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INCOMPRESSIBLE FLUIDS IN THIN DOMAINS WITH NAVIER FRICTION
BOUNDARY CONDITIONS (II)

LUAN THACH HOANG

ABSTRACT. We study the Navier-Stokes equations for incompressible fluids in a three-dimensional
thin two-layer domain whose top, bottom and interface boundaries are not flat. In addition to the
Navier friction boundary conditions on the top and bottom boundaries of the domain, and the pe-
riodicity condition on the sides, the fluid velocities are subject to an interface boundary condition
which relates the normal stress of each fluid to the relative velocity between them on the common
boundary. We prove that the strong solutions exist for all time if the initial data and body force,
measured in relevant norms, are appropriately large as the domain becomes very thin. In our
analysis, the interface boundary condition is interpreted as a variation of the Navier boundary
conditions containing an interaction part. The effect of that interaction on the Stokes operator
and the nonlinear term of the Navier-Stokes equations is expressed and carefully estimated in

different ways in order to obtain suitable estimates.
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This is a continuation of our previous work [8] in which the global existence in time of strong

solutions to incompressible Navier-Stokes equations (NSE) was proved for a three-dimensional

single layer thin domain under “large data conditions”, that is, when the initial data and body
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force are very large, but not arbitrarily large. The fluid is subject to the Navier friction boundary
conditions on the top and bottom boundaries, and to the periodicity condition on the sides. In
the current paper we study the NSE in thin two-layer domains with, in addition the mentioned
Navier boundary conditions, an interface boundary condition for the stress tensors. Such an
interface boundary condition is used, for example, in the coupled atmosphere-ocean models
([19,20], see also the survey [30]). The reader is referred to [1,8-11,15, 16,25] and references
therein for NSE with Navier boundary conditions, and to [13, 14,17, 18,21-23,28,29] among
many others for NSE in thin domains.

Previous works on the problem are [4] and [12] which deal with domains with flat bound-
aries. Thanks to the simple geometry of the boundaries, (all or some) explicit solutions of the
corresponding eigenvalue problems are found. Based on those, an appropriate closed subspace
in which important commutativity properties of involved operators (Leray projection, or special
projections, or Laplacian, or Stokes operator, or averaging operators) are available. In contrast,
the domain considered in this paper has non-flat top, bottom and interface boundaries. Therefore
it is impossible to find and take advantage of those explicit solutions. Also, while [4, 12] have
free boundary conditions on the top and bottom boundaries, which correspond to the Navier
conditions without friction, here we consider the Navier conditions with positive friction coef-
ficients. We adopt the approach in [7-9, 15] which does not rely on any special spectral spaces.
Instead, certain properties of the velocity field satisfying those boundary conditions need be
realized in order to obtain suitable estimates. On one hand, the interface boundary condition
is a variation of the Navier boundary conditions (see (3.5)), hence the treatment of the normal
stress on the boundary resembles that in the Navier conditions. On the other hand, it can be
specifically interpreted as having a Navier part and an interaction part (see (3.6) and (3.3)). The
Navier part can be treated together with the conditions of the same type on the top and bottom
boundaries, while the interaction part requires extra work. Thanks to such coherent treatments,
we can take advantage of our previous works on the Navier conditions and prove the global
existence of strong solutions for this involved case within a reasonable length.

Our result (Theorems 6.2 and 6.3) is comparable to those obtained in [7,9,15] for single layer
domains. It only differs from [4, 12] for two-layer domains only on the technical dependence
on the domain’s thickness . Briefly speaking, the global-in-time strong solutions exist even
when the initial data has large H'-norm and the body force has large L?-norm, both expressed
in terms of . Moreover, thanks to strictly positive friction coefficients, none of the zero average
condition in [4, 12], or the orthogonality condition in [15], or the generic domain condition
in [8,9], is imposed. It is noteworthy that our result shows that the larger friction we have on
the top and bottom boundaries, the larger (in L?-norm) initial and body force are allowed. The
reader is referred to Remark 6.5 for more discussions on the result.

