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Mathematics and the Sciences 

1. Introduction 

The principal thrust of this essay is to describe the current state of in­
teraction between mathematics and the sciences and to relate the trends 
to the historical development of mathematics as an intellectual discipline 
and of the sciences as they have developed since the seventeenth century. 
This story is interesting in the context of the history of present-day 
mathematics because it represents a shift in the preconceptions and stereo­
types of both mathematicians and scientists since World War II. 

The notion that significant mathematical and scientific advances are 
closely interwoven is not particularly new. The opposing notion (asso­
ciated, with whatever degree of justice, with the name of Bourbaki) was 
never as fashionable, at least among working mathematicians, as in the 
two decades immediately after World War II. The situation has changed 
significantly during the past decade and had begun turning even earlier. 
It turned not only among mathematicians, but even more significantly in 
such sciences as physics. The frontier of mathematical advance was seen 
again to be in forceful interaction with the basic problems and needs of 
scientific advance. 

This is an essay on significant trends in mathematical practice. The rela­
tions between the history and philosophy of mathematics as usually con­
ceived and mathematical practice have often been very ambiguous. In part, 
this has resulted from the efforts of some historians and philosophers to 
impose a framework of preconceptions upon mathematical practice that 
had little to do with the latter. In part, however, it resulted from the diver­
sity of mathematical practice, to lags in its perception, and to the com­
plexity of viewpoints embedded in that practice. 

Let me preface this account with two statements by great American 
mathematicians of an earlier period who put the case in a sharp form. 

278 



MATHEMATICS AND THE SCIENCES 279 

The first is John von Neumann in a 1945 essay titled "The Mathema­
tician" :1 

Most people, mathematicians and others, will agree that mathematics 
is not an empirical science, or at least that it is practiced in a manner 
which differs in several decisive respects from the techniques of the em­
pirical sciences. And, yet, its development is very closely linked with 
the natural sciences. One of its main branches, geometry, actually 
started as a natural, empirical science. Some of the best inspirations 
of modern mathematics (I believe, the best ones) clearly originated in 
the natural sciences. The methods of mathematics pervade and dominate 
the "theoretical" divisions of the natural sciences. In modern empirical 
sciences it has become more and more a major criterion of success 
whether they have become accessible to the mathematical method or 
to the near-mathematical methods of physics. Indeed, throughout the 
natural sciences an unbroken chain of successive pseudomorphoses, all 
of them pressing toward mathematics, and almost identified with the 
idea of scientific progress, has become more and more evident. Biology 
becomes increasingly pervaded by chemistry and physics, chemistry by 
experimental and theoretical physics, and physics by very mathematical 
forms of theoretical physics. 

The second is Norbert Wiener in a 1938 essay titled "The Historical 
Background of Harmonic Analysis:" 2 

While the historical facts in any concrete situation rarely point a clear­
cut moral, it is worth while noting that the recent fertility of harmonic 
analysis has followed a refertilization of the field with physical ideas. 
It is a falsification of the history of mathematics to represent pure 
mathematics as a self-contained science drawing inspiration from itself 
alone and morally taking in its own washing. Even the most abstract 
ideas of the present time have something of a physical history. It is 
quite a tenable point of view to urge this even in such fields as that 
of the calculus of assemblages, whose exponents, Cantor and Zermelo, 
have been deeply interested in problems of statistical mechanics. Not 
even the influence of this theory on the theory of integration, and in­
directly on the theory of Fourier series, is entirely foreign to physics. 
The somewhat snobbish point of view of the purely abstract mathemati­
cian would draw but little support from mathematical history. On the 
other hand, whenever applied mathematics has been merely a technical 
employment of methods already traditional and jejune, it has been very 
poor applied mathematics. The desideratum in mathematical as well 
as physical work is an attitude which is not indifferent to the extremely 
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instructive nature of actual physical situations, yet which is not dom­
inated by these to the dwarfing and paralyzing of its intellectual orig­
inality. Viewed as a whole, the theory of harmonic analysis has a very 
fine record of this sort. It is not a young theory, but neither is it yet 
in its dotage. There is much more to be learned and much more to be 
proved. 

