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Abstract 

 

Environmental problems have exacerbated the challenges of food production. Soil 

erosion, run-off from irrigation, and greenhouse gas emissions have significantly 

impacted the ecosystem through their cumulative effects over decades. As the population 

increases, these aforementioned problems will grow in scale and scope. Thus, it is 

important to address these concerns by investigating sustainable solutions and conducting 

research on new approaches to food supply. Specifically, the development of perennial 

crops for food use would have environmental benefits such as reduced soil and water 

erosion. Further, the usage of perennial crops for food applications would provide 

alternatives to the current and ever diminishing food supply, provide incentives to 

farmers for planting these crops, and address consumers’ growing interest in sustainable 

food systems.  

One of several perennial crops available for potential food use is intermediate 

wheatgrass (IWG) (Thinopyrum intermedium). Little is known about the chemical and 

functional characteristics of IWG. Therefore, the overall objective of this work was to 

characterize the chemical and functional properties of IWG grains from multiple breeding 

lines for food applications, namely bread baking.  

Sixteen IWG experimental lines along with one bulk IWG sample and two wheat 

controls (Arapahoe and commercial hard red wheat) were analyzed for proximate 

composition following standard methodologies. Dietary fiber, total starch content, and 

percent damaged starch were determined using Megazyme kits. Amylose/amylopectin 
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ratio and their molecular weight distribution were determined using size exclusion 

chromatography. Gluten forming proteins profile and molecular distribution were 

determined using gel electrophoresis and size exclusion chromatography. Dough 

rheology was assessed using a farinograph and a texture analyzer equipped with a Kieffer 

rig, while starch pasting properties were monitored using a rapid visco analyzer. Bread 

baking tests were performed following the AACCI 10-10.03 method. 

 Compared to wheat controls, IWG samples had higher protein, dietary fiber, and 

ash contents, yet were lower in starch content and deficient in high molecular weight 

glutenins (HMWG), important protein components responsible for dough strength and 

elasticity. Specifically, wheat controls had more high molecular weight polymeric 

proteins (HMWPP), while IWG samples had more albumins and globulins. The ratios of 

amylose to amylopectin among the IWG samples and the wheat controls were similar. 

However, percent damaged starch was higher in the wheat controls than in IWG samples. 

On the other hand, the soluble to insoluble dietary fiber ratio was higher in wheat controls 

than in IWG samples.  

Dough rheology data showed that IWG dough was weaker than that of the 

controls. Farinograph and Kieffer data demonstrated that doughs made from wheat 

controls were more stable, more resistant to extension, and more extensible than doughs 

made from IWG samples. In terms of starch pasting properties, wheat controls had higher 

peak, hold, and final viscosities than the IWG samples, indicating the superiority of 

wheat controls over IWG samples as viscosity builders. The starch pasting properties data 
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illustrated the samples’ behavior upon heating and cooling treatments, which are 

important characteristics to consider when evaluating IWG for commercial applications. 

Even though IWG had similar specific volumes to one of the wheat controls (hard 

red wheat), both wheat controls had a higher rising capability due to the wheat’s gluten 

network forming ability. Deficiency in HMWG and high fiber content of IWG samples, 

contributed to the poor gluten network and consequently inferior baking quality. 

Overall, results of this work suggest that IWG has a superior nutritional profile as 

compared to wheat, but poses challenges for baked products that require dough rising 

properties. Further studies on IWG, such as investigating the effect of conditioners on 

enhancing protein functionality, determining the effect of fiber on dough development, 

effect of blending with wheat, and exploring other food applications would enhance its 

potential utilization as a food crop. This research and future efforts will support breeders 

in their current screening and future breeding efforts for the development of IWG lines 

suitable for food applications.
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1. Literature Review 
 

1.1 Introduction and Objectives 

 

Environmental problems such as soil erosion, run-off from irrigation, and 

greenhouse gas emissions have significantly impacted the ecosystem through their 

cumulative effects over decades. Soil erosion has caused 10 million ha of cropland loss 

per year, a rate of 10 to 40 times higher than the soil formation rate (Pimentel & Burgess, 

2013). This is a concerning issue given that 99.7% of global food is produced on land 

(Pimentel & Burgess, 2013). The regular tillage practices used to plant annual crops have 

also increased soil erosion rates by 4-10 times (Pimentel et al., 2012). Additionally, the 

increased demand on water supply and global water shortages have also negatively 

impacted agriculture and food production practices. In 2004, more than one billion people 

were lacking access to drinking water (Pimentel, Berger, Filiberto, et al., 2004). During 

the same year, an average rate of water consumption in the US including that for 

irrigation, was 5,500 L per person (Pimentel, Berger, Filiberto, et al., 2004). This high 

demand for water accentuates the importance of water conservation. Agriculture 

practices, specifically, have used 70% of fresh water resources due to the high amount of 

water needed for grain production (“Securing the Food Supply.,” 2001; Pimentel, Berger, 

Filiberto, et al., 2004). For example, rice, wheat, and corn need 1,600 L, 900 L, and 650 

L of water, respectively, per 1 kg of cereal grain produced (Pimentel, Berger, Filiberto, et 

al., 2004; Pimentel, Berger, Newton, et al., 2004). On the other hand, the rate of global 

greenhouse gas emissions has increased very rapidly in the last 40 years, contributing to 

the growth of the global warming phenomenon (Climate Change 2014 Synthesis Report, 
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2014). The huge amount of energy, pesticides, and fertilizers used to grow annual crops 

is also concerning, both for the environment and the cost associated with them. 

The aforementioned environmental problems will continue to exacerbate the 

challenges of food production as the population continues to grow. Thus, it is important 

to address these concerns with sustainable solutions and food supply. Development of 

perennial crops, with substantial environmental benefits, for food use, will positively help 

the ecology as a whole. Developing perennial crops for food applications will not only 

provide environmental benefits, but also will provide alternatives to the current 

diminishing food supply, provide incentives to farmers for planting these crops, and 

address consumers’ growing interest in sustainable food systems. One of several 

perennial crops available for potential food use is intermediate wheatgrass (IWG) 

[Thinopyrum intermedium (Host) Barkworth and D.R. Dewey]. Little is known about the 

chemical and functional characteristics of IWG. Thus plant breeders are seeking quality 

trait information to be used for developing IWG lines for food use.  

For these aforementioned reasons, the overall objective of this work was to 

characterize the chemical and functional properties of IWG grains from multiple breeding 

lines for food applications, namely bread baking. Data from this work will further assist 

breeders in their current screening and future breeding efforts for the development of 

IWG lines suitable for food applications.  
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1.2 Perennial Crops – Their Benefits and Challenges 

Perennial crops have unique characteristics that can bring benefits from 

agricultural perspectives. Perennial crops are crops that can survive without replanting for 

several years, which means they can be harvested several times before replanting is 

needed. Perennial crops also have extensive root systems. Being perennial with extensive 

root systems, these crops can contribute to several environmental and agricultural 

benefits when compared to annual crops. Because of their root systems, perennial crops 

can reduce soil erosion (Pimentel et al., 1987), fix nitrogen (Dinnes, Karlen, Jaynes, 

Kaspar, & Hatfield, 2002), hold more carbon dioxide in the soil (Freibauer, Rounsevell, 

Smith, & Verhagen, 2004), and capture more nutrients and water.  Perennial crops, which 

produce high amount of biomass, are also drought and frost resistant, and more resistant 

to diseases commonly present in annuals, thus requiring less energy and pesticides 

(Culman, Snapp, Ollenburger, Basso, & DeHaan, 2013; Glover et al., 2010; Robertson, 

Paul, & Harwood, 2000; Wagoner & Schauer, 1990). Annual crops are 50 times more 

prone to soil erosion than perennial crops (Gantzer, Anderson, Thompson, & Brown, 

1990). Specifically, annual grain crops can lose five and 35 times as much water and 

nitrate respectively, as perennial crops (Randall et al., 1997; Zhang et al., 2011). 

However, despite the benefits they can offer, perennial crops have encountered 

some challenges from the breeding and management perspectives. Some perennial crops’ 

seed size, for example IWG, is small and the yield is low compared to annual crops like 

wheat (DeHaan, 2015; Lubofsky, 2016). Thus, increasing its endosperm to bran ratio can 

take years of development. In addition, perennial crops are prone to falling over due to 
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their tall and weak stems, a phenomenon known as lodging. Lodging not only makes 

harvest more challenging, but can also inhibit seed heads from growing and producing 

seeds (Lubofsky, 2016). Seed shattering is another challenge of perennial crops 

(Lawrence, 1983).  Over time, as the crops grow and fields get denser, lower grain yields 

are obtained. From the management side, challenges such as determining the proper 

dosage of nitrogen and spacing issues also need to be determined. Applying enough 

nitrogen, but not too much to cause extensive growth and lodging, is crucial to maximize 

grain yields. Row spacing, as mentioned, is also important to ensure that the fields are not 

over crowded to maintain the grain yields (Lubofsky, 2016). IWG, as one of the perennial 

crops that are associated with the benefits and challenges described above, will be further 

examined and discussed throughout this thesis. 

 

1.3 Intermediate Wheatgrass (IWG) as a Perennial Grain Crop 

IWG is classified in the kingdom of Plantae (plants), subkingdom of 

Tracheobionta (vascular plants), superdivision of Spermatophyta (seed plants), division 

of Magnoliophyta (flowering plants), class of Liliopsida (monocotyledons), subclass of 

Commelinidae, order of Cyperales, family of Poaceae (grass), genus of Thinopyrum 

(wheatgrass), and species of Thinopyrum intermedium (intermediate wheatgrass) 

(“Classification | USDA PLANTS,” n.d.). Thinopyrum intermedium or IWG is formerly 

known as Agropyron intermedium (Host) Beauv., Elytrigia intermedia (Host) Nevski, 

Elymus hispidus (Opiz) Melderis, and Agropyron glaucum (Desf.) Roemer & Schultes 

(Nowick, 2015).  
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IWG originated from Europe, western Asia, and southern Africa, and some 

species have been established globally, including in the US. IWG has been used for hay 

and pasture seedlings for many years. Currently, it is mainly used as forage (Lawrence, 

1983; Culman et al., 2013)  

Like other perennial crops, IWG has a deep root system (Figure 1). According to 

Culman et al. (2013), this extensive root system can reduce nitrogen leaching and 

increase carbon sequestration by 86% and 13% respectively, when compared to annual 

wheat plants. IWG plant grows 3-4 feet tall with 4-8 mm wide green leaves. Around 2-6 

florets per spikelet are usually found in this crop (Lawrence, 1983; Ogle, 2003). IWG is 

adapted to an area with 12-14 inches of yearly rainfall and an elevation of 3,500-9,000 

feet (Ogle, 2003). On average, IWG offers yields of 250-350 lbs/acre under dryland 

conditions and 450-550 lbs/acre under irrigated conditions. After four harvest years, the 

production yield typically drops significantly (Lawrence, 1983; Ogle, 2003).  

The history of IWG development as a perennial grain crop was pioneered by the 

Rodale Research Center (RRC) in 1983. The RRC analyzed almost 100 different species 

of perennial grasses for their potential cultivation as perennial grain crops. Based on 

several preferable traits including acceptable flavor, ease of threshing and harvest, seed 

size, shattering and lodging rate, and perenniality, IWG was selected for further 

development. Thus, breeding efforts continue to be conducted to maximize IWG 

capabilities as a perennial grain crop. 
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1.3.1 IWG Breeding Efforts 

 There are two types of breeding approaches that are used to develop perennial 

grains, domestication and wide hybridization. Direct domestication involves cycles of 

selection, which is a method of selecting the better grain producing plant through 

crossing, evaluation, and selection process of the seed produced as shown in Figure 2 

(DeHaan et al., 2013). Direct domestication practices of IWG may require a great amount 

of time before achieving preferable traits in their offspring. Favorable flavor, seed size, 

shatter resistance, and good yield are some of many preferable traits the breeders consider 

in the selection process (Wagoner & Schauer, 1990). 

Wide hybridization, on the other hand, involves crossing two different parents, 

each of which carry favorable traits (DeHaan et al., 2013). However, the stability (same 

(b) (a) 

Figure 1. (a) Root systems comparison between perennial intermediate wheatgrass (IWG) 

(Thinopyrum intermedium) and annual winter wheat. Photo taken by Jim Richardson courtesy of 

Patagonia Provisions (Lubofsky, 2016). (b) Root systems comparison over a growing cycle 

between annual wheat and perennial IWG (Cox et al., 2006). Used with permission. 
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number of chromosomes for all of the offspring at every selection cycle) and fertility of 

the progeny is sometimes a challenge (DeHaan et al., 2013). IWG breeding efforts use 

direct domestication techniques as will be discussed in section 1.3.1.1, while perennial 

wheat development uses wide hybridization as will be discussed in section 1.3.1.2. Based 

on the breeding efforts via direct domestication and/or wide hybridization, perennial 

grain crops are estimated to become commercially available in the next 20 years (Glover 

et al., 2010). 

 

Figure 2. One cycle of selection involving crossing, evaluation of offspring, and plant 

selection based on preferable traits. 

 

 

1.3.1.1 IWG Lines Selection 

 In 1988, the RRC began the development of IWG as a perennial grain crop in 

Kutztown, PA to improve its fertility and seed size (DeHaan et al., 2013). The RRC 

conducted two cycles of selection, in which the progenies were then used by the Land 

Institute in Kansas to continue the study in 2003. After two cycles of selection by the 

Land Institute, the IWG yield and seed mass improved by 77% and 23%, respectively, 

when grown in a solid plot (planted in rows that are very close together, about 7 inches or 

less) (DeHaan et al., 2013). In 2011, the University of Minnesota (UMN) began its 

involvement in the project, using the third cycle selection from the Land Institute, and 
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focused on increasing the yield and size of IWG (Zhang et al., 2016). The history of IWG 

breeding efforts is illustrated in Figure 3.  

 A group of scientists from the University of Minnesota closely studied the 

characteristics, namely gene transcription of gluten forming proteins, of various IWG 

lines. Zhang et al. (2014) isolated five high molecular weight glutenin (HMWG) genes 

from IWG plants. IWG deduced proteins were smaller in size but similar in structure to 

the HMWG present in wheat. Compared to HMWG in wheat, the authors reported that 

the HMWG in IWG had a larger range of molecular weight (45-90 kDa). Futher studies 

on the molecular interactions of the smaller sized glutenins in IWG and gluten forming 

proteins in wheat are necessary to broaden the understanding of their effect on dough 

rheology/functionality.  

 Zhang et al. (2016) studied the relationship between the genotypes and 

phenotypes of IWG using molecular markers for genetic analysis. Through their study, a 

formulation that relates the genotypes to the phenotypic outcome of IWG was 

determined. These results allow breeders the use of genotyping to enhance the efficiency 

of the selection process and further the development of IWG with desirable phenotypes. 
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Figure 3. History of IWG breeding efforts to maximize its potential as a perennial grain 

crop, adapted and simplified from Zhang et al. (2016). 

 

 

1.3.1.2 Wheat Crossing with IWG 

 Another effort to develop perennial grain crop was also conducted by crossing 

wheat and IWG. The progeny is called perennial wheat. Past efforts by the Soviet Union 

to develop perennial wheat were abandoned in the 1960s due to sterility, inconsistent 

perenniality, and other undesirable agronomic characteristics (Cox, Glover, Van Tassel, 

Cox, & DeHaan, 2006). In 2011, The Land Institute again took on the challenge of 

developing perennial wheat, with the goal of creating good grain yield and perennial 

offspring. As of now, there are a few stable lines of perennial wheat. However, these 

progenies still lack the perenniality trait. Thus, breeders still continue to seek a functional 

strain of perennial wheat hybrid.  

Rodale Research Center 
(RRC), PA 
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 Wheat crossing with IWG had also been studied to transfer the protein quality and 

disease resistance characteristics of IWG to wheat. Li et al. (2013) found that a specific 

chromosome of IWG’s HMWG, 1St#2, has the potential to improve the quality of wheat 

end-products. The authors showed that the addition of this specific chromosome 

increased wheat’s protein content and dough's strength when compared to control wheat. 

Additionally, Li & Wang (2009) evaluated IWG's capability to be used as a disease 

resistant source for the many diseases wheat is susceptible to genes transfer from 

wheatgrass to wheat was shown to improve wheat resistance to diseases such as leaf rust, 

stem rust, powdery mildew, barley yellow dwarf virus, wheat streak mosaic virus, and 

wheat curl mite (Turner, De Haan, Jin, & Anderson, 2013). Resistance to different 

diseases is typically associated with different IWG’s chromosomes. However, a single 

IWG’s chromosome can carry genes for multiple diseases. 