The article is organized as follows. In section 2, we introduce the problem, formulation,
notation and basic assumptions. In section 3, properties of vector fields satisfying the boundary
conditions are presented. These include both their behavior on the boundaries and their norm
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estimates on the whole domain. In section 4, we define the Stokes operator A correspond-
ing to our boundary conditions, and derive the functional form of the NSE. Relations between
Lebesgue and Sobolev norms with A-related norms are obtained. Particular is the H?-norm
relation and comparison estimate in Propositions 4.3, 4.4 and Corollary 4.5. We also define
the averaging operators M, and M in subsection 4.2 which play crucial roles in our result’s
formulation and in obtaining various estimates. Inequalities of Sobolev, Poincaré and Agmon
types for these averages and their corresponding oscillations are derived with constants depend-
ing explicitly on the domain’s thickness and fluids’ viscosities. In section 5, the key nonlinear
estimate is proved under the main assumption (5.1) on the viscosities and friction coefficients.
It is derived with the desired boundedness of the term e[| A'/?u||2, kept in mind. In section 6,
we state and prove the main theorem of the paper (Theorem 6.2). Its argument is arranged for
clarity with the use of Lemma 6.4. This theorem is restated in the form of Theorem 6.3 without
using the Stokes operator. Final comments are given in Remark 6.5. The Appendix recalls some
auxiliary inequalities for thin domains.

2. PROBLEM FORMULATION
Let T? be the two-dimensional torus (R/Z)? and € € (0, 1]. Let Q. and Q° be two layers
Q5 = {(2/,23) : 2/ € T?, h(2') < z3 < b5 (')},
QO = {(2/,23) : 2" € T? he(2)) < w3 < h5(2))},

where h§ = €go, b5 = (g0 + g+) and h® = £(go — g—), with the functions go(z'), g (2’) and
g_ (') belonging to C*3(T?), and g, , g_ positive everywhere. Hence there is a positive constant
co > 0 such that

¢ < 9o g+, 9- <o T lgollca(rz), 19+ llczcrzy, l9-llcsre) < co.

We will use the same notation ¢ to denote positive constants in our assumptions below.
We define our two-layer domain by €2 = Q5 U )¢ . The top and bottom boundaries of {2
are

I ={(2/,23) : 2’ € T, a3 = h ()},

T = {(«,x3) : @' € T?, w3 = he (2')},
while the interface boundary is

5= {(«/,23) : 2’ € T2, a3 = hi(a')}.

Each layer )7 , resp. ()¢, is occupied with an incompressible viscous fluid of velocity u, =
uS (z,t) forx € QF and t € R, resp. u_ = u°(x,t) forz € QF and t € R, pressure
p+ = pi(x,t), resp. p_ = p° (x,t), having kinetic viscosity v, = v7, resp. v_ = v°. Each
uy(x,t), resp. u_(z,t) satisfies the corresponding NSE on Q< , resp. 2° with an outer body
force f1 = fi(x,t),resp. f- = fo(x,1).
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For each vector field u, we denote by Vu the 3 x 3 matrix of its partial derivatives, that is,
(Vu);; = 9% fori, j = 1,23. We also denote
J

~ Vu+ (Vu)*
=—

Below, we will drop the superscript € except for the domain notation €2°, Q% , Q¢ .

Du where (Vu)* is the transpose matrix of Vu.

The velocity fields v, and u_ satisfy the following boundary conditions.
e The Navier friction conditions on the top and bottom boundaries:

uy - Ny =0, [ve(Duy) NiJian +v4us = 0on Ty, (2.1)
u_-N_=0, [v_(Du_)N_]tan+y-u_=0o0onl"_, (2.2)
where v, = 79 and 7~ = 7¢ are positive constants. Above, N, resp. N_, is the outward

normal vector to the boundary of €27, resp. 2°. The subscript “tan” denotes the tangential
component of a vector on the boundary.
e The interface boundary condition on ['y:

Uy - N+ = 0, [V+(DU+)N+han + ’}/O(u+ - u,) = O, (23)

u_-N_=0, [v-(Du_)N_]tan+Y0(u- —us) =0, (2.4)

where ) = 7 1s a positive constant.
For a unified treatment of equations on both (27 and )° , we introduce the index notation
¢ € {+,—} and set
— ifit=+
— = ’ (2.5)
+ ifr=—.