2. Mathematics and the Natural Sciences 

One of the most striking features of recent developments in the physical 
sciences has been the convergence of focal theoretical problems with ma­
jor themes in mathematical research. Mathematical concepts and tools 
that had arisen in an autonomous way in relatively recent research have 
turned out to be important components in the description of nature. At 
the same time, this use of novel mathematical tools in the sciences has 
reacted upon the development of mathematical areas having no direct con­
nection with scientific applications to yield new and surprising mathe­
matical consequences. We ask whether this kind of interaction will con­
tinue in a serious way in the foreseeable future, and, if so, what the 
consequences will be for the future development of mathematics and the 
sciences. 

Let us begin our analysis by examining the different ways in which 
novel, relatively sophisticated mathematical tools have been applied in re­
cent scientific developments. We may classify them into five relatively 
broad modes of attack. 

(1) The use of sophisticated mathematical concepts in the formulation 
of new, basic physical theories on the most fundamental level. At the pres­
ent moment, this takes the form of the the superstring theory, which has 
as its objective the total unification of all the basic physical forces and 
interactions-electromagnetic, weak, strong, and gravitational. This new 
phase of physical theory, which is the culmination of the earlier develop­
ment of gauge field theories and of theories of supersymmetry, exhibits 
the use of a wide variety of relatively new mathematical tools developed 
in the past two decades; examples are Kac-Moody algebras and their 
representations, the existence of Einstein metrics on compact Kahlerian 
manifolds satisfying simple topological restrictions, and representations 
of exceptional Lie groups. The body of techniques and mathematical 
arguments embodied here includes the theory of Lie groups and algebras, 
their generalizations and representation theory; differential geometry in 
its modern global form in terms of vector bundles; the study of the ex-
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istence of solutions of manifolds of highly nonlinear partial differential 
equations; differential and algebraic topology; and the whole melange of 
analysis, algebra, and geometry on manifolds that has been called global 
analysis. The implementation of this program may involve still other ma­
jor directions of mathematical research-for example, noncommutative 
geometries based on rings of operators. 

A similar pattern of use of sophisticated mathematical tools in the 
development of fundamental physical theories appeared earlier in the 
context of the study of instantons in gauge field theories and the study 
of singularities in the equation of general relativity in connection with 
black holes. What must be strongly emphasized is that the role assumed 
by sophisticated mathematics was not the result of a willful act by ei­
ther physicists or mathematicians, but of the intrinsic necessities of the 
development of the physical theory. Physicists, no matter how sophis­
ticated mathematically they may be, are not free ad libitum to choose 
the mathematical tools they wish to use. Certainly, the mathematicians 
have no power to prescribe such uses to the physicists. We are very far 
from the decades after World War II when it was a commonplace among 
physicists that all the mathematics they would ever need had been com­
pletely worked out (at least as far as the involvement of research math­
ematicians was concerned) before World War I. It is the radical trans­
formation of fundamental physics in the past decades that has caused 
the disappearance of this commonplace, and not any basic transforma­
tion in the sociology of the relations between physicists and mathema­
ticians. 

(2) A focal interest in the complex mathematical consequences of sim­
ple physical laws. One sees major examples in the modeling of turbulence 
in terms of bifurcation, of the asymptotic properties of differential equa­
tions, and of iteration of simple nonlinear transformations (Hopf bifur­
cation, the Lorenz equation, strange attractors, and Feigenbaum cascades). 
Simple causal mechanics can be shown to lead to disorderly regimes 
(chaos), but in relatively simple and classifiable forms. A historically earlier 
example of an attack on turbulence in the 1930s to 1950s used models in 
terms of stochastic processes where disorder was directly injected into the 
premises of the theory. Another current example is the use of fractal 
models (self-similarity under changes of scale, fractional Hausdorff dimen­
sions) to describe complex phenomena in the study of materials. 

(3) Mathematical models of pattern formation and symmetry breaking 
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as paradigms for structured systems developing out of apparently unstruc­
tured regimes. We might think of this mode of attack (which goes back 
to Turing in 1952) as the converse of (2). Stable structures arise from 
mathematical models of differential equations or stochastic games of an 
apparently structureless nature in the presence of noise and possible 
disorder. The most striking paradigm is the oscillating chemical reaction 
of the Belousov-Zhabotinskii type. The objective here is eventually to 
model phenomena in such areas as developmental biology and brain 
function. 