            Despite the positive traits genes transfer between IWG and wheat can result in 

negative effects. For example, one of the genes that provides resistance to leaf and stem 

rust problems is associated with yellow flour pigmentation that is undesirable. Other 

genes are also limited in temperature range and some others bring negative effects to 

yield and quality parameters. Thus, the application and effectiveness of wheatgrass genes 

transfer to wheat are limited and only very few are used in practical breeding (Li & 

Wang, 2009). However, efforts are continued to improve genes transfer practicality. 
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1.3.2 IWG for Forage and Biofuel 

 While IWG has value as a potential perennial grain crop, it has several additional 

uses as mentioned previously (Section 1.3). IWG is used for hay, pasture, and forage in 

many regions, especially in the Great Plains region running through the US and Canada 

(Berdahl, Karn, & Data, 1994; Lawrence, 1983). The high amount of IWG’s biomass 

production also indicates its potential use as a biofuel. This use is currently under 

evaluation (Culman et al., 2013). If all potential uses of IWG come to fruition, IWG may 

become the first triple-purpose perennial crop used as grain, forage, and biofuel. Of the 

three, however, the most attractive potential is the development of the crop for food use. 

 

 

1.4 Wheat as a Staple Grain 

 

After rice, wheat is the second largest crop harvested for human consumption 

globally (Stevenson, Phillips, O’Sullivan, & Walton, 2012). Wheat and IWG belong to 

the same family (Poaceae). Thus, a comparison between IWG and wheat is necessary to 

understand their similarities and differences, as well as the preferable traits for food 

applications, such as bread baking, that can advance IWG breeding development. In this 

research, wheat is used as a control grain for comparison to IWG.  

Wheat is classified in the kingdom of Plantae (plants), subkingdom of 

Tracheobionta (vascular plants), superdivision of Spermatophyta (seed plants), division 

of Magnoliophyta (flowering plants), class of Liliopsida (monocotyledons), subclass of 

Commelinidae, order of Cyperales, family of Poaceae (grass), and genus of Triticum L 

(“Classification for Kingdom Plantae Down to Genus Triticum L.,” n.d.). There are 19 
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known species of wheat, some of which are frequently used by consumers for food 

applications, such as durum wheat (Triticum durum Desf.) and common wheat (Triticum 

aestivum L.) (“Classification for Kingdom Plantae Down to Genus Triticum L.,” n.d.). 

Common wheat or Triticum aestivum, contributes roughly to around 90-95% of world 

wheat production (Peña, 2002).  

Similar to IWG, wheat also belongs to the Poaceae (grass) family. However, 

unlike IWG, wheat is an annual plant that has been cultivated for over 10,000 years. 

Based on genetic analysis, it is highly probable that wheat originated in what is now 

southeast Turkey (Shewry, 2009). Currently, wheat is planted in almost all countries, 

with more than 855 million metric tons of production in 2014 (Atwell, 2001; Wheat Crop 

Production Data, 2014).  

Wheat is categorized based on three categories: grain hardness (hard vs. soft), 

color (red vs. white), and growing season (spring vs winter). Hard wheat has a firmer 

endosperm when compared to soft wheat and therefore, requires more milling time 

(Atwell, 2001). As suggested by the names, the red and white wheat differ in bran color 

as a result of red pigments present in wheat. These pigments are polyphenol compounds, 

namely phlobaphene or proanthocyanidin (Atwell, 2001; Himi & Noda, 2005). Spring 

wheat is planted in the spring and harvested in late summer or fall, while winter wheat is 

planted in the fall and harvested in the summer due to its requirement of cold weather for 

the grain to flower (Atwell, 2001). Thus, three letters are generally used to describe any 

common wheat. For example, “HRW” is used when referring to hard red winter wheat.  
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Not all types of wheat are suitable for all wheat products. HRW, HWW, HWS, 

and HRS wheat varieties are usually used for bread or other baked products that require 

rising, due to their capacity to hold gas. On the other hand, because they lack elasticity, 

SRW, SWW, and SWS are the types of wheat typically used for cakes, crackers, and 

cookies (Atwell, 2001). A summary table of wheat types, characteristics, and their 

general uses can be seen in Table 1. 

 

Table 1. Wheat Types, Characteristics, and General Uses (Atwell, 2001). Used with 

permission. 

 

Class General Characteristics General Uses 

Hard red winter (HRW) 
High protein, strong gluten, 

high water absorption 

Bread and related 

products 

Soft red winter (SRW) 
Low protein, weak gluten, low 

water absorption 

Cakes, cookies, pastries, 

pie crusts, crackers, 

biscuits 

Hard red spring (HRS) 
Very high protein, strong 

gluten, high water absorption 

Bread, bagels, pretzels, 

and related products 

Hard white 

High protein, strong gluten, 

high water absorption, bran 

lacks pigments 

Bread and related 

products 

Soft white 

Low protein, weak gluten, low 

water absorption, bran lacks 

pigments 

Noodles, crackers, wafers, 

and other products in 

which specks are 

undersirable 

Durum 
High protein, strong gluten, 

high water absorption 
Pasta 

 

1.4.1 Wheat Kernel Composition 

 

 Typically, a wheat kernel measures 5-9 mm long and weighs 35-50 mg 

(Šramková, Gregová, & Šturdík, 2009). A wheat kernel has three major components: the 
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outer layer (bran), the middle layer (endosperm), and the embryo (germ) (Figure 4) 

(Atwell, 2001; Šramková et al., 2009). The bran represents 13-17% of the kernel’s weight 

and is high in fiber and ash (minerals) contents. The germ represents 2-3% of the kernel’s 

weight and contains most of the wheat lipids (Atwell, 2001; Šramková et al., 2009). The 

endosperm represents 80-85% of the kernel’s weight and consists of two different layers: 

the outer and inner endosperm (Atwell, 2001; Šramková et al., 2009). The outer layer of 

the endosperm is located between the bran and the inner endosperm. This layer is called 

the aleurone and contains proteins and enzymes crucial for germination (Atwell, 2001; 

Šramková et al., 2009). The inner endosperm is often referred to as starchy or storage 

endosperm due to its role in energy storage in the form of starch. This inner endosperm is 

rich in starch and protein. It is also important to note that even though the aleurone layer 

is part of the endosperm, most people and millers consider it part of the bran (Atwell, 

2001; Šramková et al., 2009).  

Several ingredients can be produced from wheat grain, but the most common are 

whole-wheat flour and refined flour. While whole-wheat flour is made from the whole-

wheat kernels, refined flour is made from kernels that have been processed to remove the 

bran, the germ, and the aleurone layer, to isolate the inner/starchy endosperm.  
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Figure 4. Wheat kernel diagram, adapted from Surget & Barron (2005) and Brouns, 

Hemery, Price, & Anson (2012). Used with permission. 

 

 

 

1.4.2 Wheat Chemical Composition and The Effect on Functionality  

 Wheat is considered as a good source of protein, minerals, B vitamins and dietary 

fiber. Generally, wheat grain is composed of 10-18% protein, 2-3% lipid, and 60-75% 

carbohydrate (Haard, Odunfa, Quintero-Ramírez, Lorence-Quiñones, & Wacher-Radarte, 

1999; Šramková et al., 2009). Wheat has around 2% ash (Becker, Wagoner, Hanners, & 

Saunders, 1991) and around 13% dietary fiber (Dhingra, Michael, & Rajput, 2012). 

Wheat also contains around 20-35 mg/kg zinc, 29-57 mg/kg iron, and 0.02-0.60 mg/kg 

selenium (Alfthan & Neve, 1996; Cakmak I, 2004; Šramková et al., 2009). Like other 

major cereals, wheat is abundant in essential amino acids, excluding lysine, which is the 

limiting amino acid in wheat (Shewry, 2009). In the following sections, the major 
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constituents of wheat, protein, starch, and dietary fiber, and their impact on functionality 

and bread baking quality will be further discussed.  

 

1.4.2.1 Gluten Forming Proteins 

 

 Total protein content in wheat is an important factor in determining wheat price 

and end product usage. Historically, wheat that has a high protein content garners a 

premium price, commonly referred to as the“protein premium” (Bale & Ryan, 1977). The 

price of the protein premium varies depending on the protein content, wheat type, and the 

supply and demand of wheat protein (Bale & Ryan, 1977). For example, according to the 

Grain Farmers of Ontario (2017), the wheat protein premium price is charged when the 

protein content is ≥11% for hard red winter wheat and ≥ 12% for hard red spring wheat.  

Different wheat types typically have different protein contents. Whole durum 

wheat protein content ranges from 9-18% (Feillet, 1988; Delcour et al., 2012), while 

whole bread wheat (hard wheat) protein content ranges from 10-14%, and soft wheat 

protein content ranges from 8-11% (Huebner, Bietz, Nelsen, Bains, & Finney, 1999; 

Delcour et al., 2012). This differing protein contents result in each variety of wheat being 

suitable for different applications (Table 1). 

In addition to the importance of the total protein content, the individual protein 

components also have a distinct impact on wheat functionality for various applications, 

specifically bread baking. There are four types of wheat proteins that are classified by 

Osborne (1924) based on their extractability and solubility in various solvents. The four 

types are albumins, globulins, prolamins, and glutelins. Albumins are soluble in water; 
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globulins are soluble in salt solutions; prolamins (gliadins) are soluble in 70% ethyl 

alcohol; and glutelins (glutenins) are soluble in dilute acid or alkali solutions (Šramková 

et al., 2009).  

Albumins and globulins are cytoplasmic or membrane proteins located mainly in 

the germ and bran and are important for germination. (Belderok, Mesdag, & Donner, 

2000; Merlino, Leroy, Chambon, & Branlard, 2009; Žilić, 2013). They are mainly 

monomeric proteins and represent 20-25% of the total wheat protein (Kasarda, Autran, 

Lew, Nimmo, & Shewry, 1983; Bietz & Simpson, 1992;(Žilić, Barać, Pešić, Dodig, & 

Ignjatović-Micić, 2011). Their molecular weights (MW) are mostly below 25,000 Da, but 

some are between 60,000-70,000 Da (Singh, Donovan, Batey, & MacRitchie, 1990). 

Gliadins (prolamin proteins) predominate in wheat. Gliadins together with 

glutenins (glutelin proteins) represent about 75-85% of the total wheat protein (Kasarda, 

et al.1983 ; Bietz & Simpson, 1992;(Žilić et al., 2011); (Žilić, 2013). Both are storage 

proteins located mainly in the endosperm and are used as a source of amino acids and 

nitrogen during germination. Composition and distribution of gliadins and glutenins 

directly impact, to a great extent, the rheological properties of wheat (Žilić, 2013).  

Gliadins constitute α-/ β-, γ- (MW ranging from 28-35,000 Da) and ω-gliadins 

(MW ranging from 52-74,000 Da) (Wieser, 2007; Žilić, 2013). Gliadins constitute about 

58-77% of the total gluten forming proteins (Wieser, 2007). While all gliadins are 

monomers, α-/ β-, and γ-gliadins can form intra-chain disulfide bonds. ω-gliadins, 

however, do not form these bonds because they lack cysteine residues (Žilić, 2013).  
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Glutenins can be categorized into two groups, low molecular weight glutenins 

(LMWG) and high molecular weight glutenins (HMWG). LMWG have a MW ranging 

between 30,000-74,000 Da, while HMWG have a MW ranging between 67,500-120,000 

Da (Sivam, Sun-Waterhouse, Quek, & Perera, 2010; Žilić, 2013). LMWG represent 

about 19-25% of the total gluten forming proteins, while HMWG represent about 7-13% 

of the total gluten forming proteins (Wieser, 2007). Thus, glutenins constitute about 26-

38% of total gluten forming proteins (Wieser, 2007). Glutenins are polymeric proteins 

constituting of polypeptides linked together through intermolecular disulfide bonds. 

Individual glutenin polypeptides also contain intra-molecular disulfide bonds (Žilić, 

2013).  

The kneading of flour with water results in gliadins and glutenins forming the 

protein complex known as gluten. Gluten is unique to wheat dough, contributing to the 

rheological properties referred to as viscoelastic properties (Hoseney, 1998; Lee & Lee, 

2012). The viscoelastic properties impact the dough’s gas holding capacity. Gliadins are 

responsible for the viscosity and extensibility, while glutenins are responsible for 

elasticity and dough strength. Gliadin is often referred to as the “plasticizer” for the 

glutenin network. The balance between these two components is important for 

establishing the gas holding capability necessary for baked products that require rising 

such as bread (Žilić, 2013).  

Dhaka & Khatkar (2014) studied the gluten composition of 15 different wheat 

varieties and the effect of the composition on functionality for bread application. The 

authors confirmed that the ratio of gliadin to glutenin and HMWG to LMWG affect bread 
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baking quality.  Results showed that higher glutenin content caused a longer mixing time, 

but more importantly, resulted in higher dough stability. Additionally, higher glutenin to 

gliadin ratio resulted in higher bread specific volume. The study demonstrated that a 

higher HMWG/LMWG ratio resulted in a longer dough development time and an 

increase in dough stability and bread specific volume. This study proved the widely held 

view of the importance of HMWG in producing high quality bread. 

Following the recognition of its importance, HMWG’s molecular structure and 

interactions were the subject of several studies focused on understanding gluten 

functionality. It was presumed that HMWG’s secondary structure was related to dough 

formation and functionality (Mejia, Mauer, & Hamaker, 2007). To advance the 

understanding of HMWG’s molecular structure and interactions, Shewry & Tatham 

(1997) had cloned and sequenced HMWG subunit genes. Their results showed that 

HMWG has three domains of non-repetitive N-terminus and C-terminus, with a repetitive 

central domain. Most of the cysteine residues that can form interchain disulfide bonds 

were found to be located in the non-repetitive terminus domains, which can further assist 

in the stabilization of HMWG polymers (Humphris et al., 2000). It was also argued that 

the formation of disulfide linkages are preceded by crosslinking via H-bonding resulting 

in β-sheet secondary structure formation (Shewry, Halford, Belton, & Tatham, 2002; 

Wellner et al., 2005; Mejia et al., 2007). The NMR study by Belton et al. (1995) 

highlighted the importance of H-bonding in dough formation to stabilize the gluten 

structure, which was attributed to the high level of glutamine residues (35% of the amino 

acids present in the gluten forming protein) in the HMWG subunits (Wellner et al., 2005; 
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Wrigley, Békés, & Bushuk, 2006). This further confirmed the contribution of H-bonding 

to gluten elasticity (Belton, 1994; Belton et al., 1995).  

In general, there are multiple types of chemical bonds that can contribute to gluten 

network formation. Wrigley et al. (2006) discussed the importance of both the non-

covalent bonds, such as hydrogen and hydrophobic interactions, as well as the covalent 

bonds, such as disulfide cross linkages and tyrosine crosslinking, in the development of 

optimum dough structure (Sivam et al., 2010; Tilley et al., 2001). Wrigley et al. (2006) 

stated that even though a H-bond is considered a weak bond, the large numbers of H-

bonds associated with the gluten network significantly contribute to the dough structure 

and stability. Hydrophobic bonds may have a similar role to H-bonds (Wrigley et al., 

2006), and may play a crucial role in biopolymers’ interactions within the dough, 

assisting with dough stability (Sivam et al., 2010). In addition, disulfide linkages of the 

polypeptide chains may stabilize hydrogen and hydrophobic interactions (Goldstein, 

1957; Wrigley et al., 2006). HPLC and NMR data observed by Tilley et al. (2001) also 

showed that tyrosine cross linking develops during mixing and baking. Tyrosine linkages 

are formed through chemical oxidation of tyrosines, as confirmed when oxidizing agent 

was used, leading to a linkage between two tyrosine subunits (Scheibel, 2008).  

The molecular structures and interactions of proteins are very complex, but 

crucial to understand. Protein structure and molecular interactions dictate key 

functionalities. Even though protein has an important nutritional value in food products, 

specific types of protein have more functional properties than others. Thus, not only does 

protein quantity matter, but also the type of protein present is important. Further 
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discussion about the effect of protein interactions on dough functionality and subsequent 

baking quality will be explored further in following sections. 

 

1.4.2.2 Starch 

 

 Starch is one of the major wheat components that can have a major effect on 

functionality in various applications. Starch properties and interactions with other 

constituents may result in unique functionality in different food systems. Starch 

constitutes around 60-75% of the total dry weight of wheat (Šramková et al., 2009). 

Amylose and amylopectin are the components of starch. Amylose is a mostly linear α(1-

4) chain of glucose units, while amylopectin contains both linear α(1-4) and branched 

α(1-6) glucose chains. The MW of both amylose and amylopectin can vary greatly, but 

the MW of amylose is usually around 25,000 Da while the MW of amylopectin is around 

108 Da (Šramková et al., 2009). Regular wheat starch constitutes about 20-30% amylose 

and 70-80% amylopectin (Konik-Rose et al., 2007).  

 Starch pasting properties influence starch functionality in food products. Starch 

pasting properties are a function of heating and cooling treatments, which affect the 

starch structural organization. During heating and under a sufficient level of moisture, 

starch granules absorb water and swell, and start to lose their crystallinity and original 

structure (Copeland, Blazek, Salman, & Tang, 2009; Kantar et al., 2016). Amylose has a 

crucial role in the initial step of starch swelling as it can form a complex with lipids that 

prevent leaching and reduce swelling capacity. Thus, starch swelling capacity correlates 

directly with the amylose/amylopectin content (Singh, Singh, & Kaur, 2003; Alcázar-
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Alay & Meireles, 2015). Additional factors also contribute to swelling capacity, such as 

the degree of polymerization, length, degree of branching, and molecular weight 

(Hoover, 2001; Ratnayake, Hoover, & Warkentin, 2002; Alcázar-Alay & Meireles, 

2015).  

