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SPIKE-LAYERS IN SEMILINEAR ELLIPTIC
SINGULAR PERTURBATION PROBLEMSt

WEI-MING NI* aAnD IZUMI TAKAGI**

The purpose of this expository paper is to describe a new method, introduced in a series
of papers [LNT], [NT1,2], [NPT] and [J], in handling “spikes” (or “point-condensation”
phenomena) for singularly perturbed semilinear elliptic equations of the form

(1) e2Au+ f(u) =0

where A = Z 527 is the Laplace operator in R™ and ¢ is a small positive number. To
=1

illustrate the ﬁex1b1hty of our method, we shall treat both Dirichlet and Neumann boundary
value problems using the same method.

We begin with the following Neumann problem

e2Au—u+uP =0 in 2,
(2) u>0 in 2,
%zO on 012,

where  is a bounded smooth domain in R", v is the unit outer normal to 02, and
1 <p< 22 (1 < p< oo whenn = 2). Problem (2) arises in various models in pattern
formation in mathematical biology, e.g. the Keller-Segel model in chemotaxis, and the
shadow system for the non-saturated case of an activator-inhibitor system in morphogenesis
proposed by Gierer and Meinhardt. (The idea of “diffusion-driven instability”, however,
goes back to A. Turing. See [LNT] and the references therein for the background of the
problem (2).)

In [LNT], [NT1, 2] it was established that (2) has a solution uc (in fact, a “least-energy”
solution, see §1 below) which possesses a single spike-layer at the boundary. Moreover,

the “amplitude” and the “location” of the spike can be determined. Mathematically, the
following statements hold.

(1) For every e sufficiently small, u. has a unique local (thus, global) mazimum point
P. in Q, and, P. must lie on the boundary OS).
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(ii) ue — 0 everywhere in Q outside a small neighborhood of P. and u.(P.) — w(0),
as € = 0, where w is the unique solution of the problem

Avw—-—w+wP=0 in R™,
(3) w>0inR*w—-0 at 0o,

w(0) = max w.

(iii) P. must be situated at the “most curved” part of O when € is sufficiently small.
More precisely, H(P.) — max H(P) as € — 0 where H(P) denotes the mean

curvature of 0S) at P.

Our method of proof will be described in §1 below. It turns out that a suitable
modification of the techniques can be used to handle the critical case of (2); i.e. if we
replace p by 7 = %f—g in (2), n > 3. Note that the corresponding result must be somewhat
different since (3) does not admit any solution if p is replaced by 7. Nonetheless, our
approach applies. This will be discussed in §2.

Our method also carries over automatically (with minimal changes) to the Dirichlet
problem which we obtain from (2) by replacing the original Neumann boundary condition
in (2) by the homogeneous Dirichlet condition “u = 0 on 0Q”. Thus, to further illustrate

the power of our method, we shall include, in §3, a modification of our approach ([J]) to
the following Dirichlet problem

e2Au+ f(u) =0 in €,
(4) u>0 in Q,
u=20 on 02,

where a typical example of the nonlinearity is the well-known “cubic” or “loop” case

f(u) = u(l = u)(u —a), 0 < a < 3, which has attracted lots of attention in recent years.
Finally, we conclude this article with some remarks in §4.

1. Neumann problem: Sub-critical case. In this section we shall concentrate on
the problem

e2Au—u+uP =0 in Q,
(1.1) u>0 in Q,

% =0 on 02,
where A is the Laplacian, €2 is a bounded smooth domain in R™, v is the unit outer normal
to 0Q, and € > 0,1 < p < 2£2(1 < p < o0 if n = 2) are constants. We wish to give an

outline of our method and refer the interested readers to [NT1,2] for the full details. We
first define an “energy” functional J, on H!(§) by

(1.2) Je(u) = %Q/(62|Du|2 +u?) — ﬁ (uy )Pt
Q



where u; = max{u,0}. It turns out that the Mountain-Pass Lemma applies and gives
that

= i (h(t
(1.3) ce = jnf max J (R(t))
where {h(t)|0 < ¢t < 1} denotes a continuous path connecting 0 and e (an arbitrary but
fixed positive function in H!(2) with J.(e) = 0) and T is the set of all such paths, is a
positive critical value of J.. Moreover,

(1.4) ce = min{J.(u)|lu € M}

where

(1.5) M= 0<u€H1(Q)|/(62|Du|2+u2)= /u’f’l
Q Q

(Thus ¢, is independent of the choice of e.) Since M clearly contains all possible solutions
of (1.1), we call the corresponding critical point u. a least-energy solution. Then, standard
elliptic regularity results show that u. is smooth on €.