In calculations, when not used as an index, i.e., not a subscript, ¢« = +, —, is interpreted
as (+1), (—1), respectively. Therefore the previous convention (2.5) for —¢ agrees with these
numeric values.

With the notation ¢, we rewrite h, = £(go + ¢g,) and have

QF = {(2,23) : o' € T?, a3 is between ho(2') and h,(z')},

L

D= {(@a5) 12/ € T2, a5 = hy(a')}.

Note that 92 =1, UT'yand N_, = —N, on I'y.
We also rewrite the Navier boundary conditions (2.1) and (2.2) as

u, - N, =0, [v,.D(u,)N]tan +yu, =0o0nT, fore=+,—, (2.6)
and rewrite the boundary conditions (2.3) and (2.4) as

u, - N, =0, [v,D(u,)NU]an + v0(u, —u_,) =0onTyfore. =+, —. 2.7
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To avoid writing the + and — components repeatedly like in (2.6) and (2.7), we pair them
together into vectors:

QF = [, 0, 09 = [997,09°], T = [[,,T_] and Ty = [Ty, Ty},

(2.8)
u = [’u’-i-?u—]? b= [p+vp—]’ f= [f-l—vf—] and v = [V-HV—}'
The initial value problem for the NSE in €2° is written in the form:
ou .
E—F(U'V)U—I/AU: —Vp+f onQF x (0,00),
divu =0 on £2° x (0, 00), (2.9)
u(x,0) = u’(x) on Q°,
where u° = [u%, u’] is the known initial velocity field.
We will write uy = (uy 1, Uy 2, Us3), U— = (u_1,u_o,u_3) and u = (uy, us, uz) where

w; = [u4;,u_;| foreachi =1,2,3.
Denoting N = [Ny, N_] and v = [, _], we rewrite the set of boundary conditions (2.6)
and (2.7) in the following compact forms:

wu-N=0 onT, (2.10)
[V(Du)Nlgan +yu =0 onT, (2.11)
and
u-N=0 only, (2.12)
[V(Du)Nltan + y0(uw — Su) =0 onTy, (2.13)
where

Su = Sluy, u_] = [u_, ug].
The slip conditions (2.10) and (2.12) can be combined into
u-IN =0 on0r. (2.14)

We now discuss the relations between viscosities v5 , v2 and friction coefficients <, v, 75
as € — 0. (We remind the reader that the superscript ¢ here is an index, not an exponent.)
First we assume that v, and v_ are comparable to each other as € — 0, that is,

Ve Ve
0 < lim inf : lim sup 2 <00, L=+4,—

<
N0 VR P ER T o VAP AP

Assume that there exist d,,0_,dy € [0, 1] such that

g 15
0< liminfs"sﬂ—L < limsup€’6LL < oo fori=+,—,
en0 vy e\0 vy
and
o % 50 70
0 < liminfe 22 < limsupe -2 < co.
N0 v; e\O0 vy
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For the sake of simplicity, we consider through out that
0<dyr=06_=06< < 1. (2.15)
Taking into account the above conditions, without loss of generality, we assume

v, vl >t | (2.16)

o'’ V], < v v < e’ |v], and  cpte™ |v|, <o < coe® |y, , (2.17)
forall € € (0, 1], where |v|, = (v 4+ v2)1/2

Notation. Concerning the vectors in (2.8), for any f, f = [f., f_] and u = [uy,u_]| we
denote

flu) = [f(uy), fu)] and  f(w) = [fi(us), f-(uo)].
For example, |u| = [|uy|, [u_|] and vAu - v = [v Auy vy, v_Aul - v_].
The usual Euclidean length of vector w is denoted by

[ul, = (Jug * + Ju-]*)2.