Structural organization further degrades with continued water absorption and heat 

application. As the starch granule swells, the H-bonds responsible for starch granule 

structure begin to break, leading to partial starch solubilization, loss of crystallinity and 

molecular order of the granules, and an increase in viscosity (Hoover, 2001; Alcázar-

Alay & Meireles, 2015). This irreversible phenomenon is called gelatinization (Copeland 

et al., 2009; Kantar et al., 2016). Gelatinization transforms starch from a semi-crytalline 

to an amorphous form (Tester & Debon, 2000; Alcázar-Alay & Meireles, 2015). The 

progress of gelatinization depends on water availability and other applied parameters 

such as the temperature, time, and stirring (Alcázar-Alay & Meireles, 2015; Schirmer, 

Jekle, & Becker, 2015). The gelatinization/pasting temperature for refined wheat flour is 

around 61.0  0.2C (Marti, Qiu, Schoenfuss, & Seetharaman, 2015). For the same 

amount of sample, the gelatinization/pasting temperature for whole wheat flour is lower 

simply because it contains less starch. Sun, Wu, Bu, & Xiong (2015) further justified this 

expectation when they found that higher fiber substitution resulted in lower starch pasting 

temperature. 

As the heating treatment is continued, the viscosity will decrease due to the 

rupture of granules (Copeland et al., 2009). Upon cooling, viscosity will increase again as 

the starch molecules reform into different structures and retrogradate (Copeland et al., 
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2009). Retrogradation involves intermolecular interactions between amylose and 

amylopectin molecules (Tang & Copeland, 2007). During retrogradation, amylose 

molecules reassociate forming double helices, while amylopectin molecules recrystallize 

(Singh et al., 2003; Alcázar-Alay & Meireles, 2015). Retrogradation is a process that 

takes an extended period of time to complete. While amylose can complete its 

retrogradation process in hours, amylopectin may take days. Higher amylose content will 

result in products with firmer gels upon retrogradation (Thomas & Atwell, 1999; Tang & 

Copeland, 2007).  

An example of a common pasting profile is shown in Figure 5. The peak 

viscosity of the pasting profiles can be used as an indication of starch water holding 

capacity (Gupta, Bawa, & Semwal, 2009). The breakdown value is related to the 

solubility of the starch, with a higher breakdown value indicating a higher starch 

solubility (Hoseney, 1998). The final viscosity depends on the reassociation of starch 

molecules, predominantly the amylose, resulting in gel formation and therefore, 

increasing the viscosity (Saunders, Izydorczyk, & Levin, 2011).  

Retrogradation affects the application of starch in different food products. For 

example, high amylose content in starch is desirable for products requiring fast 

retrogradation such as pasta (Dexter & Matsuo, 1979; Vignaux et al., 2005). On the other 

hand, amylopectin retrogradation is an important factor in determining baked products’ 

staling period (Copeland et al., 2009).  
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Staling in bread is defined by an increase in the bread’s firmness, moisture 

migration from the center to the crust, and loss of flavor (BeMiller, 2007). Ghiasi, 

Hoseney, Zeleznak, & Rogers (1984) compared two different breads with different 

amylose/amylopectin ratios. They observed that one day after baking, the bread with the 

higher amylopectin content was softer. However, at days three and five, the firmness of 

the two different breads was the same. This finding confirmed that the 

amylose/amylopectin ratio is an important factor contributing to bread staling. 

Another factor that affects starch functionality is the amount of damaged starch 

present in wheat flour. The amount of damaged starch is found to be proportionally 

related to kernel hardness - the harder the kernel the higher the amount of starch damage 

Figure 5. A common starch pasting profile obtained using a rapid 

visco analyzer (RVA) (Saunders et al., 2011). Used with 

permission. 
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after milling (Mok & Dick, 1991; Bass, 1998). As grain milling time increases, starch is 

more likely to get damaged. Research has shown that high damaged starch content may 

result in lower bread specific volume (Barrera, Pérez, Ribotta, & León, 2007). There are 

two explanations for this phenomenon in the literature. First, as the amount of damaged 

starch increases, the water absorption capacity increases. Therefore, the competition of 

starch with the fiber and protein for water will prevent the optimization of the gluten 

network formation during mixing. Another possible reason is starch degradation during 

the fermentation process. Damaged starch degrades more readily than intact starch 

leading to a decrease in the consistency of the dough, and thus a reduction in gas 

retention capacity (Barrera et al., 2007). 

The role of starch pasting properties in bread baking is widely recognized. Many 

studies have demonstrated the effects of starch composition on bread quality parameters 

(Hung, Maeda, & Morita, 2007; Morita et al., 2002). For example, starch gelatinization 

within the dough’s gluten matrix is essential for porous and elastic crumb development 

due to the semi-rigid form of the gluten network that is maintained by the uptake of water 

by the starch during gelatinization (Rotsch, 1954; Sandstedt, 1961; Medcalf, 1968; 

Dennett & Sterling, 1979). Thus, limited gelatinization of amylose is considered 

insufficient for bread baking purposes (Montgomery & Senti, 1958; Kim & Deruiter, 

1968; Dennett & Sterling, 1979). Moreover, amylose gelatinization and amylopectin 

crystallization are two important factors that determine starch retrogradation (Morita et 

al., 2002; Hung et al., 2007). The linear structure of amylose reassociates and form a gel 



 

26 

upon cooling, while the branched structure of amylopectin crystallizes upon cooling 

(Wang, Li, Copeland, Niu, & Wang, 2015). 

Hung et al. (2007) showed the effect of increasing amylopectin content on both 

functionality and bread baking quality. Whole waxy flour (WWF) is mainly composed of 

amylopectin and is significantly higher in protein and fiber content as compared to 

common wheat flour (CWF). Hung et al. (2007) showed that the pasting temperature and 

viscosities of WWF were lower than that of CWF, and that during mixing, the WWF 

dough had higher water absorption and lower stability than that of CWF. Because 

protein, fiber, and starch all compete for water, the higher protein and fiber content of 

WWF as compared to CWF increased the water absorption and reduced the strength of 

the gluten network (Hung et al., 2007). The bread made with WWF had a lower specific 

volume, but also a lower bread firmness during storage, which delayed bread staling 

(Hung et al., 2007). Higher retention of water in bread made with higher amylopectin 

content had also been observed in other studies (Morita et al., 2002; Hayakawa et al., 

2004; Hung et al., 2007). 

Overall, the chemical properties of starch are crucial in grain based products. 

Starch pasting properties demonstrate the impact of the heating and cooling treatments 

that a particular grain product will undergo, and highlights the effect of amylose to 

amylopectin ratio. These properties, specifically, have an important impact on bread 

baking, which will be further discussed in Section 1.5. 
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1.4.2.3 Dietary Fiber 

 

 Many studies have demonstrated the health benefits of dietary fiber (DF) 

consumption in relation to obesity, constipation, hypertension, and the normalization of 

blood lipids, as well as its reduction of the risk of some chronic diseases such as heart 

disease, cancers, and type 2 diabetes (Fung et al., 2002; Koh-Banerjee et al., 2004; 

Sahyoun, Jacques, Zhang, Juan, & Mckeown, 2006; Seal, 2006; BeMiller, 2007; Lam et 

al., 2007; Mellen, Walsh, & Herrington, 2008). Dietary fiber is defined as “the edible 

parts of plants or analogous carbohydrates that are resistant to digestion and absorption in 

the human small intestine with complete or partial fermentation in the large intestine. 

Dietary fiber includes polysaccharides, oligosaccharides, lignin, [and] associated plant 

substances” (The definition of dietary fiber, 2001). Resistant starch is also considered a 

DF as it is indigestible in the small intestine but subject to fermentation in the large 

intestine (Slavin, 2013). 

Whole wheat contains around 13% DF, located mostly in the bran (~45% DF) and 

some in the germ (~18% DF) (Fardet, 2010). Due to being mostly associated with the 

bran and the germ components, the fiber content in whole wheat is higher compared to 

the fiber content of refined flour (bran and germ mostly removed). This has raised 

consumer awareness around the consumption of whole grains (Šramková et al., 2009). 

Wheat DF content and composition not only impacts health, but also the functionality of 

wheat flour. 

 DF is categorized as soluble fiber (SDF) and insoluble fiber (IDF) based on water 

solubility (Šramková et al., 2009). Whole wheat contains around 9-12% IDF and 1-3% 
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SDF (Fardet, 2010). Whole grains are typically good sources of IDF (Šramková et al., 

2009). Whole wheat DF is made up of arabinoxylans (AX), cellulose, β-glucans, 

arabinogalactan peptide, resistant oligosaccharides, and lignin (Loosveld, Grobet, & 

Delcour, 1997; Zorb, Betsche, Langenkamper, Zapp, & Seifert, 2007; Gebruers et al., 

2008). AX is one of the major components of wheat endosperm cell walls (Šramková et 

al., 2009). Even though AX can be categorized as either SDF or IDF depending on the 

MW and substitution pattern, it acts more like SDF in the GI tract, rapidly subjected to 

bacterial fermentation in the colon (Lattimer & Haub, 2010).  

 AX’s structure varies among different grains, but in general, AX has a xylan 

backbone and branches with arabinose residues (Nandini & Salimath, 2001). Based on 

solubility, AX can be divided to two different categories, water extractable (WEAX) and 

water unextratable (WUAX). In wheat, WEAX constitutes around 25-30% of the total 

AX (Izydorczyk & Biliaderi, 1995; Koehler & Wieser, 2013). Typically, around 25% of 

water added to wheat dough binds to WEAX (Atwell, 1998; Koehler & Wieser, 2013). 

Through oxidation, ester linkages can form between ferulic acids and arabinose (Vinkx, 

Van Nieuwenhove, & Delcour, 1991; Figueroa-Espinoza & Rouau, 1998; Adams, Kroon, 

Williamson, & Morris, 2003; Koehler & Wieser, 2013). On the other hand, WUAX is not 

soluble in water due to its covalent cross linking with the cell wall structure (Courtin, 

Roelants, & Delcour, 1999; Courtin & Gelders, 2001; Koehler & Wieser, 2013).  

AX can absorb water up to ~20 times its weight (Gan, Ellis, & Schofield, 1995; 

Koehler & Wieser, 2013). Conflicting results had been reported on the AX high water 

absorption capacity and its effects on bread baking (Izydorczyk & Biliaderi, 1995). 
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Because of this unique property of AX, AX can create a highly viscous solution, which 

stabilizes gas bubbles and increases the gas holding capacity of the dough (Gan, Ellis, & 

Schofield, 1995; Koehler & Wieser, 2013). However, despite its high water holding 

capacity, a high concentration of WUAX could negatively affect bread volume due to the 

build up of dough viscosity, which disturbs gluten network formation (Izydorczyk & 

Biliaderi, 1995). The optimum amount of AX for the bread baking process varies 

according to the flour type and AX’s molecular weight (Izydorczyk & Biliaderi, 1995). 

Hydrolyzing WUAX using endoxylanases makes it soluble, resulting in functionality 

enhancement similar to that of WEAX (Courtin, Roelants, & Delcour, 1999; Courtin & 

Gelders, 2001; Koehler & Wieser, 2013). 

The understanding of the molecular interactions of the fiber components is, 

therefore, important for the understanding of their effects on dough functionality and 

bread baking quality. Though dietary fiber may bring many health benefits, its presence 

in formulations is not always beneficial to the production process. Fiber can both 

positively and negatively impact dough functionality and baking quality. Thus, depending 

on the final application, the level of fiber should be adjusted accordingly. 

 

1.5 Bread Baking 

 The importance of each ingredient and the baking steps will be described in this 

section to further understand the chemistry of baking as a whole. In the bread baking 

process, the basic ingredients needed are flour, yeast, sugar, salt, shortening, and water. 
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Ingredients are usually combined and mixed together to make a dough. The dough is then 

divided, proofed (fermented) and kneaded several times, and finally shaped and baked. 

 

1.5.1 Bread Ingredients 

 

 Each ingredient (flour, yeast, sugar, salt, shortening/oil, and water) in bread 

contributes to the overall quality. However, DiMuzio (2009) argued that flour is the most 

important ingredient in bread baking. Different types of flour are used for different baked 

products as shown in Table 1. Wheat flour with high gluten forming proteins is typically 

used to make breads that require rising.  

In addition to flour, yeast is used to ferment both endogenose (produced upon 

hydrolysis of starch by native α-amylose) and added sugars present in the formulation. 

Yeast produces the enzyme zymase, which catalizes the sugar’s fermentation into carbon 

dioxide and alcohol (DiMuzio, 2009). This fermentation process is essential for bread 

leavening (DiMuzio, 2009). Sugar is usually added for flavor and serves as a source for 

yeast fermentation. However, due to its hygroscopic nature (binding and absorbing 

water), at levels above 12%, sugar can actually decrease the rate of fermentation 

(DiMuzio, 2009). Thus, sugar in bread is usually added at ~6% of flour weight (AACCI 

Approved Methods, 2010).  

Salt also enhances flavor while strengthening the gluten network by shielding the 

charges of the gluten proteins. The presence of salt reduces electrostatic repulsions and 

promotes hydrophobic interactions (Butow, Gras, Haraszi, & Bekes, 2002; DiMuzio, 

2009). A stronger gluten network will increase the dough’s capability to hold the gas 
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produced by fermentation, creating bread with a desirable loaf volume. On the other 

hand, the hygroscopic characteristic of salt reduces the amount of available water, 

decreasing the rate of fermentation. Thus, the level of salt added is typically ~2% of flour 

weight (DiMuzio, 2009).  

Shortening/oil serves as a tenderizing agent for bread dough. Further, the addition 

of lipid crystals distributed throughout the gluten network leads to the formation of 

expandable gluten, which aids in air bubble stabilization (Ghotra, Dyal, & Narine, 2002; 

Watanabe, Larsson, & Eliasson, 2002; Watanabe, Yokomizo, & Eliasson, 2003; Pareyt, 

Finnie, Putseys, & Delcour, 2011). On the other hand, shortening/oil shortens gluten 

strands during mixing, a phenomenon called the shortening effect (DiMuzio, 2009). The 

shortening effect weakens gluten network development. Thus, the amount of shortening 

added is typically ~3% of flour weight (AACCI Approved Methods, 2010).  

Finally, water plays a significant role in bread baking. Water aids in the 

fermentation process and supports the formation of the gluten network. Additionally, 

water is needed for the gelatinization of starch (DiMuzio, 2009). 

 

1.5.2 Bread Baking Process 

 

The steps involved in baking good quality bread are mixing, 

fermentation/proofing, kneading, shaping, and baking. The first step in the bread baking 

process is mixing the liquid and solid ingredients to ensure homogenous distribution of 

ingredients and form a solid mass. In this step, starch, fiber, and proteins hydrate and 

begin to interact with each other in an unorganized way. Through the mixing process and 
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under sufficient hydration, both glutenin and gliadin also begin to interact and form 

gluten tangled chains. With continued mixing and turning over, the dough will start to get 

smoother as the gluten network forms (DiMuzio, 2009). Bakers usually check the 

optimum dough development using the gluten window test (Figure 6). In the gluten 

window test, the dough is slowly stretched. If the dough does not break, then optimum 

dough condition has been reached. If the dough breaks, then more kneading is needed to 

further develop the gluten network (DiMuzio, 2009; Hitz, 2011). As a technical 

alternative to the gluten window test, the farinograph can be used to determine the 

optimum dough water absorption and mixing time (Wheat and Flour Testing Methods, 

2004). For wheat, a measurement of 500 BU is the optimum dough consistency (El-Dash, 

1978). It is important not to overmix the dough because overmixing can break the gluten 

network, resulting in un-balanced dough extensibility and elasticity (DiMuzio, 2009). 

 

 
 

Figure 6. In a favorable gluten window test, the dough is stretched without breaking 

(Hitz, 2011). Used with permission. 

 

 

Fermentation, which follows mixing, can be defined as the breakdown of organic 

matter (carbon containing substances) by yeast, bacteria, and/or molds (DiMuzio, 2009). 
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In bread baking, yeast is the fermention agent. The fermentation step allows the yeast to 

convert the sugar to carbon dioxide and alcohol, producing gas that supports the bread’s 

rising (DiMuzio, 2009). The period during which the fermentation process occurs is 

called proofing. Fermentation can be categorized into three different periods: bulk 

fermentation, intermediate proofing, and final proofing. Bulk fermentation refers to the 

time period just after the dough is mixed and before the dough is divided. Intermediate 

proofing refers to the time period between dividing the dough and shaping the loaves. 