The main results in [LNT], [NT1,2] may be summarized as follows.

THEOREM 1.6. For every ¢ > 0, (1.1) possesses a least-energy solution u. (i.e.
Je(ue) = ¢c) with the following properties:

(i) ue = 1 for every e sufficiently large, and, u. has a unique local (thus, global)
maximum point P, in Q for every e sufficiently small. Furthermore, P, must lie on
the boundary 0X).

(ii) ue — O everywhere in Q0 outside an arbitrarily small neighborhood of P, and
ue(Pe) — w(0), as € — 0, where w is the unique solution of (3).

(iil) H(P.) — gggg{) H(P) as € — 0 where H(P) denotes the mean curvature of 0} at
P.

A few remarks are in order. First, it was shown in [LNT] that for ¢ large, (1.1), in fact,
can only have one trivial solution u = 1. As for the uniqueness of w in (3), we include a
brief discussion about it in §4. Finally, we remark that the “asymptotic profile” (suitably
rescaled as € — 0) is given by w. (See the outline of the proof below, or [NT1,2] for full
details.)

The proof of Theorem 1.6 is lengthy and technical, and, is carried out in several steps.
First, for € small we obtain a good upper bound for c.; namely,

(1.7) c <em {%I(w) ~(n—1)Hye + 0(5)}
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where H is the maximum of H(P) on 02,

1 1
I(w):§/(|Dw|2+w2)—m wPt,
R R

(1.8) )
v=—= [ Ww'(lz))zndz,

and z = (21,...,2,) € R™. This is done by choosing suitable paths in (1.3).

Now, let P, be a local maximum point of u. in Q. Our second step is to show that
dist(P.,09Q) < Ce for ¢ sufficiently small. Suppose for contradiction that this does not
hold. Then, using a scaling argument and the fact that u, is a least-energy solution
we deduce that there exists a sequence €; — 0 such that a scaled u.; tends to w and
ce; 2 €}(I(w) — §) where § > 0 is an arbitrarily small constant. This contradicts (1.7).

Next, we prove that P. actually lies on 0 for sufficiently small e. The proof here is
more complicated than that of the previous step but the idea is somewhat similar. (The
proof above deals with an “interior” situation while here we need to handle the boundary.)
Again, suppose that there exists a sequence ¢; — 0 such that P.,;, — P € 9Q (by step
2 above). We then extend u.; by reflection with respect to 0 near P. (This can be
done since u.; satisfies the homogeneous Neumann boundary condition.) Although the
extended u.;, which we denote by 1., satisfies a different equation near P, this equation
does converge to the equation in (3) and a scaled 4., converges to w as ¢; — 0. Thus, if
P;; ¢ 0Q, then u.; would have two peaks near P, and, as the scaled u.; converges to w,
these two peaks converge to P. Since w is radial and w" < 0 at P, this is not possible.

From the arguments above we observe that local maximum points are isolated. (In fact,
< dist(P.,P!) — oo as ¢ — 0 for any two local maximum points P, and P,.) Then, from
the “energy” consideration it follows that J.(u.) > e™(I(w)—4é) for € sufficiently small if u,
has more than one local maximum points (where § again denotes a small constant). This
again contradicts (1.7) and essentially finishes the proof of parts (i) and (ii) of Theorem
1.6.

It remains to prove part (iii). This relies on a second order approximation of ¢.; namely,
1
(1.9) ce=¢" {El(w) —(n—=1)H(P.)ye + 0(6)}

as € — 0, where the quantities I(w) and v are defined in (1.8). Once (1.9) is established,
(iii) follows immediately from (1.7).

To prove (1.9), it requires first to obtain a second order approximation (in €) to u.
near P.. That is, if ® is a suitable diffeomorphism which straightens the boundary 0f2
near P, then u. admits the following approximation

(1.10) ue(®7 (ey)) = w(y) +ed(y) + o(e)
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as € — 0, where ¢ is the unique solution of the linearized problem

Ap—d+puwPld=nh in R",
i) { 6—¢+purls
¢—0 at oo

with the condition that for y = 1,...,n

ow

— =0,
/¢8y,~
Rn

where the inhomogeneous term h depends on w and ® (which, in turn, involves the mean

curvature of 9Q at P.). Substituting (1.10) into (1.2), we derive (1.9) from the fact that
ce = Je(ue).