(4) Soliton theories, involving the existence in nonlinear differential 
equations of stable structures (solitons) arising from complete integrability. 
The now classical paradigm is the Korteweg-De Vries equation of shallow 
wave theory, rediscovered by Kruskal and his collaborators in the late 1950s 
after an earlier partial rediscovery in computer experiments by Fermi­
Pasta-Ulam. New models of a similar kind have been found and exten­
sively analyzed as a possible way of describing a broad range of physical 
and engineering phenomena. 

(5) The need to develop a usable and fruitful mathematical theory of 
complex systems whose elements might well be simple to an extreme but 
whose complexity arises from the interaction of these elements, whether 
linear or nonlinear, local or global. It is abundantly clear that every mode 
of analysis in science or in practice will eventually get to the stage where 
this theme is dominant. 

After this summary of major themes in present-day scientific investiga­
tions to which sophisticated mathematical tools are being applied, we may 
ask whether this is really a new situation. A careful answer to this ques­
tion demands an analysis with a historical and philosophical focus, which 
I present in the final section of the paper. 

3. Mathematics and the Computer 

The observant reader is already aware that the description in section 
2 of the mathematical component of important themes in contemporary 
scientific research omitted explicit mention of the high-speed digital com­
puter, one of the most conspicuous objects of our age. In the context of 
the present kind of discussion, this might seem to many like a performance 
of Hamlet without the Noble Dane. Yet we must segregate the discussion 
of the computer and its interrelation with the development of contem­
porary mathematics, both because of its important and distinctive role 
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and because of the prevalence and intensity of myths in this domain that 
prevent realistic assessment of the situation. 

We are all very conscious of the role of the high-speed digital com­
puter as one of the decisive facts of the present epoch and for the 
foreseeable future. We all know of the tremendous impact it has had on 
the structure of processes in industrial society that depend on calculation, 
communication, and control. In practice, this excludes very few domains 
of human existence in modern society, whether technological, economic, 
social, political, or military. The sciences and mathematics have not been 
immune from this impact. Indeed, the scope and nature of scientific and 
mathematical instrumentation and practice in our society have already been 
radically changed by the existence of high-speed digital computation and 
its continual decrease in cost during recent decades. I have deliberately 
used the unusual phrase mathematical instrumentation to point up the 
radically new fact that such a phenomenon now exists and is an impor­
tant component of our situation. 

At the same time, although we are all conscious of the importance of 
the digital computer (sometimes to the point of hysteria), and indeed are 
inundated with advertising hyperbole from the most diverse quarters about 
all the wonders that supercomputers will accomplish, many are much less 
conscious of what is ultimately an even more important fact: the com­
puter is as much a problem as it is a tool. We must understand the nature 
and limitations of this most powerful of all human tools. It is important 
to know what cannot be computed and the dangers of what can be 
miscomputed. 

These limitations can be seen most plainly in the context of mathe­
matical and scientific practice. Perhaps the most significant use of the com­
puter in this context is as an experimental tool, sometimes even displac­
ing the laboratory experiment altogether. One translates a scientific or 
mathematical problem into a simpler mathematical model and then uses 
the computational power of the computer to study particular cases of the 
general model. This approach has turned out to be very useful, particularly 
when the conditions for experiment in the usual sense or of precise calcula­
tion become impossibly difficult. The mystique of such practices has grown 
to such an extent that some speak of replacing Nature, an analog com­
puter, by a newer and better model of a digitalized nature. 

The drawbacks and dangers of such practices without a background 
of thorough critical analysis are equally clear. We must ask about the ade-
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quacy of the model, about the accuracy (not to say the meaningfulness) 
of the computational process, and, last but not least, about the represent­
ative character of the particular cases that one computes. Without serious 
cross-checks on these factors, we are left with yet another case of the zeroth 
law of the computer: garbage in, garbage out, particularly with serious 
scientific and mathematical problems that cannot be solved by computa­
tion as they stand. One replaces them by manageable problems, and the 
validity of the replacement is precisely the crucial question. It is the im­
portance of this question that has led to pointed comments about the ad­
jective scientific in the currently fashionable emphasis on programs for 
scientific computation on supercomputers. 