Final proofing refers to the time period after the dough is shaped, placed into the baking 

pan, and allowed to rest before baking. The time periods of each fermentation step vary 

depending on the bread types (DiMuzio, 2009). 

 Kneading the dough results in protein denaturations, unfolding, and structural 

rearrangement that facilitate gluten network formation through several molecular 

interactions discussed in the previous sections. During this step, gluten proteins are also 

aligned through the stretching of the bonds forming parallel β-sheets through H-bonding 

in addition to the formation of hydrophobic interactions, disulfide linkages, and tyrosine 

linkages, thus increasing air trapping efficiency. Kneading also helps with the gluten 

hydration process, trapping water in between gluten proteins. The trapped water will 

convert to steam during baking, and thus contribute further to the rising of the bread 

(Claire, 2014; Corriher, 1997).  

During baking, bread undergoes a browning reaction caused by caramelization 

and maillard reactions. Caramelization and maillard reactions are considered non-

enzymatic reactions and require the presence of heat. Caramelization happens when 
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direct heating is applied to sugars, while maillard reactions require the presence of heat, 

protein, reducing sugars, and water (Purlis & Salvadori, 2007).  

Additionally, during the baking process as the heat penetrates the dough and 

increases its temperature, the bread undergoes a phenomenon called “oven spring”. 

Dough fermentation is accelerated during the oven spring, resulting in the production of a 

large amount of carbon dioxide. The bread loaf then rises rapidly. However, when the 

bread loaf is placed into the oven, the intense heat will cause a formation of skin on the 

bread’s surface, limiting loaf expansion. Thus, the use of steam in the oven before baking 

is crucial to slow down the formation of the skin. Too much steam, however, can also 

limit the caramelization rate and therefore, it is only used right before baking but not 

during the baking process. Starch gelatinization and protein coagulation also occur during 

baking. Evaporation of water helps with the final rise of the dough. Water evaporation 

continues until the bread fully cools. Thus, complete steam loss and sufficient cooling are 

essential steps prior to cutting or packing (DiMuzio, 2009).  

While the process of bread baking can be straightforward, several factors in 

addition to those mentioned are involved in creating a good quality bread, such as the use 

of dough conditioners, dough mixing time, and baking temperature and time. In this 

thesis, breads made with wheat controls and IWG samples were made and compared. The 

next section will explore the chemical composition and functionality of IWG to 

understand their effect on bread baking quality. 
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1.6 IWG Chemical Composition and Functionality 

 

 While wheat chemical composition and functionality have been well studied, 

research on IWG has been limited. Becker et al. (1991) examined the compositional, 

nutritional, and functional properties of IWG. The seed samples were obtained from 

crops grown in Penssylvania in 1985 through 1988 and in Colorado in 1987. In this 

study, the group found that IWG was higher in protein (20.8%), fat (3.21%), and ash 

(2.64%) than wheat. Similar to wheat, IWG also had lysine as the limiting amino acid, 

but was higher in all of the essential amino acids compared to wheat. The IWG starch 

gelatinization/pasting temperature was found to be higher than that of wheat with 

midpoints of 65.5C and 61C, respectively.  

 Preliminary work by our research group on IWG compositional, functional, and 

nutritional properties used IWG seeds planted in 2002, harvested in 2007, and de-hulled 

in 2008. Similar to the results of Becker et al. (1991), it was found that IWG was higher 

in protein (17%) and in most of the essential amino acids, except for histidine. However, 

unlike the results shown by Becker et al., some of the IWG lines tested by our group were 

lower in lysine content when compared to wheat. IWG was also found to have lower 

starch content (~44%) than wheat (60-70%) and higher DF content (~16% in IWG vs. 

~13% in wheat) (Shewry, 2009; Dhingra et al., 2012). Results also indicated that IWG 

was deficient in HMWG. Additionally, IWG had noticeable differences in flavor 

development in bread, compared to wheat. 

 Based on the preliminary data collected, breeders are continuing efforts to 

develop IWG suitable for food applications. Continued team effort between breeders and 
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food scientists is crucial for the development of IWG suitable for food applications. The 

present research focused on characterizing 16 different IWG experimental lines grown in 

St. Paul, MN, USA. The samples were derived from the first cycle of selection performed 

by the IWG breeding group at University of Minnesota. Through this research, a broader 

understanding of IWG grown in Minnesota was attained. The research sought the 

identification of superior IWG lines via correlation between IWG chemical composition, 

functionality, and bread baking.  

 

1.7 IWG Potential for Food Use 

 

Currently, IWG is sold under the name of Kernza®, a trademark by The Land 

Institute (TLI) in Salina, KS. IWG was also sold under the name Wild Triga by the 

Rodale Institute in Kutztown, PA (Marti, Bock, Pagani, Ismail, & Seetharaman, 2016). 

Kernza® is used in several restaurants such as The Perennial in San Francisco, CA to 

make breads; Birchwood Café in Minneapolis, MN to make tortillas; and Patagonia 

Provisions in Sausalito, CA to make beer. All of these places provide food service and 

are committed to using sustainable ingredients for their products. Kernza® is mostly 

mixed with wheat (20-50%) to make breads or can be 100% used for baked products that 

do not require rising property such as muffins and pancakes (DeHaan & Christians, 

2016). 

 Despite its current use in food service industries, IWG also faces many challenges 

and limitations. IWG usage in food production is still very low when compared to wheat. 

Therefore, our initiative seeks to increase the use of IWG in product formulations and 
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diversify the range of products in which IWG can be used. This research is important for 

the development of IWG for food use through breeding efforts. Expansion of food 

applications is one of the altimate goals both breeders and food scientists share in order to 

establish a good market for IWG as a sustainable food option.  
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2. Materials and Methods 

2.1 Materials 

 

Sixteen experimental lines of intermediate wheatgrass (IWG) from different 

female parents grown in St. Paul, MN, USA along with a pure line of hard red winter 

wheat control (Arapahoe) grown in Lamberton, MN, USA, were harvested in 2014 and 

provided by Professor James Anderson from the Agronomy and Plant Genomics 

Department at the University of Minnesota. Each of the sixteen IWG experimental lines, 

which originated from UMN-C1 (Figure 3), came from individual plant. Another hard 

red winter wheat control was obtained from a commercial source and will be referred to 

as hard red wheat (HRW). A bulk IWG sample, grains of which are a combination from 

several plants (from several lines/populations), was provided by the Land Institute 

(Salina, KS, USA). Glycine standard (99%, 502-211) was purchased from Leco, Corp. 

(St. Joseph, MI, USA). TRIS - HCl 4-15% polyacrylamide gel (345-0028), laemmli 

sample buffer (161-0737), broad range molecular weight standard (345-0024), and 

concentrated tris-tricine-sodium dodecyl sulfate running buffer (161-0744) were purchased 

from Bio-Rad Laboratories (Hercules, CA, USA). Coomassie brilliant blue R250 (786-

498) was purchased from G-Biosciences (St. Louis, MO, USA). HPLC-grade water 

(WX0004-1) was purchased from EMD milipore (Billerica, MA, USA). Enzymes and 

assay kits for total starch (K-TSTA-50A/K-TSTA-100A 08/16) and total dietary fiber (K-

TDFR-100A/K-TDFR-200A 12/15) were purchased from Megazyme (Megazyme 

International, Ireland). Diatomaceous earth (DE) (ANKOM XTC, Celite 545 AW, 

C8656, Sigma Chemical Co. or equivalent), TRIS-TROMETHAMINE 2-Amiono-2-
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Hydroxymethyl (>99/9%, 77-86-1), MES Anhydrous Buffer 2-(N-Morpholino) 

ethanesulfonic acid (100%, 4432-31-9), dietary fiber IDF bag (DF-I), and dietary fiber 

SDF bag (DF-S) were purchased from ANKOM Technology (Macedon, NY, USA). All 

of the other reagent grade chemicals were purchased from Fisher Scientific (Waltham, 

MA, USA), Sigma Aldrich (St. Louis, MO, USA), or VWR International (Radnor, PA, 

USA). Bread-making ingredients were purchased locally. 

 

2.2 Milling of the Grains 

All grain samples were milled using a ball mill (Fritsch Pulverisette, Idar-

Oberstein, Germany). Fifteen grams of samples were ground at a time, at 600 rpm for 30 

min with breaks every 10 min to prevent over-heating. The resulting flour samples were 

stored in closed containers at -20°C until further analyses were conducted.  

 

2.3 Experimental Plan 

Chemical characteristics, functional properties, and baking quality of all 19 flour 

samples were analyzed in either duplicate or triplicate. Chemical characterization 

included the analysis of proximate composition, dietary fiber, starch content, 

amylose/amylopectin ratio, starch damage, amylose/amylopectin molecular weight, 

gluten forming proteins profile, as well as molecular weight distribution. Functional 

properties analyzed included determination of dough rheology following farinograph 

analysis, dough extensibility using Kieffer, and starch pasting properties using rapid 
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visco analyzer (RVA). Finally, bread baking tests were performed following the AACCI 

method 10-10.03 (AACCI Approved Methods, 2010). Bread dimensions (height, width, 

and length) were measured using a caliper (Neiko 01407A, Neiko, Taiwan, China). Bread 

volume was determined by the rapeseed displacement method (AACCI method 10-05.01, 

AACCI Approved Methods, 2010). Bread crumb moisture was determined using Ohaus 

Moisture Analyzer (MB45, Parsipanny, NJ, USA). Bread firmness was determined 

following AACCI method 74-09.01 (AACCI Approved Methods, 2010), and FIJI software 

was used to obtain cell counts and sizes.  

 

2.4 Chemical Characterization 

2.4.1 Proximate Analysis 

Proximate analysis was performed following standard methods of analyses. 

Protein content of the samples was determined following the Dumas nitrogen combustion 

method (AOAC 990.03, Official Methods of Analysis of AOAC International, 2016) using 

a Nitrogen Analyzer (LECO® TruSpecNTM, St. Joseph, MI, USA). A nitrogen 

conversion factor of 5.70 was used. Fat content was determined following the Mojonnier 

method (AOAC 922.06, Official Methods of Analysis of AOAC International, 2016). 

Moisture content was determined following the vacuum oven method (AACCI 44-40.01, 

AACCI Approved Methods, 2010). Ash content was measured following the dry ashing 

method (AOAC 923.03, Official Methods of Analysis of AOAC International, 2016). 

Finally, total carbohydrate content was determined by difference.  
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2.4.2 Total Dietary Fiber Quantification 

To determine the dietary fiber content of the samples, an ANKOM automated 

Dietary Fiber Analyzer (ANKOM Technology, New York, USA) and Megazyme kit 

were used to perform the AOAC enzymatic assay (AOAC 991.43, Official Methods of 

Analysis of AOAC International, 2016). Duplicate samples were digested sequentially 

with heat stable α-amylase (95-100°C, 30 min), protease (60°C, 30 min), and 

amyloglucosidase (60°C, 30 min). For insoluble dietary fiber (IDF), the digested sample 

was filtered; and the residue was washed with warm water, 95% ethanol, and acetone; 

dried; and weighed. For soluble dietary fiber (SDF), the combined filtrate and water wash 

was precipitated with 95% ethanol; filtered; and the residue was washed with 78% 

ethanol, 95% ethanol, and  with acetone respectively; dried; and weighed. Dietary fiber 

results were corrected for protein and ash. Filtrations were performed using ANKOM 

filter bags specifically designed to trap fiber particles. ANKOM SDF bag is designed to 

trap the SDF particles, while ANKOM IDF bag is designed to trap the IDF particles. 

Diatomaceous earth (DE) as a filter aid was used only for the SDF bag. 

 

2.4.3 Total Starch Quantification 

Total starch content was determined following the AOAC enzymatic assay using 

a Megazyme kit (AOAC 996.11, Official Methods of Analysis of AOAC International, 

2016). The method used was the one specified for samples containing D-glucose and/or 

maltodextrin. Post enzymatic hydrolysis glucose concentration was determined 
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spectrophotometrically using a UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan). 

Glucose concentration was then used to back calculate total starch content.  

 

2.4.4 Amylose/Amylopectin Ratio and Molecular Weight 

Potassium hydroxide (KOH, 1M), 6 M urea, and 1 M hydrochloric acid (HCl) 

were filtered through 0.2 μm nylon syringe filter (285145-487, VWR, Radnor, PA, USA). 

While gently vortexing, 4.5 mL of 1M KOH and 0.5 mL of 6 M urea were added to 30-

40 mg flour sample in a 15 mL tube. The sample then was flushed with nitrogen for 5 

min and heated at 100°C in a heating block for 90 min. The tube was vortexed for several 

times while heating. Room temperature aliquots (1.0 mL) were transferred to 5 mL test 

tubes and the pH was adjusted to 7.0 using 1 M HCl. The amount of 1 M HCl added was 

recorded to calculate the sample concentration in the final volume. The neutralized 

samples were then filtered through 0.45 μm syringe filter into HPLC vials. To determine 

the amylose/amylopectin ratio and molecular weight in the prepared samples, size 

exclusion high performance liquid chromatography (SE-HPLC) linked to refractive index 

detector (Agilent 1200 HPLC, Agilent Technologies, Inc. Santa Clara, CA, USA) 

(Simsek, Whitney, & Ohm, 2013) and coupled with multi angle light scattering (MALS) 

detector (Dawn Helios-II, Wyatt Technologies, Santa Barbara, CA, USA) (Whitney, 

2013; You & Lim, 2000) was performed. A waters ultra-hydrogel guard column 

(WAT011565), ultra-hydrogel 1000 column (WAT011535), in line with linear ultra-

hydrogel column (WAT011545 ) (Waters Co., Milford, MA, USA) were used. The 

temperature of the column and RI detector was set to 50°C and the solvent, HPLC-grade 
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water, was pumped at 0.4 mL/min flow rate. The volume of injection was 60 µL and the 

total run time was 45 min (Grant, Ostenson, & Rayas-Duarte, 2002; Simsek et al., 2013). 

The area under the curve (IR detector) was used to measure amylose and amylopectin 

contents using Chem Station version B.04.03 (Agilent Technologies, Santa Clara, CA, 

US), which were then used to obtain ratio value. An example chromatogram can be found 

in Appendix A (Figure 17). The dn/dc value (change in refractive index with 

concentration) of 0.146 (for MALS detector) (Fiedorowicz, Tomasik, Cracow, You, & 

Lim, 1999) and the Debye model (Radosta, Haberer, & Vorwerg, 2001) with a fit degree 

of 3 were used for calculation of the molecular weight (MW) of the amylopectin and 

amylose in the samples using Astra version 6 (Wyatt Technology, Santa Barbara, CA, 

USA). 

 

2.4.5 Starch Damage Quantification 

 Starch damage content was determined following the AACC enzymatic assay 

using a Megazyme kit (AACCI 76-31.01, AACCI Approved Methods, 2010). Similar to 

total starch assay, glucose concentration was determined spectrophomotrically. However, 

procedural steps varied to allow only the determination of damaged vs. total starch.  

 

2.4.6 Gluten Forming Proteins Profiling 

To determine the profile of gluten forming proteins, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed, following the 
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procedure developed by Tatham, Gilbert, Fido, & Shewry (2000). Two grams of each 

sample, weighed in 50 mL centrifuge tube was defatted using 20 mL of water saturated 

butanol solution.  The mixture was placed on a shaker for 1 hour at room temperature, 

then centrifuged (Beckman J2-MC, Brea, CA, USA) at 9,000 g for 10 min at 20°C. The 

supernatant was discarded and the pellet was washed with water saturated butanol for two 

more times. To remove the salt soluble proteins (albumins), 20 mL of 0.5 M sodium 

chloride (NaCl) was used to disperse the pellet. The dispersion was placed on the shaker 

for 1 hour at room temperature, followed by centrigugation at 9,000 g for 10 min at 20°C. 

The supernatant was discarded and the pellet was washed with salt solution two more 

times. To remove the residual salt, 20 mL of double distilled water (DDW) was added 

and the sample was placed on the shaker for 30 min at room temperature, followed by 

centrifugation at 9,000 g for 10 min at 20°C. The supernatant was discarded and DDW 

wash of the pellet was repeated two more times. 

Glutenins and gliadins were then extracted from the pellet using 20 mL of 

aqueous1-propanol (50% v/v), beta-mercaptoethanol (2% v/v), and acetic acid (1% v/v) 

while each sample were placed on a shaker for 1 hour at room temperature, followed by 

centrifugation at 9,000 g for 10 min at 20°C. The supernatant, which contain gluten 

forming proteins (glutenins and gliadins), was then collected into a 250 mL round bottom 

flask. The pellet was washed two more times with the same solvent and the supernatants 

were combined.  A rotary evaporator was used to evaporate the solvent at 60°C. 