Obviously,
[Sul, = |ul, . (2.13)

For integrals, we use the notation

. f(u)de = [ fi(uy)da, . ff(u,)d:r;},

QF
while

fu)dx = S (uy)dz + f-(u-)da.
Q° Qs

0%
Similar notation is used for surface integrals on 0€2°, I" and T',.
The Lebesgue and Sobolev spaces on €2° are naturally defined as follows. Let

LX) = LX(Q) & L* () = {u=[uy,u_] :u, € L*(Q), .=+, —}. (2.19)

This space is equipped with the inner product

*

(w,v) = (ug,v4)r2(02) + (U—, V) 200 ) = / u-vde.

We denote the corresponding norm by ||w|| 12, while denoting

HUHLQ = [HU+HL2(Q€+)> HU*HLQ(QE,)} # ||ull Lz = (|’U+Hi2(gi) + HU+”%2(95))1/2'

The spaces H'(£2°) and H?(2°) with their norms are defined similarly. Same definitions
and notations apply to the spaces (L?(Q°))*, (H'(€2°))* and (H?(¥°))*, for k = 1,2,3, ...
The norms in those spaces will be denoted by the same notations ||-||zz, |||z and ||| 2, dis-
regarding k. Such disregard of & will be used also for pairs of norms [[u]] . [[u]],. and

] e
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Throughout, the expression
[ug,u_] = (<, >) vy, v-] + Cmeans uy = (<, >)vy +Candu_ = (<, >)v_ + C,
where C' is a number. Also, we write
fi= (L) fa+ O(e”) f3s where f3 > 0, to indicate that f; — fo = (<) fy with |fy| < Ce®fs,

when € > 0 is sufficiently small.

3. CONSEQUENCES OF THE BOUNDARY CONDITIONS

We present in this section some properties of the vector fields satisfying the Navier and/or
interface boundary conditions. They extend the similar ones for Navier friction boundary con-
ditions in [2,7-9]. For a function u(z) and a vector 7 € R? not necessarily having unit length
we denote

We restate Lemma 4.1 of [8] for our two-layer domain (see also [2]):

Lemma 3.1 ( [8]). Let u satisfy (2.10) and T be a tangential vector field to I'. Then

a—u-N+a—]\r-u:0 on T. (3.1)
or or
If, in addition, u satisfies (2.11) then
%'T:u-{%—f—QgT} on T (3.2)
and
N x (V xu) =2N x {n x (Vn)"u) - gN xu} on T, (3.3)

where n is any C'-extension of one of the four vector fields [+N,,+N_] from T to its neigh-
borhood.

For the interface boundary, we obtain similar properties:

Lemma 3.2. Let u satisfy (2.12) and T be a tangential vector field to I'y. Then

N
6—u-N—i-a—~u:0 on Ty. (3.4)
orT orT
If, in addition, u satisfies (2.13), then
811, . (9N Yo
a—N-T—u-W—QZ(u—Su)-T on Ty (3.5)
and
N x (V xu) =2N x {n x (Vn)u) - %N xu} — Q%Su on Ty,  (3.6)

where nv is any C*'-extension of one of the four vector fields [+N, , +N_] from Ty to its neigh-
borhood.
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Proof. Identity (3.4) is the same as (3.1). For (3.5), we observe that on I', the relation (2.13)
implies v[(Du)N] - 7 = —yy(u — Su) - 7, which in turn yields

(Vu)N -7+ (Vu)T - N = —2%(u —Su) - T,
hence 5 5
u u Yo '

Therefore (3.5) follows from (3.7) and (3.4).
We now prove (3.6). Let w = V x u. Let 71 and 75 be two unit tangential vectors on I
which are orthogonal to each other. Then
O(u-n) d(u-n)
T9o —
0’7'1 8’7'2

Since n = +7 X T3, we have on I’y that n X V(u - n) = 0, hence

0=

T1=(T1 X T9) X V(u-n).