These critical questions do not mean that we should neglect the com­
puter as a tool in science and mathematics. They do point up a sometimes 
neglected fact-namely, that the computer is a difficult tool whose use 
must be studied and refined. Computers are brute force instruments; their 
effective use depends vitally on human insight and ingenuity. I intend here 
to emphasize the importance of the intellectual arts and insights that are 
or can be connected with the digital computer and its uses. These intellec­
tual arts have a vital relation to the mathematical enterprise. They con­
stitute a specialized and different way of applying classical mathematical 
ideas and techniques with radically new purposes in mind. Their vitality, 
both intellectual and practical, depends in an essential way upon a con­
tinuing contract with the central body of mathematical activity. 

There is an interesting and slightly ironic aspect to the relationship be­
tween computer science and the central body of mathematics. Since the 
mid-nineteenth century, mathematicians and physical scientists have tended 
to see a dichotomy between mathematics that is applicable to the uses of 
physical modeling and calculation and another kind that is not applicable. 
The rules for this division have changed in recent years, with an ever­
increasing diversity of mathematical themes and theories falling into the 
first category. Even so, the stereotype tends to persist, and some areas 
of active mathematical research-like algebraic number theory or math­
ematical logic-tend to be relegated to the second category. Yet it is pre­
cisely these areas, grouped together with various forms of combinatorics 
under the general label of discrete mathematics, that have turned out to 
be most vital in major areas of advance in computer science. The basic 
theoretical framework of computer science and the development of com­
plexity of computation rest upon the foundation of mathematical logic. 
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The development of algorithms depends essentially upon combinatorics, 
number theory, and, most recently, on probabilistic models of a com­
binatorial type. The practical area of coding and cryptology is vitally 
dependent upon sharp results in number theory and algebraic number 
theory. 

We should reject efforts to oppose the natural sciences to the "artificial" 
sciences. Human art and artifice are part of all the sciences, as is the con­
frontation with the objective realities beyond human will and control that 
we personify under the figure of Nature. Indeed, computer science in its 
necessary advance, seen today under such perspectives as parallel process­
ing, artificial intelligence, and expert systems, and the whole family of 
problems subsumed under the label of computer systems and structure, 
can be seen as part of the general perspective of complexity of organization. 

4. The Core of Mathematics 

There is a danger in any form of discussion of the role of mathemat­
ics that emphasizes (as I have done) the active participation of new 
mathematical concepts and tools in the development of other scientific 
disciplines. Despite the strong emphasis on the new, it is far too easy to 
use such an approach as a prescription for future mathematicians sim­
ply to facilitate the interactions that I have described. Such a prescrip­
tion would be a recipe for a massive failure, not only for the development 
of mathematics itself but also for the sciences. Such prescriptions are 
based upon the unconscious principles that creativity and newness in con­
ceptual advance are always a matter of the past. The autonomy of 
mathematical research, in the sense of its freedom from any strong 
dependence upon the current processes of research in other disciplines 
and upon their rhythm of activity, has been one of the principal com­
ponents of its creativity throughout its lengthy history since the Greeks. 
There are commonsense reasons why this creativity is important for the 
sciences: for example, when the advance of scientific understanding needs 
mathematical concepts, theories, or methods of calculation and argument, 
it is often essential that they be already available in a reasonably usable 
form. 

Once mathematical problems are solved in any context, the solutions 
can be digested and turned to new uses in other contexts. Yet new 
mathematics (concepts, solutions, theorems, algorithms, proofs, calcula­
tions), if it is genuinely new, must be created by someone, and whoever 
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does the job is a mathematician by definition. The task of the practitioner 
of another scientific discipline with respect to mathematics is to use it to 
understand and analyze the subject matter of that discipline, to see through 
the mathematics to the structure of the subject matter. From the fact that 
mathematics from the latter point of view ought to be transparent, one 
cannot draw the false conclusion that mathematics does not exist and needs 
no process of development in its own right. 

It may seem like a paradox to some that I should introduce this strong 
affirmation of the essential autonomy of mathematics into a paper devoted 
to the interaction of mathematics and the sciences. This paradox is super­
ficial. Any affirmation of interaction is only significant if the two sides 
of the interaction have a full-fledged separate existence and meaning­
fulness. In particular, we must affirm a central autonomous core of mean­
ing in the mathematical enterprise if our thesis of strong interaction is 
to have full significance. 