Extracted gluten forming proteins were then lyophilized and stored at -20°C for later 

analysis. 
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The lypholized protein extracts were analyzed for their protein content following 

the Dumas method as outlined in section 2.3.1. Protein profile of the extracts were 

monitored by SDS-PAGE under reducing conditions. The amount of sample needed to 

obtain 10 μg protein was weighed and mixed with 190 μL SDS Laemmli buffer and 10 

μL beta-mercaptoethanol, stirred for 30 sec, boiled at 100°C for 5 min, and cooled down 

to room temperature. The sample was centrifuged at 9,279 g (Eppendorf 5415D, 

Hamburg, Germany) for 5 min. An aliquot (5 μL) of each sample was loaded into the 

wells of a 4-15% Criterion Tris-HCl gel. The gel was electrophoresed at 200 V for 

approximately 45 min, followed by staining using a coomassie blue staining solution 

(45% v/v methanol, 10% v/v glacial acetic acid, 45% v/v DDW, and 3g/L coomassie 

brilliant blue R250), and destaining using a destaining solution (10% v/v glacial acetic 

acid, 5% v/v methanol, and 85% v/v DDW). Gels were scanned using Molecular Image 

Gel Doc XR system (BioRad, Hercules, CA). 

 

2.4.7 Protein Molecular Weight Distribution 

To determine the molecular weight distribution of the IWG proteins, SE-HPLC 

was performed following the procedure developed by Gupta, Khan, & Macritchie (1993) 

and modified by Ohm, Ross, Ong, & Peterson (2006). Ten mg of flour (14% moisture 

content) was weighed into a 2 mL tube, and 1 mL of extraction buffer was added. The 

extraction buffer consisted of 0.5% SDS in 0.05 M sodium phosphate buffer (pH 6.9). 

The tube was vortexed at 2,500 rpm for 5 min using a pulsing vortex mixer (Fisher 

Scientific, Waltham, MA, USA) to solubilize the SDS extractable protein (SEP). The 
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mixture was centrifuged at 17,000 g (Eppendorf Centrifuge 5424, Hamburg, Germany) 

for 15 min. The supernatant was filtered through a 0.45 μm filter and heated at 80°C for 2 

min. The heating step was done to suppress endogenous protease activity. 

For the SDS-unextractable protein (UEP), 1 mL of the extraction buffer was 

added to the tube containing the residue/precipitate, sonicated at 10 W for 30 sec (Sonic 

dismembrator 100, Fisher Scientific, Waltham, MA, USA), and vortexed at 2,500 rpm for 

5 min using a pulsing vortex mixer. The solution was centrifuged at 17,000 g for 15 min. 

The supernatant was filtered through a 0.45 μm filter, and the filtered solution was heated 

at 80°C for 2 min. 

SE-HPLC was performed using an Agilent system (1100 Series, Agilent 

Technologies, Santa Clara, CA, USA) equipped with BIOSEP SEC-S4000 500 Å 

(300*4.5 mm) size exclusion column (Phenomenex, Torrance, CA, USA) and a guard 

cartridge (BIOSEP SEC S4000). Ten μL of the protein extract (SEP or UEP) was injected 

onto the column. Aqueous acetonitrile (50% in water) with 0.1% trifluroacetic acid was 

used to elute the proteins at a flow rate of 0.5 mL/min. Temperature of the column was 

set at 35°C. The total run time per sample was 10 min. Proteins were detected at 214 nm 

using a photodiode array detector (1200, Agilent Technologies, Santa Clara, CA, USA) 

(Ohm et al., 2010).  

 MATHLAB 2008 software (The MathWorks, Natick, MA) was used to analyze 

the absorbance data. The absorbance values were interpolated to an interval of 0.002 min 

to calculate the absorbance area (AA). Data analysis was conducted between 3.5 and 8.0 

min of runtime. There were five distinct fractions (F1-F5) observed in the generated 
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chromatogram. F1 extended over 3.5-5.5 min, and corresponded to the high molecular 

weight polymeric proteins (HMWPP). F2 extended over 5.5-5.9 min, and corresponded 

to the low molecular weight polymeric proteins (LMWPP). F3 extended over 5.9-6.2 

min, and corresponded to ω-gliadin. F4 extened over 6.2-6.9 min, and corresponded to α-, 

β-, and γ-gliadins. Finally, F5 extended over 6.9-8.0 min, and corresponded to the 

albumins and globulins. See Appendix B (Figure 18 and Figure 19) for sample 

chromatograms. Area under the curve for each fractions was converted to a relative 

percent value based on total areas and total protein content (Ohm et al., 2010).  

 

2.5 Functionality Testing 

2.5.1 Dough Rheology/Mixing Properties 

Dough behavior during mixing was determined using a Farinograph – AT (C.W. 

Brabender, Duisburg, Germany) following the AACCI method 54-21.02 (AACCI 

Approved Methods, 2010). A 10 g farinograph mixing bowl set at 30 ± 0.2°C was used to 

determine the optimal water absorption and stability time for each flour sample. An 

optimum consistency was set at 500 BU. Water absorption data was then used to prepare 

the dough with optimum consistency for the Kieffer extensibility experiment, as outlined 

in section 2.4.2. 
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2.5.2 Extensibility using Kieffer 

Dough rheological properties were also tested by a Kieffer Dough and Gluten 

Extensibility Rig (A/KIE) attached to a TA-XT2i texture analyzer (Texture Technologies 

Corp, Scarsdale, NY, USA) to characterize dough resistance to extension (mN) and 

extensibility (mm). The dough resistance to extension (mN) is the measure of the force 

needed to break the dough, measured by the force generated against the hook attached to 

the texture analyzer as shown in Figure 7. Dough resistance to extension (mN) is an 

indicator of dough strength. Extensibility (mm) is the distance at which the dough breaks 

apart, or a measure of dough deformation before it ruptures (Wang, Van Vliet, & Hamer, 

2004). Five sub-duplicates were analyzed for each sample. Ten g of flour, 0.2 g of salt, 

and optimal amount of water based on the results of the farinograph, were mixed to make 

a dough that had optimum consistency at 500 BU. For the wheat controls and IWG 

samples, the doughs were mixed for 2.5 and 2 min, respectively. The mixing time for the 

controls was determined based on the gluten window test, while the mixing time for IWG 

samples was determined based on the dough handling capability (i.e. stickiness) 

determined through experimental trials. The fresh dough was then pressed and molded by 

the Kieffer molder (TA-105, Texture Technologies Inc., Hamilton, MA, USA) to 

approximately 4 mm in width and 50 mm in length. The dough strips were rested for 40 

min in the molder, and each strip was then placed in the Kieffer microextension rig and 

stretched vertically as shown in Figure 7. The dough strips were pulled at a speed of 3.3 

mm/s for a distance of 75 mm. The data was then automatically generated by the Texture 
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Exponent 32 version 6.1.4.0 software (Texture Technologies, Corp. Scarsdale, NY, 

USA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.3 Pasting Properties 

Starch pasting properties were measured using a Rapid Visco Analyzer (RVA) 

(Newport Scientific Inc., Jessup, MD 1998). Flour (4.0 g, 14% moisture) was mixed with 

25.0 mL of double distilled water (DDW) and analyzed. The following temperature 

profile was applied: 50°C for 1 min, heating from 50°C to 95°C at a rate of 12°C/min 

(min 1:00 to 4:42), holding at 95°C for 2.5 min (min 4:42 to 7:12), cooling at a rate of 

12°C/min (min 7:12 to 11:00), and holding at 50°C for 2 min. The following data were 

collected: pasting temperature (the temperature at which the initial swelling begins), peak 

viscosity (the maximum viscosity reached during heating), breakdown (extent of the 

decrease in viscosity during the holding period), final viscosity, and the setback value 

Figure 7. Dough stretched vertically using the Kieffer rig. 
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(extent of the increase in viscosity during cooling) (Marti et al., 2015). Common pasting 

profile is shown in Figure 5. 

 

2.6 Baking Quality 

2.6.1 Bread Baking 

Bread baking was done following the AACCI method 10-10.03 (AACCI 

Approved Methods, 2010), with modifications. Flour moisture was determined by OHaus 

MB45 (New Jersey, USA) at 130°C for 4 min. Flour (50 g), 3 g of sugar, 0.75 g of salt, 

2.65 g of yeast, and 1.5 g of shortening were used to make the dough. The yeast and 

sugar solution was kept at 30°C and 85% relative humidity for 20 min before use.  

Preparation of the IWG samples and wheat controls differed. For preparation of 

IWG samples, a final dough moisture of 46.5% was targeted based on a preliminary study 

to determine optimum moisture content. Due to sample size limitations, a food processor 

(Braun 4169, Kromberg im Taunus, Germany) was used to mix the dough (15 sec total 

mixing time). For the preparation of wheat controls, 86.3% and 87.1% added moisture 

were targeted for hard red wheat and Arapahoe, respectively, based on optimum moisture 

level previously determined by the farinograph. The dough was then mixed in a 50g 

farinograph bowl (C.W. Brabender, Duisburg, Germany) for 3 min, the time needed for 

the dough to reach optimum dough consistency at 500 BU. Each dough sample was 

kneaded by hand 10 times, split into two even parts, and then put in the proofer (Baxter 

PW2E, Orting, WA, USA) at 30°C and 85% relative humidity (RH) for 52 min.  
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Each dough sample was again punched by hand 10 times and proofed (30°C and 

85% RH) for 25 min. Each dough sample was once more punched by hand 10 times and 

proofed (30°C and 85% RH) for 13 min. The dough was then sheeted to a 3/16” thickness 

5 times, shaped into a ball by hand, re-sheeted to 3/16” thickness 5 times, rolled to a 

length of 2.1 inches, and placed in a Freshware CB-308RB trapezoidal pan (size 2.8 x 1.5 

inches top, 2.1 x 1.2 inches bottom, and 1.1 inches depth) (Amazon, Seattle, WA, USA). 

The dough was proofed (30°C and 85% RH) for another 33 min before it was baked with 

steam for 10 sec followed by baking for 14 min at 425°F in a baking oven (Baxter 

OV500E1, Orting, WA, USA). The bread was left to cool for one hour before the 

analysis of bread quality parameters (Section 2.5.2). Bread was cut into slices of 12.5 

mm thickness with a bread cutter (Oliver Products Company, Grand Rapids, MI, USA). 

Bread baking was conducted in duplicate for each sample. 

 

2.6.2 Bread Baking Quality 

2.6.2.1 Bread Volume and Height 

Bread volume was measured using the Rapeseed Displacement method (AACCI 

10-05.01, AACCI Approved Methods, 2010). The bread’s greatest height was measured 

by Neiko 01407A digital caliper (Neiko, Taiwan, China). 
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2.6.2.2 Bread Firmness 

Bread firmness was measured following the AACCI method 74-09.01 (AACCI 

Approved Methods, 2010) using TA XT-Plus Texture Analyzer (Texture Technologies 

Corp, NY, USA). One 12.5 mm slice of bread was used to perform the analysis. The 

probe used was 1.3 cm (0.5 inch) in diameter and 3.5 cm in length (1 3/8 inches). The 

force (in g) needed to deform the bread by the probe was recorded. 

 

2.6.2.3 Bread Pictures 

Bread pictures were taken using HP Scanjet (G4050, Palo Alto, CA, USA) at 

1200 dpi.  

 

2.7 Statistical Analysis 

 Analysis of variance (ANOVA) was done using R (version 3.3.2). When a factor 

or an effect was found to be significant (P ≤ 0.05), differences among the means were 

determined using Tukey-Kramer Honest Significant Difference (HSD) test. ANOVA tables 

can be found in Appendix C (Table 7 - Table 17).  
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3. Results and Discussions 

3.1 Chemical Characterization 

 The bran to endosperm ratio is higher for IWG samples than that of wheat 

controls because IWG seed size is smaller. Among the IWG samples, bulk IWG had the 

smallest seed size (Table 18, Appendix D). Smaller seed size and consequently higher 

bran to endosperm ratio will have a direct bearing on the chemical constituents of the 

IWG grains. 

 

3.1.1 Proximate Composition 

 The proximate composition of hard red wheat and Arapahoe controls, bulk IWG, 

and 16 IWG experimental lines is shown in Table 2. Protein content of the wheat 

controls was lower than that of the IWG samples, similar to what was observed by 

Becker et al. (1991). The protein component of the grain mainly constitutes albumins, 

globulins, gliadins, and glutenins (Brouns et al., 2012). In cereal grains, albumins and 

globulins are mostly found in the aleurone layer and the germ; whereas gliadins and 

glutenins are mostly found in the endosperm (Belderok et al., 2000; Šramková et al., 

2009). Thus, the higher bran to endosperm ratio in IWG samples may result in a higher 

content of albumins and globulins compared to wheat. This distinction is crucial as will 

be discussed in Section 3.1.7. Even though the protein content in IWG samples was 

higher than that of the wheat controls, it might not necessarily constitutes a considerable 

amount of the functional protein needed for good baking quality. 
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 Fat content was highest in the bulk IWG sample. Fat content among the IWG 

experimental lines compared to wheat controls varied, with no obvious trend. Lipids in 

grains are mostly found in the germ (Šramková et al., 2009). As such, the smaller seed 

size and higher bran to endosperm ratio of bulk IWG may explain its higher fat content as 

compared to the rest of the samples (Table 18, Appendix D). 

 Similarly, bulk IWG had the highest ash content followed by the IWG 

experimental lines and wheat controls. Since mineral content is highest in the bran 

component of the grain (Šramková et al., 2009), the higher bran to endosperm ratio of 

bulk IWG compared to IWG experimental lines and wheat controls again explains this 

finding.  

 The moisture content of the wheat controls was slightly higher than that of the 

IWG samples. As reported by Mutwali, Mustafa, Gorafi, & Ahmed (2016), the growing 

environment affects the moisture content of the grain. Therefore, the difference in the 

moisture content of the samples may not be a differentiation factor among the samples, 

but rather is a function of the growing environment, as well as the handling and storage 

conditions post harvest. 

Lastly, the total carbohydrate content, determined by difference, was higher in the 

controls than in the IWG samples. Difference in carbohydrate content could also be 

attributed to the higher bran to endosperm ratio and the grain size of IWG because starch 

is mainly located in the endosperm (Šramková et al., 2009). Carbohydrate content and 

composition of the grain impact the functionality as will be discuseed in later sections.  
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The proximate composition of IWG samples may directly impact the potential 

functionality and application of the grain. Chemical composition results confirmed that 

the bran to endosperm ratio highly impact the chemical composition of the grain. In 

summary, the higher bran to endosperm ratio of IWG samples resulted in a higher 

protein, fat, and ash content, and a lower carbohydrate content compared to wheat 

controls. These findings, therefore, were critical to the understanding of the effect of 

IWG seed size on composition, functionality, and baking quality. 
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Table 2. Proximate composition (on wet basis) of hard red wheat and Arapahoe controls, 

bulk IWG, and 16 IWG experimental lines. 

 

Samples Protein (%) Fat (%) Ash (%) Moisture (%) 
Total CHO* (%) 

By Difference 

Hard Red Wheat 10.2h^ 2.85fg 1.64e 10.70a 74.6 

Arapahoe 12.0g 2.46fg 2.00d 9.99ab 73.6 

Bulk IWG 18.1b 4.36a 2.69a 9.01bc 67.6 

IWG L4-1 17.9bc 2.36g 2.40bc 9.22bc 68.1 

IWG L4-3 19.2a 3.04cd 2.49ab 9.31bc 66.0 

IWG L4-29 17.8bcd 2.48fg 2.42bc 9.31bc 67.9 

IWG L4-32 17.5d 2.96cde 2.38bc 9.08bc 68.1 

IWG L4-57 19.2a 3.11bcd 2.38bc 9.28bc 66.0 

IWG L4-72 18.1b 2.73def 2.29bc 8.85bc 68.0 

IWG L4-84 19.2a 3.11bcd 2.32bc 9.28bc 66.1 

IWG L4-85 19.1a 3.32bc 2.32bc 9.02bc 66.2 

IWG L4-103 16.5f 3.32bc 2.37bc 8.87bc 68.9 

IWG L4-105 18.2b 2.62efg 2.38bc 8.65c 68.1 

IWG L4-139 17.6cd 2.56fg 2.26bc 8.99bc 68.6 

IWG L4-154 17.8bcd 2.36fg 2.39bc 9.35bc 68.0 

IWG L4-157 18.0bc 2.97cd 2.24c 9.18bc 67.6 

IWG L4-159 19.0a 2.78def 2.37bc 9.11bc 66.7 

IWG L4-160 16.9e 3.45b 2.19cd 9.20bc 68.2 

IWG L4-172 17.1e 2.55efg 2.19cd 9.44bc 68.8 

* CHO stands for carbohydrate, calculated by difference. 

^ Lowercase letters in each column indicate significant differences among samples 

according to the Tukey-Kramer HSD means comparison test (P ≤ 0.05), n=3. 
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3.1.2 Dietary Fiber 

 Total dietary fiber of IWG samples was higher than that of the wheat controls. 

