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Abstract

In this paper we present a mew numerical method for solving Boltzmann transport
equation describing charge transport in semiconductor devices. The Boltzmann equation is
reduced to two dimensions in velocity space by assumption of density being invariant under
rotations around z axis. We developed a finite difference discretization of Boltzmann Equa-
tion in one spatial dimension and two dimensional velocity space, coupled to the Poisson
equation. First three moments of BTE coupled to the Poisson equation is known as the
Hydrodyna.mic model. A comparison of the numerical results from this method and the
Hydrodynamic model is given. Also a numerical investigation is done with respect to the

heat conduction, viscosity, and momentum relaxation terms in the Hydrodynamic model.



1 Introduction

Charge transport in semiconductor devices can be modeled semi-classically via Boltzmann
transport equation. The Boltzmann equation is an Integro-Differential equation in seven
dimensions, three in space, three in velocity space, and one in time. At present, full dis-
cretization of BTE is out of range of existing computers. A very popular method for solving
BTE is the Monte Carlo method. For a comprehensive and tutorial review of this method
we refer the reader to the article by C. Jacoboni and L. Reggiani[9]. Because Monte Carlo
method relies on random sampling the results are often noisy. Another approach to solving
BTE is particle method. In this approach the collision integrals are calculated determin-
istically [12]. In this paper we develop an upwind finite difference approximation of the
differential terms. The collision integrals were calculated numerically. This method is
closely related to methods developed for solving kinetic equations for neutron transport
(10].

By taking the first three moments of the BTE one obtains conservation laws for mass,
momentum, and energy. This will result in a system of five equations with fourteen vari-
ables in three-dimensional space. In order to close the system one needs to make certain
assumptions. With assumption of pressure tensor to be scalar and heat flux to be defined by
Fourier Law,[3] , one obtains Euler equations of gas dynamics with source terms and heat
conduction. Scattering terms are replaced with relaxation time approximation. This system
coupled to the Poisson equation is known as the "Hydrodynamic Model” in semiconductor
modeling[1] .

A simpler and more widely used model is Drift-Diffusion. One can interpret it as con-
servation of mass and a simplified version of conservation of momentum equation with
assumption of constant temperature and small Mach number. Drift-Diffusion model loses
its accuracy as the size of the device becomes less than one micron.

In this paper we solve the BTE numerically. Once the distribution function is found we
can take moments and recover various terms in the Hydrodynamic model. The Hydrody-

namic model was solved using sixth order ENO shock capturing algorithms (3], [14]. Using



numerical results from BTE one can check the accuracy of various approximations in the

Hydrodynamic model.

2 Boltzmann Equation

Let f(x,u,t) be the probability density function of electrons, where x = (z,y,2) is the
space variable and u = (u,v,w) is the velocity variable. Then the dynamics of electrons

can be modeled by:

fi+uVyf+FVyuf = /s(u',u)f(u')du' - /s(u,u')f(u)du’, (1)

V.(eV¢) = e(~Np + n), (2)
—€ €
(Fe,FyF:)=F = —E=—V4.

s(u,u’) is the scattering operator, ¢ is the electric potential, E is the electric field, Np is
the density of donors, e is charge of an electron, € is the permittivity in the crystal, and
n = [ f(u)du is the density of electrons .

We scale the equations in the following fashion:
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trp=t, zL=2, U =u, =¢, @N =n.

We suppress the bar notation for the scaled quantities and get:
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fit (FLVf + (IV.Vuf = G [ s, ww)du’ = [ s(u,w)f(u)du),  (3)
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This leaves us four non-dimensional parameters:

Un  En m LN
L’ U’ T emE ’

If we let 7y = L/U, then for the considered problem we have:

e?LN

UTt ETt
—_— ~ 150.
E

=1, 2t ~0675, Lx~5~50, and
L T

U

€em

5



We identify the ratio Kn = % = IELE as the Knudsen number of the flow.

From the Boltzmann equation one can obtain conservation laws. We use the notation

<o, r>= [ 7 [ ysan

<Y, f>4+Vx <uh, f>=F < Vyuth, f >+ < 9,5 > (5)

By taking ¥ = m, mu,%mu2 one recovers the Euler Equations of gas dynamics. These
equations have been proposed by Blgtekjeer [2] and have been studied numerically by [7],
[13], [6], [3], [4]. Viscosity solutions of this system has been studied by [5]. In the Numerical
calculations done in [3] non-physical velocity spikes were observed as electrons cross the
channel to the drain. In this paper we try to resolve this issue. In particular we are interested
in assessing the effect of approximations for heat conduction, viscosity, and momentum

relaxation terms. Define v to be the average velocity, v = %‘13-‘% Then:

%m < (u—=v), f >~ knVT,

) nTyy nTi, nTi3
—m<(u=v)l f>=| nTu nToy nTy

Q

2
nT31 TLT32 nT33
nT 0 0 du, — 2o, — 2w, Uy + vz wyg + U,
4 2 2
0 T 0 -V Uy + VU Uy — 5Us — W, ) wy2+vz \ s
0 0 «T Uy + Wy v, + Wy FWz — FUp — 5y

where temperature is defined as T = Inﬂ%zﬂ.aa. and v = 1,nT is the coefficient of viscosity.