What is this core of meaning? I shall give a number of related answers 
in the form of programmatic definitions of mathematics. Each of these 
definitions points to important characteristics of mathematical practice, 
and each program leads to a slightly different perspective on that prac­
tice. It would take me too far afield to describe the interrelation of these 
perspectives and the tension between them. Suffice it to say that I am 
among those who believe in an essential unity of mathematics, though 
rejecting some of the dogmatic and oversimplified programs for achiev­
ing that unity by putting mathematics in a Procrustean bed and cutting 
off some of its limbs. 

(1) Mathematics is the science of significant forms of order and relation. 
(2) Mathematics is the science of the structure of possible worlds. 
(3) Mathematics is the science of infinity. 
( 4) Mathematics is the science of the structure of complex systems. 
( 5) Mathematics is the study of the modeling of reality in symbolic form. 

Each of these definitions taken by itself is a deep truth in the sense 
of Niels Bohr: its negation is also a deep truth. Taken jointly, they give 
us a reasonable perspective on the broad range of mathematics since the 
Renaissance. (Definitions 1 and 2 are due to Descartes and Leibniz, com­
bined under the term mathesis, whereas definition 3, which was originated 
by Leibniz, was revived in modern times by Poincare and Wey!.) 
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5. Applicable Mathematics 

Mathematical research in its various forms is an enterprise of great vital­
ity in the present-day world (although it is invisible to some outsiders). 
Despite its fundamental autonomy, the enterprise of advanced mathemat­
ical research has interacted strongly in the last two decades with various 
advances in the sciences. For the purposes of the present discussion, I 
present two kinds of evidence. 

The first consists of taking a conventional breakdown of the principal 
active branches of contemporary mathematical research and inquiring in 
general terms whether these branches have interactions of the type de­
scribed with the sciences. In the table of organization for the Internation­
al Congress of Mathematicians in Berkeley, California, in the summer 
of 1986, we have such a breakdown in the division of the Congress into 
nineteen sections. Of these nineteen sections, we may set aside two (his­
tory of mathematics, teaching of mathematics) and ask about the appli­
cability of the seventeen mathematical areas in this classification. Five 
(probability and mathematical statistics, mathematical physics, numerical 
methods and computing, mathematical aspects of computer science, ap­
plications of mathematics to nonphysical sciences) relate directly to the 
sciences and technology. Eight have direct relation in contemporary prac­
tice to theory and practice in the natural sciences (geometry, topology, 
algebraic geometry, complex analysis, Lie groups and representations, real 
and functional analysis, partial differential equations, ordinary differen­
tial equations and dynamical systems). The remaining four (mathematical 
logic and foundations, algebra, number theory, discrete mathematics and 
combinatorics) have an equally vital relation to computer science. There 
is no residue of mathematics that is fundamentally not applicable on this 
list. 

The second kind of evidence is illustrated by the study of the soliton 
theory of the Korteweg-De Vries equation in the periodic case. The ap­
plications of algebraic geometry and complex analysis to the study of the 
Korteweg-De Vries equation under periodic boundary conditions not only 
contributed to the understanding of the physical model involved but reacted 
upon the disciplines involved. New ideas and methods in both math­
ematical disciplines arose from this interaction, resulting in the solution 
of classical problems in algebraic geometry and function theory. In an 
even more striking case, the young Oxford mathematician Simon Donald-
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son observed that if one combined the mathematical techniques developed 
for the study of the mathematical theory of gauge fields by Karen Uhlen­
beck with the penetrating geometric attack upon the structure of four 
dimensional manifolds of Michael Freedman one could obtain a new and 
totally surprising geometric result in four dimensions. The result in ques­
tion asserts that, unlike Euclidean spaces in every other dimension, four­
dimensional Euclidean space possesses two systems of coordinates that 
are fundamentally different from one another. 

These two cases illustrate a possibility that has turned into a current 
reality-that the strong mathematical attack upon mathematical problems 
raised in the context of development of scientific research can provide the 
occasion and stimulus for major conceptual advances in mathematics itself. 

