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and QR Factorizations
G. W. Stewart

ABSTRACT

In this paper error bounds are derived for a first order expansion of
the LU factorization of a perturbation of the identity. The results are
applied to obtain perturbation expansions of the LU, Cholesky, and
QR factorizations.

1. Introduction

Let A be of order n, and suppose that the leading principal submatrices of A are
nonsingular. Then A has an LU factorization

A= LU, (1.1)

where L is lower triangular U is upper triangular. The factorization is not unique;
however, any other LU factorization must have the form

A = (LD)(D'V),

where D is a nonsingular diagonal matrix. Thus, if the diagonal elements of L (or
U) are specified, the factorization is uniquely determined.

The purpose of this note is to establish a first order perturbation expansion for
the LU factorization of A along with bounds on the second order terms. At least
three authors have considered the perturbation of LU, Cholesky, and QR factor-
izations [1,2,4]. The chief difference between their papers and this one is that the
former treat perturbations bounds for the decompositions in question, while here
we treat the accuracy of a perturbation expansion.

Throughout this note || - || will denote a family of absolute, consistent matrix
norms; 1.e.,

A1 < (Bl = |lAll <|IBI,
and

[AB| < [IA]l|| Bl

whenever the product AB is defined. Thus the bounds of this paper will hold for
the Frobenius norm, the 1-norm, and the oo norm, but not for the 2-norm (for
more on these norms see [3]).



2 The Perturbation of Matrix Factorizations

2. Perturbation of the Identity

The heart of this note is the observation that the LU factorization of the matrix
I + F, where F' is small, has a simple perturbation expansion. Specifically, write

F = F, + Fy,
where Fy, is strictly lower triangular and Fy is upper triangular. Then

and the product of the unit lower triangular matrix I+ Fy, and the upper triangular
matrix I + Fy reproduces I + F up to terms of order || F||®. The following theorem
shows that we can move these lower order terms to the left-hand side of (2.1) to
get an LU factorization of I + F'.

Theorem 2.1. If )

F||l <=

17l <5
then there is a strictly lower triangular matrix Gy, and an upper triangular matrix
Gy satisfying

21 F||2
1Gr + Gul| < Ll
1= 2|[F| +/1— 4] F]

such that
(I+FL+GL)(I+Fu+Gu)=I+F. (2.2)

Proof. From (2.2) it follows that the perturbations Gp, and Gy must satisfy
GL + Gy = —(FLFU + LGy + GLFy + GLGU).

Starting with G}, = 0 and GY{; = 0, generate strictly lower triangular and upper
triangular iterates according to the formula

GE™ + G = —(FLFy + FLGY, + GEFy + GEGE). (2.3)
Because || - || is absolute,
IGEILIGE I < IGE + G-
Hence if we set ¢ = || F||, 7o = 0, and define the sequence {y;} by

Yk+1 :¢2+2¢7k+7133 k:()’]-"--’ (24)
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then ||GF + G|l < k.

Now the right hand side of (2.4) regarded as a function of 4; is a parabola
with y-intercept ¢? > 0. This parabola will intersect the line y = 4 provided
the discriminant of the equation v = ¢? + 2¢vy + 42 is nonnegative; i.e., provided
¢ < %. In this case is is easy to verify graphically that the sequence vx converges
monotonically the smallest point of intersection; i.e., to

_ 2¢”
T g 114
which is therefore an upper bound on ||G¥ + G§|| for all k. It remains only to

show that the sequence GF + G¥; converges.
From (2.3) it follows that

(G + G — (GE + GE) = FL(GE — GE) + (GI ™' — GE) Fu +
(GE™' = GGG + GE(GE™ — GY).

Recalling that || - || is absolute, we have
I(GEF + G5) — (GE + GOl < 2(4 + ) II(GL + Go) — (G + GG )]l-

If 2(¢ + ) < 1, which is certainly true if ¢ < i, then the series of differences is
majorized by a geometric series, and the sequence converges. B

There are some comments to be made on this theorem. In the first place
the first order expansion is particularly simple: split F' into its lower and upper
triangular parts. We will take advantage of this simplicity in the next section,
where we will derive perturbation expansions and asymptotic bounds for the LU,
Cholesky, and QR factorization

The condition that || F|| < § is perhaps too constraining, since the LU factor-
ization of I + F' exists provided that ||F|| < 1. However, as ||F'|| approaches one,
it is possible for the factors in the decomposition to grow arbitrarily, in which case
the bounds on the second order terms must also grow. Thus the more restrictive
condition can be seen as the price we pay for bounds that do not explode.

As | F|| goes to zero, the bound quickly assumes the asymptotic form

|GL + Gu|| < 2||F||%

1.e., the order constant for the second order terms is essentially one. If we write
this in the form
[GL + Gyl

S 2[1F,
£
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we see that the relative error in the first order expansion is of the same order as
the perturbation itself, with order constant two.