2. Neumann problem: Critical case. In this section, we take up the problem
e2Au—u+u" =0 in Q,
(2.1) u>0 in Q,
% =0 on 02,

where 7 = %l% and n > 3. As was pointed out before that the problem

Avw—-—w+w" =0 in R™,
(2.2)

w>0inR"and w — 0 at oo

does not admit any solutions. Nonetheless, to a certain extent our method described in §1
does carry over to this critical case with some modifications. Thus we will be brief in this
section.

The first general existence result for least-energy solutions of (2.1) is due to X.-J.
Wang [W] who also used the variational approach described in §1. Then, a different kind
of spike-layers (than those given by Theorem 1.6) is established in [NPT].

THEOREM 2.3. Let u. be a least-energy solution of (2.1). Then, for ¢ sufficiently
small, the maximum of u. in § is attained at exactly one point P., and P. must lie on the
boundary 0f). Furthermore, the following statements hold.

(1) ue(Pe) — oo and ue — 0 in Q outside an arbitrarily small neighborhood of P, as
e —0.
(i) e fult! — 15"/2 ase — 0 where S = n(n — 2)r [[' (2) /F(n)]2/n is the best
Q
Sobolev constant.

(iii) For any é > 0, there exist constants €y and R such that for 0 < € < € it holds
that for allz € QN BﬂEeR(Pe)

_ul@) g (M> ’ <6

(2.4)
||luel| oo () Be€
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where . = ||u€||23°/ ((g)— %) @ is a suitable diffeomorphism straightening a boundary

portion of 00 around P,., and

|z|2 —(n—-2)/2
0 = |1+t 2)]
satisfies

(2.5) AU+U™ =0
in R" with U(0) = 1.

In fact, part (i) is a consequence of the fact that (2.2) does not have any solutions.
Note also that in Theorem 2.3 we only prove that u. has one global maximum point in €,
which is a weaker result than its counterpart (Theorem 1.6 (i)) for the sub-critical case.
On the other hand, in contrast to the finite-amplitude spikes in the sub-critical case, we
now have the peaks u.(P.) (in Theorem 2.3) tending to oo as € — 0. It is also interesting
to note the different scaling appeared in (2.4).

We omit the proof here but refer the interested readers to [NPT] for complete details.

3. Dirichlet problem. As we remarked earlier that if we simply replace the homo-
geneous Neumann boundary condition in (2) or (1.1) (but not (2.1)) by the homogeneous
Dirichlet condition “u = 0 on 9Q”, the method described in §1 still applies with minimal
modification. (Of course, in the Dirichlet case, locating the peak of a least-energy solution
requires new ideas and still remains open.)

To illustrate the power and the flexibility of our method, we shall, however, include a
recent result of J. Jang in this section. In his Ph.D. thesis [J], Jang considered the following
problem

e2Au+ f(u)=0 in Q,
(3.1) u>0 in Q,
u=20 on 02,

where, for simplicity, we assume that f(u) = u(1 —u)(u — a),0 < a < %, and that  is

convex.

Asin the Neumann case, we define an “energy” functional in H} () (i.e. the completion

of C§°(2) under the H!-norm) by

(3.2) i) = [[S10u - Pw)

Q



where F(u) = [ f(t)dt. It is well-known that (3.1) possesses a “boundary-layer” solution
0

i for each ¢ sufficiently small. This solution @, may be obtained by using the standard
monotone iteration scheme with the iteration started at the super-solution u =1 of (3.1).
It is not hard to show that . 1s the mazimal solution of (3.1) and that J.(i.) < O for
¢ small. (See our discussion below.) Thus, using v = 0 and #%. we can again apply the
Mountain-Pass Lemma to ensure the existence of a second solution u. — a “mountain-pass”
solution.

Jang’s result may be stated as follows.

THEOREM 3.3. For each sufficiently small €, (3.1) possesses a mountain-pass solution
ue which has only one local maximum point P. in Q. Moreover, the scaled function
ve(y) = u.(P. +ey), for P, + ey € §, tends to v in C{ (R™) where v is the unique solution
of

Av+ f(v) =0 in R®
(3.4) v>0mR"* v—-0 at oo,

v(0) = max v.