6. Historical Perspectives 

To close, let us turn to the question of the future relation of mathe­
matics and the sciences. We may recall another well-known saying of Niels 
Bohr: Prediction is difficult, especially of the future. Attempts to predict 
the future are hypotheses about the past and present. Let us formulate 
a hypothesis that we can check for coherence and accuracy against the 
past and present and then try to gauge its consequences for the future. 

Our scientific tradition is inherited from the civilization of the ancient 
Greeks. It was there that the concept of science as a self-conscious struc­
turing of objective lawful knowledge of the world (or, more strictly, of 
the hidden processes of the world) first arose. Although the Greeks in­
vestigated the full range of human experience, their achievement in creating 
permanent scientific knowledge was primarily in the mathematical sciences, 
in mathematics itself and in such highly mathematical disciplines as math­
ematical planetary astronomy, musical theory, and the mathematical treat­
ment of statics. The Greeks created a highly perfected form of sophis­
ticated mathematical theory treating of whole number, geometry, ratio, 
and geometrical measure. In this theory, they also perfected a fully mature 
concept of mathematical argument, of logical deduction. On the basis of 
these achievements, Plato might argue in his celebrated dialogue Timaeus 
for a mathematical myth of the cosmos and its formation on the basis 
of geometric elements, and Aristotle could formulate the logical principles 
of deduction while rejecting the possibility of mathematical laws for the 
phenomena of terrestrial physics. 

It is fashionable to talk of scientific revolutions. On the most fundamen­
tal level, there has been only one scientific revolution-that of the seven-
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teenth century, in which modern science was formed. The concept of 
science that this century produced gave a description of the cosmos, the 
physical universe, in terms of the geometry of space and numerical rela­
tions, a description that applied to both the skies and the earth. It saw 
this cosmos as a realm of objective lawful relations, devoid of human agen­
cy or affect. Reality was separated after Descartes into two completely 
distinct parts, the physical universe and a separate world of human con­
sciousness and spirit. In this framework, it made total sense for human 
consciousness to try to determine the secrets of natural processes not by 
passive observation but by transforming nature by experiment. 

There was a mathematical counterpart of the new physical science, 
which served both as its precursor and principal tool. This was the 
mathematics of the new algebra and of the analytic movement of Vieta 
and Descartes, a mathematics that substituted calculation and manipula­
tion of symbolic expressions for the deductive sophistication of the Greeks. 
It substituted the analysis of complex phenomena into simple elements 
for the Greek emphasis on deduction. In the seventeenth century, this new 
mathematics had two overwhelming triumphs. The first was the creation 
of an analytic geometry through which the geometric structure of space 
could be transformed by coordinatization into the subject matter of 
algebraic analysis. The second was the invention of the great analytic engine 
of the differential and integral calculus, by which the sophisticated and 
difficult arguments by exhaustion of Eudoxos and Archimedes for han­
dling infinite processes were replaced by much simpler and more man­
ageable algebraic formulae or calculi. This was the tool with which Newton 
built his great mathematical world-machine, the central paradigm for the 
scientific world pictures of all succeeding ages. 

There are essentially two forms in which objective human knowledge 
can be formulated: in words and in mathematical forms. Aristotle opted 
for the first and created a systematic description of the world in which 
the subject-predicate form of the sentence was transformed into the pat­
tern of the individual object or substance possessing a certain quality. From 
the seventeenth century on, modern science has rejected this form of 
description and replaced it by descriptions in various mathematical forms. 
These forms have altered as the stock of mathematical forms has increased 
and become richer and more sophisticated. The original forms were 
geometric, in the style of the Greeks. In the Renaissance, a new and more 
flexible concept of number, the 'real' number in the present-day sense, 
came into being as the common measure of lengths, areas, volumes, 
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masses, and so forth, without the precise distinction between these 
measures in terms of geometric form to which the Greeks had held. In 
the ensuing development of algebra, new kinds of 'numbers' appeared 
as the solutions of algebraic equations. Since they were not numbers in 
the old sense, some were called 'imaginary', and mixtures of the two types 
were called 'complex'. It was not until the end of the eighteenth century 
that these 'complex' numbers were fully naturalized as members of the 
commonsense mathematical realm by being identified in a simple way with 
the points of a Euclidean plane, the complex plane. 