Finally, Theorem 2.1 treats an LU decomposition of I + F' in which L is unit
lower triangular. In analyzing symmetric factorizations, we may want to take
L = UT. In this case, we may work with slightly different matrices, illustrated
below for n = 3:

) 2o 0 0 R 3fu fz fis
Fo=| fa 3f2 0 and Fy = 0 3fe fa (2.5)
fsr fa 3 fss 0 0 3/

If G1 and Gy are defined analogously, the proof of Theorem 2.1 goes through
mutatis mutandis. For these matrices a useful inequality is

~ ~ 1
L lles [[Fulle < %IIFHF, (2.6)

where || - ||r denotes the Frobenius norm.

3. Applications

In this section we will apply the results of the previous section to get perturbation
expansions for the LU, the Cholesky, and the QR decompositions. We will present
only first order terms, since bounds for the second order terms can be derived from
Theorem 2.1, and since the rate of convergence of these bounds to zero, suggests
that the first order expansions will be satisfactory for all but the most delicate
work. We will also derive asymptotic bounds for the first order terms.

Our first application is to the problem we began with: the perturbation of the
LU decomposition. Let A have the LU decomposition (1.1) and let A = A + E.
Then

L7AU =1+ L 'EU' =+ F.

Let Fy, and Fy be as in the last section. Then I + F = (I + F1,)(I + Fy) is the
first order approximation to the LU factorization of I + F'. It follows that

A= LI+ R)(I+ Fy)U,

is the first order approximation to the LU factorization of A. Note that because

Fy, is unit lower triangular, this expansion preserves the scaling of the diagonal
elements of L.
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By taking norms we can derive the following asymptotic perturbation bound

IE= LI _y —gyrroa gL _ o B

o~ IL=HHIT Al Al = kLu(A) R (3.1)
Thus sy(A) = ||[L7Y|||U]|||A|| serves as a condition number (or rather an upper
bound on a condition number) for the LU decomposition of A. When A is square,
this number is never less than the usual condition number x(A) = ||A||||A7}|| and
can be much larger. Bounds on the U factor can be derived similarly.

An unhappy aspect of the bound (3.1) is that it overestimates the perturbation

of the leading part of the LU factorization. Specifically, if we partition

An A \ _(LIn O Uy Uy,

Ay Apn Ly Lo 0 Uy )’
then Ay = L1;U;1 and the condition number for this part of the factorization is
kpu(A11), which is in general smaller than k1,y(A). The perturbation in Lo, can

then be estimated from the equation Ly = Ay U;'.!
If Ais symmetric and positive definite, then A has the Cholesky factorization

A=RTR,

where R is upper triangular. Let A = A+ E, where E is symmetric. Setting, as
above, F = R"TER™! and defining Fy as in (2.5), we have

R I+ Fu)R.
By (2.6) and the consistency of the 2-norm with the Frobenius norm, we have

HR — R“F < 1 -T
= <R
Bl ~ Il

1An alternative approach is to set
- (L O
= 7)

o1 An 1 (1
L (Azl)U“~(0)

The proof of Theorem 2.1 can easily be adapted to give a bound on the perturbation of the
LU factorization of a perturbation of J and hence on the perturbation of the LU factorization

o (4 )

ra(A) | Ellr
V2 Al

1B~ 2l Elle =

so that

J.
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where k2(A) = ||A]|2||A7Y||2 is the usual condition number in the 2-norm.

Finally, let A, now rectangular, be of full column rank, and consider the
QR factorization

A=QR,

where @) has orthonormal columns and R is upper triangular with positive diagonal
elements. The key to the derivation of the bounds is the equation

ATA = RTR;

i.e., R is the Cholesky factor of ATA.

As usual, let A = A+ E, and let E4 be the orthogonal projection of E onto
the column space of A. Then ATE = ATE . It follows that

ATA> ATA+ ATE, + ESA=ATA+ F.
Hence with Fy as above, we have
R = (I+ Fy)R.

In particular,

[ [ Eallr
1|2 1Al °

where k3(A) = ||R|2||R™Y||2. Since Q@ = AR™!, we have

5 \/élﬂz(A)

Q~Q( - Fy)+ ER™,
from which it follows that

V2| Eallr + |1 E|lr

”Q - Q”F S K’?(A) ||A”2

(3.2)

Asymptotically, the bounds derived in this section agree with the bounds in
[1,4], with the exception of (3.2), which is a little sharper owing to the presence
of || Eallr.

Acknowledgements. This paper has been much improved by the suggestions
of Jim Demmel, Nick Higham, and the referees.
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