We remark that the convexity assumption of €} can be relaxed. (See [J].) For the
uniqueness of (3.4), we also include a brief discussion in §4.

In order to apply the method described in §1, it is crucial to obtain that J,(i.) < 0
for € small and that

(3.5) Jo(u.) < Ce™

for € small. To establish these estimates it is first shown that the maximal solution . is
actually a global minimizer of the functional J. in H}!(Q). A key ingredient in the proof

of this fact is the following “local” uniqueness result for @., which follows from a theorem
of Clément and Sweers [CS].

LEMMA 3.6. There exists a constant 6 > 0, independent of ¢, such that if u} is a
solution of (3.1) with mgxu: >1-—4, then ul = ..

Once (3.5) is obtained, one can then show that a mountain-pass solution u. has at
most finitely many local maximum points (i.e. peaks). To prove that u. has exactly one
peak, we need a more accurate estimate of J(u.); namely, for € small,

(3.7) Je(ue) = e™(J* + 0(1))

where

J* = / B|Du|2 — F(v)] > 0.

Rn



The initial step in proving (3.7) is furnished by a result of [GP] which asserts that for
sufficiently large R > 0, the following boundary value problem has exactly two positive
solutions

{ o' 4+ 221y + f(v) =0, r € (0,R),
v'(0) = v(R) =0.

Now, Theorem 3.3 may be handled in a similar fashion by our method as in §1 since
one can derive from (3.7) that

el oy = ™ (10l ey + 0(1))

for ¢ sufficiently small.

4. Remarks.

4.1. Other types of layer solutions, such as boundary layers or interior transition layers,
also arise in various branches of applied mathematics (e.g. in mathematical biology, and
in phase transition) and have received lots of attention. There have been many papers
appeared in the literature dealing with them and we shall not touch them here.

As for spike layers, it seems that little was known prior to our work, even in the formal
level. We ought to mention the recent work of Kelley and Ko [KeK] which contains some
interesting examples (or counterexamples). We should also mention an earlier survey [NT3]

on (1.1) and (2.1), which contains, among other things, results from the point of view of
bifurcation.

4.2. In case Q is a ball, it is well-known that solutions of (4) (for any Lipschitz
continuous nonlinearity f) must be radially symmetric. However, the story changes for
Neumann problems. Both Theorems 1.6 and 2.3 show that u. cannot be radially symmetric
for € small. Nonetheless, solutions u. do possess certain symmetries, e.g. Steiner symmetry.
(See [NT1, §5].)

Radial solutions of (1.1) and (2.1) have also been studied by various authors, e.g. [BKP]
and [N2]. Other work related to (2.1) include e.g. [CK1,2].

4.3. Multiple single-peak spike-layer solutions have been constructed by [NO1] and
[Wal. In [NO1], it is proved that for any given point P € 99 with the second fundamental
form of 0N at P being nondegenerate, there is a spike-layer solution of (1.1) with its only
peak located near P, for ¢ sufficiently small. In [Wa], a topological argument is used to
show that for ¢ small, the number of single-peak spike-layer solutions of (1.1) is bounded
below by the Ljusternik-Schnirelman category of 052, which is a much weaker result.

Using the approach in [NO1], multiple-peak spike-layer solutions are also constructed
in [NO2].

4.4. The Mountain-Pass Lemma is due to [AR] originally. The fact that the mountain-
pass critical value ¢, is actually independent of the particular choice e and is given by (1.4)
for a large class of nonlinearities (formulated in §1, (1.3)-(1.5)) is first observed in [DN]
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and [N1]. In this connection, we should also mention the work of Nehari [Ne] which gives
a different variational approach and eventually leads to the observation (1.4) explicitly
appeared in [N1].

4.5. For the uniqueness of (3) and (3.4), we first apply a result of [GNN; Theorem
2] to show that a (any) solution of (3) or (3.4) must be radially symmetric, and thereby
reduces (3) and (3.4) to ordinary differential equations.

Extending earlier work of [C], [MS] and [Z], Kwong eventually establishes the unique-
ness of (3) in [K]. Further extensions of [K] include [CL], [KZ] and [M].

The uniqueness of the ODE (3.4) is proved by [PS1], which also has been further
extended by [PS2] and [KaK].
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