary of the

e-pseudo-spectrum is not much greater than 2me, then (11) gives a
reasonable bound on the size of the residual.

3. If A is close to Hermitian in the sense of (39), then the bound (40) or
(41) is a reasonable estimate.

In general, however, eigenvalue information alone cannot ensure fast con-
vergence of the GMRES algorithm. Any behavior that can be seen with the
method can be seen with the method applied to a matrix having any nonzero

eigenvalues. This is most easily seen from Theorem 2. Let C be a companion
matrix with the desired eigenvalues, say,

0. .0 (7))
1 Qq
C= (42)
1 Qn—1
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(The eigenvalues of this matrix are the roots of the polynomial 2™ — "_(} ;2

and the constants a;, j =0,...,n —1 can be chosen so that C has the desired
eigenvalues.) Define the upper triangular matrix R in Theorem 2 by

10 .0 om+<vw' >a

01 . art+ < v,w? > ag
R=1 . . .

0 ) 1 Qn_14+ < v,w"" ! > ag

OO 00 < v,w" > ag

Then it is easily seen that HR is equal to C, and since the spectrum of RH
is the same as that of HR, the matrix B = WRHW?* also has the desired
spectrum. We have thus proved the following corollary to Theorem 2:

Corollary. Given any nonzero values 1, ..., in, there is a matrix B with
eigenvalues p, ..., ft, such that (17) holds.

As an example, let us consider matrices that give rise to the worst possible
behavior — no progress at all until step n — when the initial residual is the
first unit vector e;. The following unitary shift matrix was given in ([1]) and
([14]) to illustrate this phenomenon:

010 ..0

0 01 0
A =

000 ... 1

1 00

It is clear that the initial residual e; = (1,0,...,0)T is already orthogonal
to the space [Aey,..., A" 'e;], and so the residual is not changed until step
n. The Hessenberg matrix H and the unitary matrix W generated by the
GMRES algorithm with this initial vector are

00 .. 01 00 01
10 ..0°0 00 10
H - 01 .. 00 W =
. 0 1 00
00 10 10 00
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According to Theorem 1, the class of matrices that generate the same
Krylov residual spaces as A (with initial vector e;) consists of all matrices
of the form W RHW*, where R is any nonsingular upper triangular matrix;
i.e., all nonsingular matrices of the form

0 = 0 ... 0
0 * 0

*
* *

where the *’s can be any values.

This class includes, for example, all companion matrices of the form C*,
where C is given in (42). As noted previously, the constants o, 7 = 0,...,n—
1, can be chosen to make this matrix have any desired eigenvalues, say, all
I’s. Tt follows that the worst-case behavior of the GMRES algorithm (i.e.,
no progress until step n) can occur for a matrix having what one might have
expected to be the best possible eigenvalues!

5 Conclusions, Open Questions, and Possi-
ble Applications

We have pointed out several cases in which the eigenvalues of the matrix
A essentially determine the behavior of the GMRES algorithm. We have
shown, in general, however, that this is not the case. The same behavior can
be seen for a matrix having any given eigenvalues.

We have introduced a technique for analyzing the behavior of the GMRES
algorithm applied to non-normal matrices by defining an equivalence class
containing normal matrices — the class of matrices that, with a given initial
residual, produce the same GMRES residuals at every step. In this regard, we
have raised more questions than we have answered. We have shown that there
is always an equivalent unitary matrix. We have demonstrated numerically
that certain properties of the eigenvalues of this unitary matrix are related
to special properties of A, but we have not proved such a relationship. We
have shown that if zero is outside the field of values of A then there is an
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equivalent Hermitian positive definite matrix, but we have not been able to
bound the condition number of this Hermitian positive definite matrix in
terms of simple properties of A.

Our analysis still has not explained the behavior of the first example given
in Section 1 — a matrix A of the form ZAZ~1, where Z and A are defined
by (12). There we claimed that the eigenvalues of this matrix essentially
determine the convergence of the GMRES iteration. Yet, for certain ini-
tial residuals, there can be no normal matrix in A’s equivalence class whose
eigenvalues are close to those of A. This is because the field of values of A
contains the origin. It follows that there is an initial vector for which the
GMRES iteration makes no progress at step one. Any normal matrix with
this behavior must have eigenvalues on both sides of the origin, and so its
spectrum cannot be close to the positive spectrum of A. Using several dif-
ferent random initial residuals and also the initial residuals that give rise to
the largest possible residuals at steps one and two, we computed the equiv-
alent unitary matrix WQW™* defined by (30) and the equivalent Hermitian
matrix WX 'W* defined by (36) (with D = I). In all cases, there were
large gaps in the spectrum of the unitary matrix, similar to those shown in
Fig. 3a. The equivalent Hermitian matrix had one large negative eigenvalue
(which probably was not computed accurately due to rounding errors) and
the remaining eigenvalues were close to those of A — all but one were in the
interval [1,5] and the remaining one was less than 20. This indicates that
for this problem as well, there are normal matrices in A’s equivalence class
for which the typical behavior of the GMRES algorithm is similar to that for
A. It remains an open question how to show a priori that this is the case.
Another possible approach is to consider near-normal matrices in the equiv-
alence class — matrices with well-conditioned (but not necessarily unitary)
eigenvector matrices. There may be a near-normal matrix in A’s equivalence
class whose eigenvalues are all close to those of A.

The equivalence class we have defined consists of matrices for which the
residuals at each step of the GMRES algorithm are identical. In practice,
one seldom runs a GMRES computation for a full n steps. Instead, one runs
for some fixed number of steps, say, m << n, and then restarts. The class
of matrices that generate the same residuals at steps 1 through m is broader
than the class we have considered. Investigation of this larger class may lead
to results about the convergence of the restarted GMRES iteration.

This technique of analysis — equating the behavior of the algorithm ap-
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plied to a given problem to its behavior when applied to some other problem
that is better understood — may prove useful for analyzing other iterative
methods as well. The biconjugate gradient [5] and QMR [7,6] iterations are
examples, and work along these lines has begun.

Finally, we would like to note that the results of Section 4 are somewhat
discouraging, as far as Krylov space iterative methods are concerned. It is
disappointing that one can determine, just from the sparsity pattern of a
matrix, that, for some initial residual, every Krylov space method will con-
verge poorly (or diverge)! Similar behavior can be expected with a random
initial residual, as our numerical experiments indicate. While it is sometimes
possible to choose an initial guess for which the algorithm will display better
convergence, we believe that typically the initial guess plays only a small role
in determining the convergence rate of the algorithm, and so this behavior is
to be expected for problems with such coefficient matrices. (And, of course,
this same behavior would be observed for any matrix unitarily similar to one
with a bad sparsity pattern.) This suggests that it is important to consider
methods that choose approximate solutions from outside the Krylov space.
An example is the GMRESR method of van der Vorst and Vuik [20]. An-
other approach is to look for preconditioners that make the preconditioned
matrix close to normal, in some appropriate sense. Further research along
these lines would seem an important next step.
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Fig. 1a. 1.e-5 and 1.e-4 Pseudo-spectra
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Fig. 2a. Eigenvalues of B. A=rand(19,19)
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Fig. 3a. Eigenvalues of B. A=diag(1,1.5,2, ..., 10)
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