The dietary fiber content of IWG samples ranged between 15.9-18.1%, followed by 

Arapahoe (14.4%) and hard red wheat (13.5%) (Figure 8). Since most of the dietary fiber 

is located in the bran (Pomeranz, 1988: Brouns et al., 2012), the higher dietary fiber 

content in IWG samples can again be explained by the higher bran to endosperm ratio 

and grain size of the IWG samples. The soluble dietary fiber (SDF) represented 32.7% of 

the total dietary fiber for hard red wheat, 27.8% for Arapahoe, and between 23-30% for 

IWG samples. Daou & Zhang (2014) showed that SDF was a major determinant of 

samples’ viscosities because SDF forms a viscous solution upon water absorption. Thus, 

the higher SDF content of the wheat controls may contribute to higher dough viscosity.  

While it is important to consider SDF because of its viscosity builder properties, 

insoluble dietary fiber (IDF) represented the main component of DF in the samples and 

potentially may affect both the water absorption capacity and gluten network formation. 

IDF was between 70-76% of the total dietary fiber for IWG samples, 71.9% for 

Arapahoe, and 66.9% for hard red wheat. Wang, Rosell, & de Barber (2002) investigated 

the effect of different fiber sources on dough rheology. They found that samples with 

higher IDF content had a higher water absorption when compared to samples with higher 

SDF content.  Romano, Torrieri, Masi, & Cavella (2011) also investigated the effect of 

SDF and IDF on the bread baking process. They found that bread made with a higher IDF 

content resulted in a lower volume than bread made with a higher SDF content. Thus, the 
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higher IDF percent coupled with high total dietary fiber content of the IWG samples 

might contribute to higher water absorption and lower bread volume. 

 

 

 The dietary fiber content in any sample may impact both functionality and bread 

baking quality. As previously mentioned, protein, fiber, and starch compete for water. 

Gómez, Ronda, Blanco, Caballero, & Apesteguía (2003) studied the effect of dietary 

fiber on bread quality and showed that higher fiber content positively correlated with 

water absorption, dough development time, and dough stability, but negatively correlated 

with bread specific volume. The hydroxyl groups in the fiber contribute to the increase in 

water absorption because they form hydrogen bonds with water. On the other hand, the 

Figure 8. Total dietary fiber and soluble/insoluble dietary fiber ratio (SDF/IDF) of 

hard red wheat and Arapahoe controls, bulk IWG, and IWG experimental lines. Error 

bars represent standard errors (n=2). Lowercase letters indicate significant differences 

among samples according to the Tukey-Kramer HSD means comparison test (P ≤ 

0.05). 
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reduction of bread specific volume, as dietary fiber content increases, is a result of the 

interference of fiber with gluten network formation, causing a reduction of the gas 

holding capacity. In terms of the bread firmness value, adding fiber can increase firmness 

and preserve moisture over storage. Gómez et al. (2003) collected bread firmness data 

immediately after baking and showed that the bread made with 2% additional fiber had a 

significantly firmer texture than the bread made with no added fiber. This firmer bread 

texture may be due to the protein, fiber, and starch competition for water. However, the 

fiber’s capacity to strongly bind water allows the bread to retain moisture over storage, 

thus slowing the bread firmness rate and increasing shelf life (Gómez et al., 2003). 

Therefore, dietary fiber content plays an important role in predicting the functionality and 

baking quality of IWG samples. 
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3.1.3 Total Starch and Amylose/Amylopectin Ratio 

Starch, as a major component of flour, plays an essential role in baked products. 

In the bread baking process, starch can absorb water up to 50% of its dry weight during 

mixing under ideal conditions (sufficient water and at room temperature) (Goesaert et al., 

2005; Onyango, 2016). Starch gelatinizes and swells during baking, and starch molecules 

reassociate upon cooling (Goesaert et al., 2005).  

The total starch content was higher in hard red wheat and Arapahoe controls than 

in IWG samples (Figure 9). Starch is mostly found in the endosperm (Šramková et al., 

2009) and therefore, the lower starch content in IWG samples is again attributed to the 

higher bran to endosperm ratio and smaller seed size. Starch content in bulk IWG was 

lower as compared to the rest of the IWG experimental lines; this is due to the smaller 

bulk IWG seed size as compared to the rest of IWG samples (Table 18, Appendix D). 

Because higher starch content leads to higher viscosity, higher viscosity results were 

expected for the wheat controls compared to IWG samples, as will be discussed in 

Section 3.2.2. 

The amylose component of starch has a direct impact on bread firmness as it 

retrogradates during baking, while the amylopectin component impacts bread firmness as 

it retrogradates over storage (Singh et al., 2003; Alcázar-Alay & Meireles, 2015). The 

amylose component for wheat controls was around 25.5% of the total starch content, 

while it ranged between 22-25% for the IWG samples. Since the amylose to amylopectin 

ratio among all of the samples was relatively similar, there should be no direct impact on 
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bread firmness or staling rate. However, starch structure that was not analyze in this 

research may also have a significant impact on bread firmness or staling rate.  

To the best of our knowledge, this is the first report on IWG starch content and 

the amylose/amylopectin ratio. This data will help explain the functionality and baking 

quality of IWG samples as will be discussed in Section 3.2 and Section 3.3.  

 

 

 

 

 

 

 

Figure 9. Total starch and amylose/amylopectin ratio of hard red wheat and Arapahoe 

controls, bulk IWG, and IWG experimental lines. Error bars represent standard errors 

(n=3). Lowercase letters indicate significant differences among samples according to the 

Tukey-Kramer HSD means comparison test (P ≤ 0.05). 
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3.1.4 Amylose and Amylopectin Molecular Weight Distribution 

  

The molecular weight (MW) of starch molecules may affect functionality. 

Specifically, starch molecular size may affect its pasting properties. The MW of amylose 

and amylopectin were relatively similar for all of the samples with the exception of 

Arapahoe, which had a significantly higher amylopectin molecular weight (Figure 10). 

Reports on the effect of amylose/amylopectin MW on functionality is scarce. Kowittaya 

& Lumdubwong (2014) indicated that the MW of amylopectin positively affect the peak 

viscosity, but negatively affect the final viscosity. Thus, Arapahoe’s high amylopectin 

molecular weight is expected to contribute to higher peak viscosity compared to other 

samples as will be discussed in Section 3.2.2.  

 

 

 

 

 

 

 

 

 



 

63 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Molecular weight distribution of amylose and amylopectin of hard red wheat 

and Arapahoe controls, bulk IWG, and IWG experimental lines as determined by SE-

HPLC. Error bars represent standard errors (n=3). Lowercase letters indicate significant 

differences among samples according to the Tukey-Kramer HSD means comparison test 

(P ≤ 0.05). 
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3.1.5 Starch Damage 

 Wheat controls had a higher content of damaged starch as compared to the IWG 

samples. Hard red wheat had the highest damaged starch content (13.8% of the total 

starch), followed by Arapahoe (11.5%), and IWG samples (4.7-7.5%) (Figure 11). As 

reported by Mok & Dick (1991) and Bass (1998), the amount of damaged starch is 

directly related to kernel hardness. Accordingly, the kernels of the wheat controls may 

have been harder than those of the IWG samples. The higher damaged starch content in 

wheat may impact wheat functionality and baking quality. With a higher damaged starch 

content, the water absorption increases, thus less water will be available for the gluten 

network (Goesaert et al., 2005; Barrera et al., 2007). High damaged starch content may 

also result in a lower bread specific volume (Barrera et al., 2007), as will be discussed in 

Section 3.3.  
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Figure 11. Percent starch damage of hard red wheat and Arapahoe controls, bulk IWG, 

and IWG experimental lines. Error bars represent standard errors (n=3). Lowercase 

letters indicate significant differences among samples according to the Tukey-Kramer 

HSD means comparison test (P ≤ 0.05). 



 

66 

3.1.6 Gluten Forming Proteins Profiling 

 

Gluten consists of polymeric glutenins and monomeric gliadins (Žilić, 2013). 

Glutenins are the proteins responsible for dough elasticity and strength; while gliadins are 

the proteins responsible for viscosity and elasticity (Žilić, 2013). High molecular weight 

glutenins (HMWG) readily form large polymers and thus are important for the gluten 

network formation, enabling appreciable gas holding capacity and providing elastic 

properties (Niu et al., 2011; Žilić, 2013; Dhaka & Khatkar, 2014). Wheat is known to 

have a desirable balance of both glutenin and gliadin proteins for gluten network 

formation and stability (Žilić, 2013). Thus, baked products made from wheat have a 

desirable gas holding capacity, allowing the dough to sufficiently rise during 

fermentation and baking. Protein profiling of wheat controls and IWG samples will 

provide insight into the baking quality of IWG samples as compared to that of wheat.  

In comparison to wheat controls, IWG samples were deficient in HMWG; but 

were rich in α-, β-, and γ- gliadins; and contain some low molecular weight glutenins 

(LMWG) (Figure 12). Some of the HMWG components in IWG samples were uniquely 

of low molecular weight (~60 kDa) compared to those of wheat controls, as pointed out 

with arrows in Figure 12. The difference in protein profiles between IWG samples and 

wheat controls demonstrated that the amount of protein in a sample does not confirm the 

presence of targeted functional proteins necessary for dough development. Thus, the 

deficiency of IWG samples in HMWG protein, of high molecular weight (>60 kDa), as 

present in the wheat controls, suggested that IWG samples may have a weak gas holding 

capacity and elasticity, leading to undesirable dough characteristics. Ohm et al. (2010) 
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showed positive correlations between the high molecular weight components of HMWG 

(the polymeric proteins) and strong gluten network. Larger polymers improve dough 

strength because the structures of these polymers may support stronger protein-protein 

interactions. 

Zhang et al. (2014) isolated five HMWG genes from several IWG samples (third 

breeding cycle from The Land Institute as shown in Figure 3). They found that HMWG 

proteins in IWG samples shared similar structures but were smaller in size when 

compared to that of the common wheat. They also discovered that the HMWG of the 

IWG samples had a larger molecular weight range (45-90 kDa) than common wheat. 

While the impact of HMWG for wheat is understood, the impact of both smaller 

molecular size and larger molecular weight range of HMWG for IWG remains unknown. 

Thus, further study of the molecular interactions of IWG’s HMWG and its impact on 

dough rheology and baking quality is necessary.  

Differences in protein profiles were also seen among the IWG samples. For 

example, intensity of the protein band at ~60 kDa was stronger in IWG L4-84 (lane 11) 

compared to IWG L4-57 (lane 9), while the protein band intensity at ~115 kDa was 

stronger in IWG L4-57 (lane 9 compared to IWG L4-84 (lane 11) (Figure 12). Around 

60 kDa, IWG L4-57 had two different protein bands, while IWG L4-84 had only one 

protein band at that molecular weight. Further, IWG L4-57 had one protein band around 

115 kDa, while IWG L4-84 had three distinct protein bands in that region. Apparently, 

HMWG differed in molecular weight distribution among the different lines. These 

difference in HMWG distribution among the samples may have an impact on 
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functionality and baking quality. Estimation of each type of protein could provide 

additional insight into differences among the samples and the potential impact on 

functionality.  
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Figure 12. SDS-PAGE gel with Coomasie blue staining, visualizing the protein profiles of the samples under reducing conditions. 

Lane 1: molecular weight marker (MW); Lane 2: hard red wheat (HRW); Lane 3: Arapahoe; Lane 4: bulk IWG; Lane 5: IWG L4-1; 

Lane 6: IWG L4-3; Lane 7: IWG L4-29; Lane 8: IWG L4-32; Lane 9: IWG L4-57; Lane 10: IWG L4-72; Lane 11: IWG L4-84; Lane 

12: IWG L4-85; Lane 13: IWG L4-103; Lane 14: IWG L4-105; Lane 15: IWG L4-139; Lane 16: IWG L4-154; Lane 17: IWG L4-157; 

Lane 18: IWG L4-159; Lane 19: IWG L4-160; Lane 20: IWG L4-172. HMWG: High molecular weight glutenins; LMWG: low 

molecular weight glutenins. 
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3.1.7 Protein Molecular Weight Distribution 

To determine the distribution and molecular weights of the IWG proteins 

compared to those of wheat controls, size exclusion high performance liquid 

chromatography (SE-HPLC) was performed. Five distinct fractions were observed 

(Figure 13, and Figures 20 and 21 in Appendix E). The five fractions observed were the 

high molecular weight polymeric proteins (HMWPP) (F1); low molecular weight 

polymeric proteins (LMWPP) (F2); ω-gliadin (F3); α-, β-, γ- gliadins (F4); and albumins 

and globulins (F5). Fractions were identified based on previous reports (Gupta et al., 

1993; Ohm et al., 2006). The area under the curve for each fraction was converted to a 

relative percent value (Ohm et al., 2010). The HMWPP fraction includes HMWG with 

some polymeric albumins and globulins aggregates. The LMWPP fraction includes 

LMWG with some polymeric albumins and globulins aggregates as well (Singh et al., 

1990; Batey, Gupta, & MacRitchie, 1991; Gupta et al., 1993). Extractable proteins are 

soluble in SDS buffer solution, whereas unextractable proteins are not. Unextractable 

proteins contain polymers that are considerably larger than those of the extractable 

proteins (Singh et al., 1990; Batey, Gupta, & MacRitchie, 1991; Gupta et al., 1993). 

Thus, unextractable proteins underwent a sonification step to break the large polymers 

and solubilize the proteins to enable analysis by SE-HPLC (Singh et al., 1990). 

The amount of the extractable albumins and globulins was significantly (P ≤ 0.05) 

higher in most of the IWG samples compared to wheat controls (Table 3). Further, the 

amount of unextractable HMWPP in IWG samples was significantly (P ≤ 0.05) lower 

than that of the wheat controls. These results confirm that while IWG contained more 
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protein than wheat, it contained less of the targeted functional proteins (in this case 

HMWPP). Assuming HMWPP content positively correlates with HMWG content, 

HMWPP fraction was indicative of the presence and relative quantity of HMWG. 

However, the HMWPP also constitutes albumins and globulins aggregates. The presence 

of HMWG vs. albumins and globulins aggregates in the HMWPP fraction was not 

elucidated. In any case it was apparent that wheat controls had higher HMWG and thus 

would be superior in functionality and baking quality, followed by bulk IWG, and the rest 

of the IWG experimental lines.  

Overall, the chemical characterization of the samples (Section 3.1) allowed for 

inferences to be made about the samples’ potential functionality. In the following 

sections, dough rheology and starch pasting characteristics (Section 3.2), as well as bread 

baking quality of IWG (Section 3.3), will be evaluated. The relationhip between 

chemical characterization, functionality, and baking quality will be further explored.  
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Figure 13. Protein molecular weight distribution by SE-HPLC for (a) soluble/extractable protein and (b) insoluble/unextractable 

protein for hard red wheat, Arapahoe, bulk IWG, and IWG experimental line L4-1 ; and (c) different fractions and elution times. 
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Bulk IWG 

IWG L4-1 
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Table 3. Quantitative distribution of extractable and unextractable protein fractions based on percent of the total area of the 

chromatographic peaks for hard red wheat and Arapahoe controls, bulk IWG, and IWG experimental lines. 