-<u,f>
<uS,f>z—’f,
Tp

where 7, is the momentum relaxation time. We use the results from BTE code to verify
3uok2To

« e — _ mugT
the models for x and 7,; kK = =—52=, and 7, = ==,

3 Transformation to Polar Coordinates

We consider a case where electric field is in the z axis direction. That implies that the prob-

lem is invariant under rotations around z axis. Exploiting this property we do a coordinate



transformation in the velocity space. This enables us to reduce the number of independent
variables in the velocity space from three to two. Consider the Boltzmann equation for

f(:v,y,z,u,v,w,t) 9
fi+uVxf+FVyf = /s(u',u)f(u')du' - /s(u, u’) f(u)du'.

Then consider the polar transformation: (k,8,¢) to (u,v,w) via u = ksinfcos¢, v =

k sin 8 sin ¢, and w = k cos . Then Boltzmann equa.tion can be written as:

ft+ ksinfcosf, + ksinOsinquy + kcos@f,+

{Fysinfcos ¢ + Fysinfsin ¢ + F, cos 8} fi

0 i 0 in 0
{ Ftcosd)cos +F, sin ¢ cos B Fzs Yo
k k k
sin ¢ cos ¢ _
Fersne  Pisme e =

/s(k', 0',¢',k,0,0)f(k,0,¢ k" sin ¢'dk'd6’dp’ —
/ s(k,8,6,K',8', &) f(k, 8, $)k sin 6'dK'd0'dp'
Let us assume f is only dependent on 2,k,6,t . Also let us introduce a new variable
p = cosf. Then the right hand side can be written as:

1—p?
ft + kﬂfz + Fz{ﬂfk + Tfu}'

For discretization purposes we prefer to write it as:

2uf | ((1- l‘2)f)u}-
k

ft+kﬂfz+Fz{”fk+ k +

The complete system is:

Y
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n=2r / / f(k, )P dkdps, and  F, = <,

The system is completed with initial value and boundary conditions. For the initial

conditions we use a Maxwellian distribution:

m . mk?
rkaTs) M oroT )

f(z,k,1,0) = (

The computational domain is the box : [0, 2maz] X [kmin; Emaz] X [=1,1]. There is no need for
boundary conditions at f(z,k,1), f(2,k,—1),f(0,k;) for p < 0, and f(zmaz,k,p) for p >

0. In the k direction we use the following;:
f(Z, kmaz, I‘L) =0

f(za kminy#) = f(zy k’min’ —l‘)
To motivate the last condition let us look at the characteristic lines in (k,p) space. The
characteristic lines are defined as integral curves of:

d_ L e F(l-uY)
ds P ds — k

In the (u, v, w) space they correspond to

du dv dw
E—O E;-O ——S_Fz

(See figure 1) To remove the singularity in (k, x) space we remove a ball of radius ki, cen-
tered at the origin of (u, v, w). Once the ball is removed we identify the upper hemi-sphere
with the lower hemi-sphere. Therefor point (0,0, ki, ) is identified with point (0,0, —k:n),
etc (see figure 2). This is equivalent to identifying (k,p) with (k,—pu). Finally we need to

specify the boundary conditions for the inflow and outflow of electrons.

fO,k,u)if p>0 and f(Zmaz, kyp) if p <0

Choosing the appropriate values is part of the physical modeling of the device under con-

sideration. For this device we choose %ﬁ = 0.



In our calculations we considered the following scattering terms [9]:
/s(u',u)f(u')du' - /s(u,u')f(u)du',

where,

s(u,u') = sac(u, u') + s (u, u') + s2°(u, u’),

(2l Bes 1w - B(w),

sac(u, ) = (2r)* "k i

o, w) = 5 Loy MK v aib(w) - Ew) + o),

op

( )3 ”(DtK)z
(2 > h PWop
1

where E is energy of an electron and is given by E(u?) = imu? = imk?.

abs(u u ) — Nop6[E(u’) —_ E(ll) - hwop],

The corresponding terms in the hydrodynamic model can be calculated by computing

the following integral:
00 1 2w
[T [ st wdu [ k. 6)ds.