Since the seventeenth century, the enterprise of the scientific descrip­
tion of nature has continued to develop within this mathematical medium, 
which was dimly foreshadowed by Plato's mathematical world myth. New 
scientific disciplines developed, and they entered the same framework of 
numerical relationship, geometric form in space, and formulation of basic 
principles in mathematically expressed laws. As Kant put it in a well-known 
aphorism from his Metaphysical Foundations of Natural Sciences: "In 
every special doctrine of nature, only so much science proper can be found 
as there is mathematics in it." 

In the nearly four centuries that have elapsed since Galileo began the 
seventeenth century scientific revolution, the curious relationship of 
autonomy and mutual dependence between the natural sciences and 
mathem.atics has taken ever more complex and sophisticated forms. The 
mathematical medium in which the various sciences live has continued to 
develop and take on new shapes. In the early nineteenth century, the in­
tuitive concept of symmetry that was applied to the study of the roots 
of algebraic equations gave rise to the concept of group. The group con­
cept, passing through the medium of its application to geometry and dif­
ferential equations, became in the twentieth century the most essential 
building block of the fundamental description of the physical universe. 
The concept of space, enriched by the insights of Gauss and Riemann, 
gave rise to the richer geometric concepts of Riemannian manifold and 
of curvature, through which the theory of general relativity of Einstein 
was to describe the cosmos. Through the analysis of integral equations 
and differential equations in the early twentieth century, the concept of 
an infinite-dimensional vector space was born, and the especially rich con­
cept of a Hilbert space. Hermitian operators on a Hilbert space with their 
spectral theory served as the eventual underpinning of the the formal struc­
ture of quantum mechanics. These are three important examples of a very 
broad phenomenon. 
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New concepts and theories arise in mathematical research through the 
pressure of the need to solve problems and create intellectual tools through 
which already existing mathematical theories and structures can be ex­
tended and applied. Once the new concepts and theories are established, 
they themselves become the focus of intensive investigation. The new is 
achieved by mathematical imagination, applied through the medium of 
mathematical constructions through which the new concepts and struc­
tures are given definite form. Although the imaginative process is free in 
some ultimate sense, its result once produced becomes a new objective 
realm of relationship of a determinate character. Classical tools like deduc­
tion and calculation are used to establish its properties, leading to new 
technical problems that may eventually demand new concepts and con­
structions for their solution. The jump of insight and imagination that 
leads to new mathematical breakthroughs belies the stereotypes of math­
ematical activity as an automatic, machinelike process of mechanical ap­
plication of formal rules. 

Mathematical research as a whole balances the radical process of genera­
tion of new concepts and theories with the conservative tendency to main­
tain in existence all those domains, problems, and conceptual themes that 
once became established as foci of significant mathematical research. The 
balance between these opposing tendencies gives rise to the striking fact 
that, at the same moment, one can find active research programs of appar­
ently equal vitality bearing on two themes, one of which is two thousand 
years old and the other perhaps only a decade old. Yet the two-thousand­
year-old problem might well be solved with tools and concepts of relatively 
recent vintage. 

The richer the repertoire of modern mathematical research, the broader 
the arsenal of concepts and tools available for the use of the mathe­
maticized sciences. The difficulty lies in the problem of communication, 
of the scientific practitioners being able to penetrate through the difficulties 
of translation between the languages of different disciplines, of knowing 
what is relevant in the concepts and techniques that are available. 

As the concerns and principal foci of scientific interest move into do­
mains ever further from the classical ones of theory and experience, the 
role of mathematical ideas and techniques inevitably grows because they 
often provide the only tools by which one can probe further into the 
unknown. This is particularly true for domains involving complexity of 
organization or nonlinearity of interaction, the future frontier of the ma­
jor themes of scientific advance. Although they may become the subject 
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matter of major scientific disciplines in their own right, I doubt that this 
will lead to the disappearance of professional differences between special­
ists in various disciplines in attacking these scientific problems. The dif­
ference between specialties has a positive function as well as negative 
consequences. Specialists can rely upon the intellectual traditions and 
resources of their scientific specialty, and this applies with the greatest 
force to the mathematician. We can ask for a broader and more effective 
effort at communication, however, among those concerned with common 
problems, and we can cultivate an active interest in and sympathy with 
the thematic concerns of other specialties than our own. 
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