 

 

 

 

 

  % Total Area of Extractable Protein % Total Area of Unextractable Protein 

Sample ID HMWPP* LMWPP^ 
ω-

gliadins 

α,β and γ- 

gliadins 

Albumins and 

Globulins 
HMWPP LMWPP 

ω-

gliadins 

α,β and γ- 

gliadins 

Albumins and 

Globulins 

Hard Red Wheat 13.67h# 4.44f 5.00i 31.71e 18.16efg 12.83a 3.90a 2.13a 4.85abcd 3.33abcde 

Arapahoe 14.44gh 4.67f 5.10hi 32.82de 18.95efg 10.92b 3.59a 2.01ab 4.43bcd 3.07abcde 

Bulk IWG 16.18abcde 7.42bcd 5.71bcdef 33.80bcde 21.17bc 7.73c 1.78bcd 1.05def 2.80d 2.34e 

IWG L4-1 15.75cdefg 8.20a 5.89abc 37.52a 21.49abc 3.77fg 1.24de 0.83ef 2.90d 2.40de 

IWG L4-3 14.99defgh 7.79abc 5.67bcdefg 34.47abcde 19.52de 5.45de 1.93bcd 1.34cde 5.11abcd 3.72abc 

IWG L4-29 15.08defgh 6.66e 5.08hi 35.46abcd 18.93efg 5.01def 1.92bcd 1.36cde 6.49ab 4.00ab 

IWG L4-32 17.45ab 7.88ab 5.80abcde 35.60abc 22.57a 2.94g 1.04e 0.77f 2.94d 3.00bcde 

IWG L4-57 17.90a 8.21a 6.28a 37.58a 19.01efg 3.36fg 1.18de 0.86ef 3.17cd 2.46cde 

IWG L4-72 17.15abc 7.94ab 5.39defghi 33.41cde 20.55cd 5.31de 1.73bcd 1.13def 4.13bcd 3.26abcde 

IWG L4-84 14.57fgh 6.77e 5.24ghi 36.34ab 17.61g 6.40cd 2.17b 1.45cd 5.85abc 3.60abc 

IWG L4-85 14.98efgh 6.75e 5.08hi 35.95abc 18.92efg 5.36de 1.95bc 1.34cde 5.86abc 3.81ab 

IWG L4-103 16.71abcd 7.87ab 5.82abcd 33.48cde 21.91ab 3.48fg 1.43cde 1.09def 4.49bcd 3.71abc 

IWG L4-105 16.07bcdef 7.22cde 5.46cdefgh 36.63a 21.67abc 4.27efg 1.36cde 0.92ef 3.49cd 2.93bcde 

IWG L4-139 15.88cdefg 7.53abcd 5.31fghi 35.55abc 19.20ef 4.87ef 1.91bcd 1.28cde 5.01abcd 3.46abcd 

IWG L4-154 15.85cdefg 7.98ab 5.99ab 37.19a 21.45abc 4.33ef 1.32cde 0.87ef 2.72d 2.29e 

IWG L4-157 14.88efgh 7.03de 5.57bcdefg 36.32ab 21.42abc 4.16efg 1.54bcde 1.12def 4.66abcd 3.30abcde 

IWG L4-159 15.56defg 7.22cde 5.42defghi 33.46cde 17.98fg 5.22de 2.20b 1.62bc 7.19a 4.13a 

IWG L4-160 16.63abcd 7.63abcd 5.36efghi 36.04abc 21.77abc 4.23efg 1.41cde 0.93ef 3.2cd 2.78bcde 

IWG L4-172 15.29defg 7.95ab 5.76bcde 35.32abcd 21.72abc 4.28efg 1.49cde 1.07def 3.77bcd 3.36abcde 

* HMWPP stands for high molecular weight polymeric proteins 

^ LMWPP stands for low molecular weight polymeric proteins 

# Lowercase letters in each column indicate significant differences among samples according to the Tukey-Kramer HSD means comparison test 

(P ≤ 0.05), n=3. 
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3.2 Functionality Testing

3.2.1 Dough Rheology, Mixing Properties and Extensibility 

The dough rheological properties of the samples were analyzed using farinograph 

and Kieffer. Water absorption results obtained from the farinograph show the amount of 

water needed by each sample to develop a 500 BU dough consistency (optimum wheat 

dough consistency) (El-Dash, 1978). The addition of too much or too little water will 

create dough outside of the optimum consistency. Based on the farinograph data, wheat 

controls had higher water absorption values when compared to that of the IWG samples 

(Table 4).  

The farinograph also reveals dough stability time, the time between sample’s 

arrival and depature at the 500 BU line.  The amount of time a sample remains at 500 BU 

correlates with the strength of the dough. Hard red wheat had the highest stability time, 

followed by Arapahoe, bulk IWG, and the rest of the IWG experimental lines (Table 4, 

Figure 14; see Appendix F, Figure 22 for the rest of the IWG samples). IWG lack of 

stability is most likely attributed to its deficiency in HMWG, the protein that is crucial for 

gluten network formation and stability (Niu et al., 2011; Žilić, 2013; Dhaka & Khatkar, 

2014). 

 

 

 

 



 

75 

Table 4. Farinograph (water absorption corrected for default consistency and stability 

time) and Kieffer (resistance to extension and extensibility) data for hard red wheat and 

Arapahoe controls, bulk IWG, and IWG experimental lines. 
 

          

 Farinograph Data Kieffer Data 

Samples 

Water Absorption 

Corrected for Default 

Moisture Content (14%) 

Stability 

(sec) 

Resistance to 

Extension 

(mN) 

Extensibility 

(mm) 

Hard Red Wheat 74.5a* 598.5a 340.33b 17.68b 

Arapahoe 74.6a 247.0b 425.82a 21.61a 

Bulk IWG 68.7hi 121.5bc 179.14c 13.51c 

IWG L4-1 73.2b 44.0c 66.69ijk 6.04hi 

IWG L4-3 71.8cd 88.0c 67.47hijk 7.72fgh 

IWG L4-29 69.0hi 42.0c 74.5gghi 6.69fgh 

IWG L4-32 67.2j 42.0c 65.53jk 5.69hi 

IWG L4-57 68.5i 30.0c 44.99l 4.41i 

IWG L4-72 69.6gh 52.0c 75.79fgh 7.22fgh 

IWG L4-84 72.1c 53.0c 66.02ijk 8.68ef 

IWG L4-85 70.3efg 52.0c 72.72ghij 10.02de 

IWG L4-103 70.2fg 29.0c 66.86ijk 6.76fgh 

IWG L4-105 70.8def 47.5c 68.73hijk 6.81fgh 

IWG L4-139 71.2cde 56.0c 91.98e 11.66cd 

IWG L4-154 71.4cd 48.0c 61.70k 6.05hi 

IWG L4-157 70.3efg 38.0c 84.10ef 8.40efg 

IWG L4-159 69.5ghi 64.5c 143.92d 13.46c 

IWG L4-160 70.3efg 42.0c 71.57ghij 6.34ghi 

IWG L4-172 68.9hi 49.5c 79.00fg 8.42efg 

 

 

 

 

 

 

 

 

 

 

* Lowercase letters in each column indicate significant differences among samples 

according to the Tukey-Kramer HSD means comparison test (P ≤ 0.05), where n=2 for 

farinograph data and n=5 for Kieffer data. 
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Figure 14. Farinograms of hard red wheat, Arapahoe, bulk IWG, and IWG L4-1 display 

that the wheat controls (hard red wheat and Arapahoe) have greater stability than bulk 

IWG and IWG L4-1 samples. 

 

 

Kieffer dough and gluten extensibility rig was used to characterize dough 

extensibility (mm) and its resistance to extension (mN). The dough resistance to 

extension is the measure of the force needed to break the dough. Dough resistance to 

extension measured by the force generated against the hook attached to the texture 

analyzer is shown in Figure 7. Dough resistance to extension is an indicator of dough 

strength. Extensibility, also a measure of dough strength, is the distance at which the 

dough breaks apart - a measure of dough deformation before it ruptures (Wang et al., 

2004).  
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Arapahoe had the highest resistance to extension and highest extensibility, 

followed by hard red wheat, bulk IWG, and IWG experimental lines (Table 4). These 

results were expected knowing that wheat controls have a balanced gluten forming 

proteins profile. The balance of both glutenin and gliadin needed for gluten network 

formation (Žilić, 2013) in wheat controls allowed the gluten network to form and result in 

a stable, high quality dough. The controls’ doughs were more elastic and extensible and 

therefore more stable when compared to all IWG samples. The bulk IWG sample had the 

highest relative percent of unextractable HMWPP (Table 3) when compared to the rest of 

the IWG samples. The comparatively higher percent of HMWPP in bulk IWG may have 

contributed to its relatively better functionality.  

Dough rheological properties are also dependent on the protein secondary 

structures. The importance of both -sheets and -turns for dough elasticity and gas 

holding capacity has been reported (Mejia et al., 2007; Bock, Connelly, & Damodaran, 

2013; Bock & Damodaran, 2013; Quayson, Marti, Bonomi, Atwell, & Seetharaman, 

2016). Whole wheat flour dough generally contain more -sheets, while whole IWG flour 

dough contain more random coil (Marti et al., 2016). Further work to understand protein 

molecular interactions in IWG-based dough is needed. Enhancement of protein 

interactions in IWG dough systems using dough conditioners such as vital wheat gluten, 

ascorbic acid, and enzymes is currently underway.  
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3.2.2 Starch Pasting Properties 

Starch pasting properties of the samples were determined using rapid visco analyzer 

(RVA). Indices such as starch pasting temperature, peak viscosity, hold viscosity, 

breakdown, final viscosity and setback were obtained (Table 5). These indices are 

indicative of the samples’ starch functionality.  

Differences in the pasting profiles were observed among the samples (Figure 15, 

and Figure 23 in Appendix G). The pasting temperatures of hard red wheat and Arapahoe 

were significantly higher than that of IWG experimental line #1 but not higher than that of 

bulk IWG. Pasting temperatures ranged from 56.4°C to 60.3°C for IWG experimental lines. 

The pasting temperature, which depicted the temperature at which the first detectable 

viscosity was measured, is strongly related to the ability of starch granules to imbibe water. 

Thus, factors that affect the ability of starches to absorb water, such as ratio of amylose to 

amylopectin, concentration of starch, and the presence of lipids and other components do 

affect the pasting temperature and other pasting properties of starches (Jane et al., 1999; 

Sasaki, Yasui, & Matsuki, 2000). As discussed earlier, the protein, fat, and ash contents of 

the IWG samples were higher than those of hard red wheat and Arapahoe (Table 2). 

Interestingly, bulk IWG, which had the highest pasting temperature, also had the highest 

fat content. This observation is consistent with the fact that the presence of lipids results in 

the formation of starch-lipid complexes that protect the integrity of the starch granules 

resulting in higher pasting temperatures (Kaur & Singh, 2000).  
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Table 5. Starch pasting properties of hard red wheat and Arapahoe controls, bulk IWG, and 16 IWG experimental lines. 

              

Sample 

Pasting 

Temperature 

(°C) 

Peak 

Viscosity 

(cP) 

Hold 

Viscosity 

(cP) 

Breakdown Value 

(Peak Viscosity-

Hold Viscosity) (cP) 

Final 

Viscosity 

(cP) 

Total Setback (Final 

Viscosity - Hold 

Viscosity) (cP) 

Hard Red Wheat 65.6b* 2,299.3a 1,334.3a 965.0 2,804.0a 1,469.7 

Arapahoe 65.1b 1,964.0b 967.7b 996.3 2,025.3b 1,057.7 

Bulk IWG 79.6a 752.7de 678.7c 74.0 1,565.0c 812.3 

IWG L4-1 59.6cd 496.7ij 210.7l 286.0 472.3j 261.7 

IWG L4-3 59.6cd 236.0k 132.7m 103.3 181.0k 48.3 

IWG L4-29 59.2cd 771.0cde 367.7h 403.3 870.0f 502.3 

IWG L4-32 59.8cd 788.0cd 435.3g 352.7 1,009.7e 574.3 

IWG L4-57 57.4cd 735.7def 470.3fg 265.3 1,010.0e 539.7 

IWG L4-72 58.7cd 688.3f 520.0e 168.3 1,098.0e 578.0 

IWG L4-84 56.4d 585.7g 323.7hi 262.0 676.0hi 352.3 

IWG L4-85 59.0cd 709.7ef 423.3g 286.3 891.3f 468.0 

IWG L4-103 60.3c 437.7j 227.0kl 210.7 431.0j 204.0 

IWG L4-105 59.8cd 684.3f 358.7h 325.7 802.3fg 443.7 

IWG L4-139 60.1c 576.3gh 343.7h 232.7 720.0ghi 376.3 

IWG L4-154 58.3cd 549.7ghi 274.3jk 275.3 642.0i 367.7 

IWG L4-157 59.3cd 522.7hi 288.3ij 234.3 637.3i 349.0 

IWG L4-159 58.4cd 536.3ghi 321.3hij 215.0 746.0gh 424.7 

IWG L4-160 58.3cd 820.7c 623.0d 197.7 1,404.0d 781.0 

IWG L4-172 58.1cd 753.3de 487.0ef 266.3 1,060.0e 573.0 

* Lowercase letters in each column indicate significant differences among samples according to the Tukey-Kramer HSD means 

comparison test (P ≤ 0.05), n=3.
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Figure 15. Starch pasting properties by rapid visco analyzer (RVA) for hard red wheat 

and Arapahoe controls, bulk IWG, and IWG L4-1. PT stands for pasting temperature 

(°C). Viscosities are expressed in centipoise (cP). 
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The peak, hold, and final viscosities of the wheat controls were significantly (P ≤ 

0.05) higher than those of the IWG samples (Table 5). Hard red wheat had the highest 

viscosity values, followed by Arapahoe, and IWG samples. This observation could be 

attributed to the presence of more protein and less starch content in the IWG samples 

(Table 2, Figure 9). Lim, Lee, Shin, & Lim (1999) found a similar protein effect, where 

protein content negatively correlated with peak viscosity but positively correlated with 

pasting temperature. Protein has intact disulfide bonds that can form a matrix around and/or 

within the starch granules, making it harder to break the starch granules. Thus, the 

molecular structure of protein can prevent swelling, decrease viscosity, and increase 

pasting temperature (Juliano, Onate, & del Mundo, 1965; Hamaker & Griffin, 1993). 

Moreover, it was expected that viscosity values for IWG samples would be lower than 

those of the wheat controls simply because IWG samples contain less starch than the wheat 

controls (Figure 9). 

The breakdown value demonstrates the stability of the starch granules (Saunders 

et al., 2011). The breakdown value indicates the leaching of the amylose and amylopectin 

out of the starch granule under heat and thus, the higher the breakdown value, the less 

stable the starch granules are. The wheat controls’ starch granules were significantly less 

stable than those of the IWG samples (Table 5). The relatively high stability of IWG 

starch granules compared to that of wheat, provided new information regarding IWG 

starch granule characteristic. Other than protein and lipid content that can affect starch 

pasting profiles, the amylose to amylopectin ratio also plays a crucial role in determining 

the final viscosity and total setback values of the sample (Jane et al., 1999). Final 
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viscosity and total setback values as measured by the RVA test are affected by the rate of 

retrogradation. Retrogradation involves intermolecular interactions between amylose and 

amylopectin molecules (Tang & Copeland, 2007). During retrogradation, amylose 

molecules reassociate forming double helices, while amylopectin molecules recrystallize 

(Singh et al., 2003; Alcázar-Alay & Meireles, 2015). Retrogradation is a process that 

takes an extended period of time to complete. While amylose can complete its 

retrogradation process in hours, amylopectin may take days. Higher amylose content will 

therefore result in products with firmer gels upon retrogradation (Thomas & Atwell, 

1999; Tang & Copeland, 2007). Thus, the higher amylose content found in wheat 

controls (Figure 9) contributed to its higher final viscosity and total setback results.  

Building upon previous studies, this thesis contributes to the understanding of the 

starch pasting properties of IWG samples and how they differ when compared to that of 

the wheat controls. However, starch structures and granules of samples were not 

analyzed, thus causation statements are restricted. Moreover, because the study was 

conducted using flour instead of pure starch, the understanding of starch behavior among 

the samples was also limited. That said, starch pasting profiles can still be used to 

partially explain the starch functionality of the various samples. The trends among the 

flour samples illustrated the samples’ behavior upon heating and cooling, which are 

important characteristics to evaluate for commercial applications of IWG on a large scale.
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3.3 Bread Baking Quality 

 

The bread baking quality of IWG samples was compared to that of the wheat 

controls. Baking quality was assessed by determining bread specific volume, bread 

height, and bread firmness. While IWG had higher protein content than the wheat 

controls, IWG samples were deficient in HMWG, thus it was expected that IWG bread 

would be denser and have a lower specific volume than the controls.  

Bread baking quality data confirmed these expectations with two exceptions 

(Figure 16, Table 6). The first exception was that the specific volume of hard red wheat 

bread was lower than expected. Hard red wheat bread had a specific volume similar to 

that of some of the IWG experimental lines. A factor that may have contributed to this 

unexpected result was the damaged starch content of the sample (Figure 11). Starch 

damage negatively impacted bread volume because it has a higher water absorption 

capacity, providing more competition with protein and fiber for water. The higher starch 

damage content also limited the development of the gluten network, again, resulting in a 

lower specific volume, similar to the observations reported by Barrera et al. (2007). 

Williams (1967) showed that starch damage content positively correlates with the 

hardness of the kernel. The hard red wheat starch damage content was highest among all 

of the samples and 2% higher than that of the other wheat control, Arapahoe (Figure 11), 

suggesting that hard red wheat had the hardest kernel among the samples.  
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Figure 16. Bread slices of hard red wheat and Arapahoe controls, bulk IWG, and IWG 

experimental lines. 
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Table 6. Bread quality parameters for hard red wheat and Arapahoe controls, bulk IWG, 

and IWG experimental lines. 