The quantities of interest are:
h(k,p,¢) = 1,u,v,w, u?,v?, w?, uv, vw, wu, uk?, vk?, wk?,
+ 00 1
<1,f>= 27r/ / k2 £ (k, p)dkdp,
0 -1
400 rl
<w =2 [ [ kg, wdkdp,
0 -1
<v,f>=0,
< ’U.,f >=0,
400 1
<t f>=<ot fo=n [0 [ (1= Wk Sk n)dkdp,
0 -1
+ o0 1
<wtfo=on [ [ Kk u)dkdp
0 -1
< uv, f >=0,

< uw, f>=0,



<ovw, f>=0,
< uk?, f>=0,
< vk?, f >=0,
< wk?, f >=2r /0 e /_ 11 pkS f(k, p)dkdp.

The heat conduction term is:

1 <wf> , <wf>3
= k? —_—— 7 2 2. 2 —_ 7).
2m(<w ,f> <1’f>{3<w,f>+<u,f>-i-<v,f>}+2<1’f>2

Temperature is calculated via:

<ul,f>-—<u,f>?
T =
<1l,f>

)

<w? f>—-<w,f>?
T33 = .
<1l,f>

4 The ballistic diode problem

As a model problem, we simulate the flow of electrons in a submicron n* — n — nt silicon
diode. This device models the channel in a MOSFET. The diode begins with an nt “source”
region, is followed by an n “channel” region, and ends with an nt “drain” region. The effects
of holes may be neglected for the ballistic diode problem. For a discussion of the units and
the proper constants we refer the reader to (Fatemi-Jerome-Osher) [3]. For the constants
that are not in the above reference we use the following values:
hwog
Nop = (eF8T0 —1)™' N} = N, +1
E,=50ev h=1055x10"3% w5 =9.0x 105cm/sec
p=233gr/em® D;K =15.5x 10%v/ecm hw = 0.063ev
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5 Numerical Scheme

The numerical scheme used in these calculations uses explicit time stepping and upwind

finite differences. The system can be abstractly represented by:

fi=F(f,¢) A¢=G(f)

The second equation is linear and one dimensional. Its solution is rather trivial. One can

solve for ¢ and substitute in the first equation.

fr = F(f,A71G(f)))

This results in a nonlinear hyperbolic equation. Non-linearity comes from multiplication of
V¢ by Vuf. This is the philosophy used in discretizing these equations.
Let a grid in (z,k, i, t) space be defined by:

e f(Ssz 1,Ak, ajAﬂ'anAt) = f(zs,kinu‘jatn)

s1g

Then define backward differences as D} fsi; = -(EJ‘A"+“41, forward differences as D} fsij =
Moras fug) Y3 fsii) and central differences as DO fyi; = g’—*—"%ul Then the numerical scheme
is:

DD ¢" = S(ny — npy), Fy, = —D%,,
€ m

fr - sty ~Jo-t iy hey | 2wfi | S Gy, o
Al + kﬂ' Az + Fz{ﬂ Ak + k + kAu } B SSU,
_i - f‘+'% + f‘;% ,
21+ 4f)
N
ns =21y > (kF+ T)fsijAkA#-
j ot

The definitions for n, and f are chosen such that in each time step mass is conserved .

These definitions were motivated by the following argument. Note that:

0+ 2 = k2
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Then we discretize:
2
AR+ 2y % 2 )y - (2,
= (ki — B iy +RL oy~ fiy)

= (kiz+§ - k?—g)fe—g + k.'z+§(fe+§ = fi-1)-

Therefore:
oa—fo1 2R —K2 ) F :
et Dyn L i g fi s fimn | g TRy Sy 4 fig
k 2 \Vitd i—3 Ak (k?+1+k? 1) 9
2 =2
LV et S ACLE RS )
St 4 Ak ki 2(14 AE

Flux functions, f, 15 fiy 15 andgj +1 are defined in the following fashion:

f,,+% = fs if kp > 0, f,.{.% = fs+1 if kp <0,

fipr = FiEp>0,  fyy=finif Fop <0,
gH%:(l—;ﬂ)fj if F, >0, gﬂ_%:(l——;ﬁ)fj“ if F; <0.

The scattering terms S,;; were calculated using trapezoidal rule. The scattering term,
Sac, Was analytically integrated in the k space. For integrating s5* and sgg’ an approxi-
mation to the § function was used. The particular approximation was §(z) = <3(1 - f;—)
Trapezoidal rule was used as the integration formula for calculating the moments.