 

Sample 
Specific Volume 

(mL/g) 

Bread Height 

(cm) 

Bread Firmness 

(g) 

Hard Red Wheat 2.00b* 3.81b 5.71c 

Arapahoe 2.34a 4.13a 5.74bc 

Bulk IWG 1.58gh 3.26d 6.05a 

IWG L4-1 1.97bc 3.54c 6.01ab 

IWG L4-3 1.96bcd 3.50cd 6.12a 

IWG L4-29 1.61gh 3.31cd 5.88abc 

IWG L4-32 1.91bcd 3.31cd 5.98abc 

IWG L4-57 2.02b 3.32cd 5.95abc 

IWG L4-72 1.86bcde 3.35cd 5.92abc 

IWG L4-84 1.80cdef 3.39cd 5.98abc 

IWG L4-85 1.40i 3.33cd 5.95abc 

IWG L4-103 1.63fgh 3.23d 5.95abc 

IWG L4-105 1.72efgh 3.34cd 5.89abc 

IWG L4-139 1.87bcde 3.44cd 5.91abc 

IWG L4-154 1.67fgh 3.40cd 5.92abc 

IWG L4-157 1.55hi 3.35cd 5.89abc 

IWG L4-159 1.75defg 3.45cd 5.95abc 

IWG L4-160 1.63fgh 3.31cd 5.93abc 

IWG L4-172 1.76defg 3.25d 6.07a 

 

 

 

 

 

 

* Lowercase letters in each column indicate significant differences 

among samples according to the Tukey-Kramer HSD means comparison 

test (P ≤ 0.05), n=2. 
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The second exception to the predicted outcomes was the specific volume of the 

bread baked from the bulk IWG sample. When comparing bulk IWG with the rest of the 

IWG experimental lines, bulk IWG had a lower bread specific volume (Table 6), even 

though it contained relatively higher percent of HMWPP (Table 3) and showed better 

rheological properties (Table 4). Because bulk IWG had the smallest kernel size when 

compared to the rest of the samples (Table 18, Appendix D), it was also one of the 

samples with the highest dietary fiber content (Figure 8). As previously mentioned, the 

higher dietary fiber content of bulk IWG (especially the insoluble dietary fiber), may 

negatively affect bread volume (Romano et al., 2011). Furthermore, bulk IWG also had 

the lowest amount of starch damage when compared to the rest of the samples (Figure 

11). Even though the amount of starch damage can negatively affect bread volume, a 

sufficient amount is necessary to facilitate yeast fermentation during baking (Wang, Yu, 

Xin, Wang, & Copeland, 2017). Thus, bulk IWG seed size, fiber content, and the amount 

of starch damage may potentially explain the low specific volume of bulk IWG sample. 

However, it should be noted that the bread baking process involves many complex 

chemical reactions and interactions, and only some are discussed in this research project. 

Thus, further studies focused on the samples’ molecular interactions need to be 

conducted to better understand their effect on bread baking quality.  

 Although hard red wheat had a lower than expected specific volume (similar to 

that of IWG samples), it had desirable rising capability unlike IWG samples. While 

Arapahoe had the highest bread height, it was followed by hard red wheat. As discussed 

previously, hard red wheat had a similar specific volume to the IWG samples. The 
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significantly higher height of hard red wheat bread compared to the IWG samples 

demonstrated its superior rising capability. Due to the gluten network of the hard red 

wheat dough, the bread made from hard red wheat was able to rise more than the bread 

made from the IWG samples. IWG samples expanded sideways rather than upwards, 

which may be due to the higher gliadins to glutenins ratio in IWG than in the wheat 

controls (Figure 12, Table 3). Since gliadins are responsible for viscosity and 

extensibility, while glutenins are responsible for elasticity and dough strength (Žilić, 

2013), IWG dough was expected to be more viscous than elastic. This phenomenon 

might explain the sideways expansion of IWG bread.  

In addition to specific volume and bread height, bread firmness was also 

measured. The bread firmness values among the samples were relatively similar, though 

there were a few outliers (Table 6). While amylose can complete its retrogradation 

process in hours (during baking), the retrogradation of amylopectin may take days (over 

storage). A higher amylose content in the sample will result in products with higher bread 

firmness upon baking (Thomas & Atwell, 1999; Tang & Copeland, 2007). In this 

research, bread firmness was only measured immediately after baking but not over 

storage. Since the amount of flour used to bake each sample was relatively small (25g), 

the effect of amylose/amylopectin content on bread firmness may not be deduced. 

Additionally, fiber, protein, and starch competed for water. Thus, the higher fiber content 

in IWG samples contributed to the firmer texture of IWG bread (Table 6). The influence 

of bread firmness was also discussed by other researchers (Abdul-Hamid & Luan, 2000; 

Gómez et al., 2003).  
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As stated previously, bread baking is affected by many factors and involves many 

complex mechanisms. Because of limited sample availability, bread baking in this 

research project was done on a small scale, using 25g of flour for each loaf. Thus, any 

differences in the results might have been clearer using a larger scale experiment. As 

supported by the data gathered from this research as well as previous research, the 

amylopectin and damaged starch content negatively affected bread specific volume. 

IWG’s high gliadin and fiber content, as well as its deficiency of polymeric HMWG 

resulted in denser breads with low rising ability when compared to that of wheat controls. 

IWG’s high gliadin content may explain its ability to expand but not rise. IWG’s high 

fiber content may have also contributed to its higher bread firmness. Product applications 

that do not require rising properties such as pita bread, cookies, or pancakes should be 

explored as the next step for IWG product development.  
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4. Overall Conclusions, Implications, and Recommendations 
 

 Results of this work demonstrated the impact the chemical composition of IWG 

on its functionality and baking quality as compared to wheat. The bran to endosperm 

ratio had a direct impact on the grain’s chemical composition. The higher bran to 

endosperm ratio of IWG as compared to wheat resulted in higher protein, ash, and fiber 

contents, but a lower starch content.  

The profile of gluten forming proteins in IWG samples was markedly different 

than that of the wheat controls. IWG samples were deficient in HMWG as compared to 

the wheat controls. Wheat controls were higher in HMWPP, while the IWG samples were 

higher in albumins and globulins. While IWG had a higher overall protein content than 

wheat, the types of protein present in IWG samples did not constitute an adequate amount 

of the functional proteins necessary to support desirable baking qualities. 

IWG samples were lower in starch content than wheat controls, but they had 

similar amylose to amylopectin ratios. The amylose/amylopectin molecular weight data 

suggested similar molecular weight distribution among the samples with one exception; 

Arapahoe had the highest amylopectin molecular weight.  Starch content, amylose and 

amylopectin ratio, and starch’s molecular weight distribution affected the starch pasting 

properties of the samples. The higher starch content in the wheat controls contributed to 

superior pasting properties as compared to the IWG samples. The amount of damaged 

starch was also higher in the wheat controls, indicating that the wheat controls had harder 

kernels than the IWG samples. Damaged starch absorbs more water than intact starch 

granules and thus had a direct impact on functionality and baking quality results. 
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IWG samples were higher in dietary fiber content than the wheat controls. The 

ratio between soluble and insoluble dietary fiber was higher for the wheat controls. The 

high water absorption capacity of fiber resulted in competition with protein and starch for 

water in IWG samples. Accordingly, higher fiber content in IWG negatively affected 

bread specific volume and bread height compared to wheat controls, but facilitated 

moisture retention over storage. 

            The functional properties, namely dough rheology and starch pasting properties of 

wheat controls were superior to those of the IWG samples. Differences in the dough 

rheology results were partially attributed to the wheat’s glutenins and gliadins protein 

composition. These proteins were responsible for the wheat’s desirable gluten network 

and thus, dough strength and viscoelasticity. Since HMWG is important for the dough’s 

elasticity and gas holding capacity, IWG’s rising capability was comparatively inferior to 

that of the wheat controls. The wheat dough was more stable, more resistant to breakage, 

and more extensible than the IWG dough. However, further research to determine protein 

molecular interactions and secondary structures needs to be conducted to better 

understand their impact on dough rheology and baking quality.  

 As stated above, the starch pasting properties of the wheat controls were superior 

to those of IWG samples. Starch pasting properties illustrated IWG’s and wheat’s starch 

behavior upon heating and cooling treatments. The amount of fat positively correlated 

with the starch pasting temparture due to the amylose-lipid complexes that prevent starch 

swelling. The data gathered suggested that the starch present in the wheat controls was 

superior as a viscosity builder compared to that of IWG. 
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 Chemical composition and functional properties were used to interpret differences 

in the bread quality of IWG samples as compared to the wheat controls. IWG bread 

samples had a lower specific volume than that of Arapahoe, but a similar specific volume 

to that of hard red wheat. While specific volume analysis yielded mixed results, the wheat 

controls had a better rising capability than the IWG samples. Additionally, IWG bread 

samples were firmer than the wheat controls when measured immediately after baking, 

which is attributed to higher fiber content. Further work is needed to enhance the baking 

quality of IWG, possibly through the use of dough conditioners.  

While the data gathered from this research provides an abundance of new 

information, additional studies are needed. First, the quantification of HMWG vs. 

albumins and globulins aggregates in the HMWPP fraction would be useful in 

determining the direct effects of HMWG on functionality and as such, product 

application. Second, analysis of starch pasting properties using isolated starch rather than 

flour and determination of starch granules’ structures would provide a clearer picture of 

the samples’ starch characteristics and possible applications. Third, given that the results 

indicated a negative effect of high fiber content on functionality and baking quality, it 

would be ideal to determine the effect of refinement on enhancing the functionality. 

Finally, given the noted characteristics of IWG, it is essential to investigate its use in 

other food products. Specifically, since IWG samples are deficient in HMWG, other 

product applications that do not require rising properties, such as pita bread, pancakes, 

and cookies, should be explored as potential food product applications for IWG.  
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 Overall, this work provided valuable information regarding the chemical 

compostition, functionality, and baking quality of IWG. While it was clear that seed size 

impact composition, results showed that there are no major differences among the 16 

experimental lines of IWG, and no superior line was identified. However, IWG 

experimental lines had different HMWG bands, suggesting that it may be possible to 

improve dough strength and loaf volume by breeding. The information gathered 

highlighted the potential of IWG for use as a food source. Finally, the data collected will 

assist breeders in their current screening and future breeding efforts for the development 

of IWG lines suitable for food applications.  
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Appendix A. Amylose/Amylopectin Ratio Chromatogram 
 

 

 
 

Figure 17. Hard Red Wheat (HRW) chromatogram for amylopectin (peak 1) and 

amylose (peak 2).  
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Appendix B. Soluble/Extractable and Insoluble/Unextractable Protein 

Example Chromatograms 
 
 

 
 

 

Figure 18. Hard Red Wheat (HRW) chromatogram for HMWPP (F1, extends from 3.5-

5.5 min); LMWPP (F2, extends from 5.5-5.9 min); ω-gliadin (F3, extends from 5.9-6.2 

min); α-, β-, and γ-gliadins (F4, extends from 6.2-6.9 min); albumins and globulins (F5, 

extends from 6.9-8.0 min). 
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Figure 19. Hard Red Wheat (HRW) chromatogram for HMWPP (F1, extends from 3.5-

5.5 min); LMWPP (F2, extends from 5.5-5.9 min); ω-gliadin (F3, extends from 5.9-6.2 

min); α-, β-, and γ-gliadins (F4, extends from 6.2-6.9 min); albumins and globulins (F5, 

extends from 6.9-8.0 min). 
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Appendix C. Analysis of Variance (ANOVA) Summary Tables for 

Determining Significant Difference Among Samples 
 

 

Table 7. Analysis of variance of proximate analysis for hard red wheat and Arapahoe 

controls, bulk IWG, and IWG experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Protein Sample 18 16.750 966.880 0.000 

 Error 38 0.017   

      
Fat Sample 18 0.709 51.278 0.000 

 Error 33 0.014   

      
Ash Sample 18 0.135 22.192 0.000 

 Error 38 0.006   

      
Moisture Sample 18 0.583 4.004 0.000 

  Error 36 0.146     

 

 

 

Table 8. Analysis of variance of total dietary fiber for hard red wheat and Arapahoe 

controls, bulk IWG, and IWG experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Total dietary fiber 

 

Sample 18 2.647 13.200 0.000 

Error 19 0.201     

 

 

 
Table 9. Analysis of variance of total starch for hard red wheat and Arapahoe controls, 

bulk IWG, and IWG experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Total starch 

 

Sample 18 37.532 32.638 0.000 

Error 38 1.150     
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Table 10. Analysis of variance of starch damage for hard red wheat and Arapahoe 

controls, bulk IWG, and IWG experimental lines. 

 

Sample 

Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Starch damage Sample 18 12.537 327.390 0.000 

  Error 37 0.038     

 

 

 

Table 11. Analysis of variance of molecular weight distribution of amylose and 

amylopectin for hard red wheat and Arapahoe controls, bulk IWG, and IWG 

experimental lines. 

 

Sample 

Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Amylose MW Sample 18 6.063E+11 12,338 0.000 

 Error 38 4.914E+07   

      
Amylopectin 

MW Sample 18 3.148E+13 57,890 0.000 

  Error 38 5.439E+08     
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Table 12. Analysis of variance of quantitative distribution of extractable protein fractions 

based of the total area for hard red wheat and Arapahoe controls, bulk IWG, and IWG 

experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

HMWPP Sample 18 3.274 13.176 0.000 

 Error 35 0.248   

      

LMWPP Sample 18 3.259 77.339 0.000 

 Error 35 0.042   

      

ω-gliadins Sample 18 0.330 16.112 0.000 

 Error 35 0.020   

      
α-, β-, and γ- 

gliadins Sample 18 8.101 11.074 0.000 

 Error 35 0.732   

      
Albumins and 

Globulins Sample 18 7.260 40.513 0.000 

  Error 35 0.179     
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Table 13. Analysis of variance of quantitative distribution of unextractable protein 

fractions based of the total area for hard red wheat and Arapahoe controls, bulk IWG, and 

IWG experimental lines. 

 

 

 

 

Table 14. Analysis of variance of farinograph results for hard red wheat and Arapahoe 

controls, bulk IWG, and IWG experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Water absorption 

corrected for default 

moisture content 

(14%) 

Sample 18 7.686 120.310 0.000 

Error 18 0.064   

      

Stability Sample 18 34,942 34.368 0.000 

  Error 18 1,017     

 

 

 

 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

HMWPP Sample 18 19.017 93.858 0.000 

 Error 35 0.203   

      

LMWPP Sample 18 1.652 33.845 0.000 

 Error 35 0.049   

      

ω-gliadins Sample 18 0.420 17.667 0.000 

 Error 35 0.024   

      

α-, β-, and γ- gliadins Sample 18 4.890 6.567 0.000 

 Error 35 0.745   

      
Albumins and 

Globulins Sample 18 0.876 6.718 0.000 

  Error 35 0.130     
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Table 15. Analysis of variance of Kieffer results for hard red wheat and Arapahoe 

controls, bulk IWG, and IWG experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Resistance to extension Sample 18 50,981 3688.7 0.000 

 Error 76 14   

      

Extensibility Sample 18 99.460 101.29 0.000 

  Error 76 0.982     

 

 

Table 16. Analysis of variance of starch pasting profiles for hard red wheat and 

Arapahoe controls, bulk IWG, and IWG experimental lines. 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Pasting temperature Sample 18 78.536 54.789 0.000 

 Error 38 1.433   

      

Peak viscosity Sample 18 748,141 1872.8 0.000 

 Error 38 399   

      

Hold viscosity Sample 18 243,421 955.8 0.000 

 Error 38 255   

      

Final viscosity Sample 18 1,108,295 1092.8 0.000 

  Error 38 1,014     
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Table 17. Analysis of variance of bread quality parameters for hard red wheat and 

Arapahoe controls, bulk IWG, and IWG experimental lines. 

 

Sample Analysis 

Source of 

Variation 

Degrees of 

Freedom 

Mean 

Square F Sig 

Specific volume Sample 18 0.092 45.249 0.000 

 Error 18 0.002   

      

Bread height Sample 18 0.093 27.461 0.000 

 Error 18 0.003   

      

Bread firmness Sample 18 0.018 3.107 0.010 

  Error 18 0.006     
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Appendix D. Seed Size Comparison of IWG Samples 
 

 

Table 18. Intermediate Wheatgrass Samples Seed Size 

 

Samples 

Seed Size 

(g/1000 seeds) 

Bulk IWG 3.90 

IWG L4-1 8.10 

IWG L4-3 8.70 

IWG L4-29 7.75 

IWG L4-32 7.40 

IWG L4-57 7.57 

IWG L4-72 6.56 

IWG L4-84 6.93 

IWG L4-85 7.24 

IWG L4-103 8.76 

IWG L4-105 7.30 

IWG L4-139 7.45 

IWG L4-154 7.84 

IWG L4-157 7.19 

IWG L4-159 7.10 

IWG L4-160 7.37 

IWG L4-172 7.49 
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Appendix E. Soluble/Extractable and Insoluble/Unextractable Protein Molecular Weight Distribution 
 

 
Figure 20. Soluble/extractable protein molecular weight distribution by SE-HPLC for IWG experimental lines L4- (a) 3,29, 32;             

(b) 57,72,84; (c) 85,103,105; (d) 139, 154, 157; and (e) 159, 160, 172. 
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Figure 21. Insoluble/unextractable protein molecular weight distribution by SE-HPLC for IWG experimental lines L4- (a) 3,29, 32;       

(b) 57,72,84; (c) 85,103,105; (d) 139, 154, 157; and (e) 159, 160, 172.  
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Appendix F. Farinograms of IWG experimental lines 
 

 
Figure 22. Farinograms of IWG experimental lines L4- (a) 3,29, 32; (b) 57,72,84; (c) 85,103,105; (d) 139, 154, 157; and (e) 159, 160, 172.  
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Figure 23. Starch pasting properties performed by rapid visco analyzer for IWG experimental lines L4- (a) 3,29, 32; (b) 57,72,84; 

(c) 85,103,105; (d) 139, 154, 157; and (e) 159, 160, 172. 

Appendix G. Starch pasting profiles of IWG experimental lines 