One of the major results of the upwind differencing is that the truncation error contains
a second order operator with the right constant in front of it. This introduces the so
called ”artificial viscosity” in the method. Its effect is to smear out sharp gradients in
the solution. This can be remedied by refining the mesh at those regions. An alternative
solution is to use higher order methods for calculating the fluxes. In the calculations done
for the Hydrodynamic model [3] use of a sixth order stencil minimized the diffusion. For
BTE calculations we had to refine the mesh in areas where np has high gradient. It can be

easily seen that the truncation error of this discretization is:

At klplAz |Fp|Ak | Fou|Ak
2ftt_ 2 foz — 5 frk k(1+%2— fx
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FzA 2Fz A Fz 1"‘ 2A
4+ Ilcuf+ | Lu L 2ku) e

Since this is an explicit time stepping the time steps have to be limited to satisfy the

Courant-Friedrichs-Lewy condition. Necessary CFL conditions for stability are:

k|p|At | F,p| At |Fz](1 — p?)At
A <L Tap o <b ad —o—— <L
In practice this translates into:
Az Ak kminAﬂ
At < —— 1< —m— L Choet il
<t A< Farp ™ A< 3E

In computations an automatic time step was chosen based on the above criteria and no

instability was observed.

6 Numerical Results

For comparison we chose the ntnnt structure. In figure three we show the calculated
velocity. Note that the spike is missing in the Boltzmann solution. In figure four for
reference we compare the Mach numbers. Note that the flow is subsonic. Also the velocity
from BTE code is higher, possibly because the scattering constants are low and/or we
need to consider more scattering mechanisms. In figure five we compare the calculated
temperatures from the Hydrodynamic model and the BTE code. As can be seen T33 is a
little higher than Ty; = T22. The difference can be approximated by viscosity terms and
it turns out that these terms are small and can be neglected. In figure six we compare
the viscosity terms. The solid curve is nZl=22=Ti apd the doted line is —2r,nTw,.
Calculations were done with viscosity terms included in the Hydro model and they had
small effect on the velocity profile. This could be expected since the Reynolds number of
the flow is around 103. In figure seven the solid line shows the heat conduction term from
BTE and the doted line shows the heat conduction term calculated from Fourier law, knT.
Where for k we use the Wiedmann-Franz law [1]. As can be seen the approximation is

reasonable except in the drain.
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In the next figure we plot the 7, as calculated from the BTE, the model suggested by
Baccarni and Wordeman [1] , and the model suggested by S. Lee [11]. The unusual dips in
the solid line at 2 = .3 and 2 = .7 are from numerical inaccuracies. But as can be seen the
model for 7, is not accurate. Two features are certain. The dependence of T on % is too
strong. The other feature is that as electrons enter the channel the relaxation of the high
velocity electrons requires certain distant. This distant seems to be shorter for relaxation of
the second moment (Temperature) but longer for first moment of the scattering term and
third moment of the density (Heat Conduction term). Finally in figure nine we show the
density distribution as a function of velocity at different points in the device. The density

is integrated over all anglesy. The density is close to gaussian at £ = 0. and z = 1.0 but

deviates substantially from gaussian in the channel.

7 Conclusion

We presented a simple scheme for solving the Boltzmann equation coupled to Poisson in
one dimension. The computer time was modest for one dimensional case. For extension
to two or three dimension a more efficient algorithm is needed. The results from the BTE
calculations were integrated over velocity space to obtain measurable physical quantities.
The results were compared with the results from the Hydrodynamic model. It turned out
that the models for heat conduction and viscosity were adequate. Viscosity has small effect
on the flow and can be neglected. The model for 7, is not accurate and seems to be source of

the spurious oscillations in the velocity profiles calculated from the Hydrodynamic model.
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Figure Captions

Figure 1. Characteristic Curves in Velocity Space
Figure 2. Boundary Conditions for kmin.

Figure 3. Electron Velocity

Figure 4. Mach Number of the Flow
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Figure 7. Heat Conduction Comparison
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Figure 9. Density Distribution Comparison
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Figure 1. Characteristic Curves in Velocity Space
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Figure 2. Boundary Conditions for &
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Figure 3. Electron Velocity
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Mach Number

Figure 4. Mach Number of the Flow
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Figure

5. Temperature (Hydro), T11, and T33
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Figure 6. Viscosity Comparison
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Figure 7. Heat Conduction Comparison
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Figure 8. Momentum Relaxation Time Comparison
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Figure 9. Density Distribution Comparison
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