0=nx[(Vu)n|+n x [(Vn)

(3.8)
=nx [(Dun — (Ku)n|+n x [(Vn) ul,
where Ku = 1{Vu — (Vu)*}. Note that
n X [(Du)n — (Ku)n] = N x [(Du)N — (Ku)N],
with
(Ku)N = %w x N,
and, thanks to (2.13),
N x [(Du)N] = N x [(Dt)Nlian = —%N X (u — Su).
Thus we have from (3.8) that
0= —%N X (u— Su) — %N X (wx N)+nx|[(Vn)u.
Therefore
—N X (N xw) =2nx [(Vn)'u] — 2%N X (u— Su). (3.9)

Applying (IN x) to (3.9) and using the identity a x (a X (a x b))) = —|a|?*(a x b), we obtain
N xw=2N x {nx (Vn)*u) — %N x (u—Su)} on Ty (3.10)

Note that N - Su = —SN - Su = 0onTIy. Then N x (N x Su) = —Su on I'y. Therefore
(3.6) follows (3.10). [

To make use of properties (3.3) and (3.6), we specify below extensions of N, from I, to the
whole domain T? x R. We define for x = (2/, x3) = (21, 19, 73) € T? x R that

t(=01h,(2"), —02h,(2"), 1)
\/1 -+ |V2hL(I/)|2

M($/7I3> = ) (311)
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where Vo = (0/0z1,0/0x2). Similarly, for I'y as part of the boundary of Q°, we define
t(Orho(x"), Oaho(x'), —1)

VI Vaho(@)P

Then N, and N(),L, for . = +, —, are x3-independent vector fields on T? x R that satisfy
N,| =N,andNy,| =N,

r, o
For specific tangential vector fields on 0€2° and their extensions, we define for x = (2/, x3) €

T? x R:
(@) = (e + O (a)es) [\ 1+ Ok (@), ==+ j=12, (313

() = (e + Oiho(a')es) /1 + [Oiho(@) 2, j=1,2, (3.14)

where {e1, 3, e3} is the standard canonical basis of R,

No (', 25) = (3.12)

On each boundary I',, for « = 4, —, the two vectors TLl and Tf form a basis of the tangent
space to I',. Similarly, the two vectors 7 and 7¢ form a basis of the tangent space to I'g. They
are all defined on T? x R and are independent of z3.

For these vector fields, we have the following estimates in T? x R:

VN VNGl V7], V7] < Ce, (3.15)
les — N, les + NG|, lej — 771, |ej — 7d| < Ce (3.16)

for . = 4+, — and j = 1, 2. For vector forms, we denote
N =[N,N] and Ny =[Ny, No_], (3.17)
' =1[r],77] and T} =[r],7]] forj=1,2. (3.18)

For the orthonormal frames on the boundary, we define
Fl=7 PP =N x7' and T, =7}, T2 =Ny x T1. (3.19)
By (3.15) we have for 7 = 1, 2 that

IV#|,|V7;| < Ce inT? x R. (3.20)

As seen in [7-9, 15], boundary conditions affect estimates of different Sobolev norms. For
instance, the following special Poincaré-like inequality for the third component of a vector field
is proved in [9].

Lemma 3.3 ([9], Lemma 4.7). If w is in H'(Q2°)3 and satisfies (2.14), then

[[us]] . < Ce[[ul] . (3.21)

where C' > 0 does not depend on .

For the partial derivative in x3, we have the following version of Lemma 4.8 in [9].
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Lemma 3.4. Let u belong to H?($¥)? and satisfy (2.10) and (2.11). Then
~ .
[[O5wj]] e < Cel[u]] o + CVEZ[[w]] 2y T =12, (3.22)
where C' > ( is independent of c.

Proof. The proof is the same as that of Lemma 4.2 in [8], using the boundary I', in place of I',
there. Let t = +, — and 7 = 1. Using trace inequality (A.1), we have

103wl r20) < OVElO3uallrawr,) + Cel| 0305wl r2(0,)- (3.23)
Onl,:
Osu,1 = (Vu,1) - (es — ¢N,) + «(Vu,1) - N
= (V1) - (e3 — eN) + (V) (er = 7)) - N+ (V) 7)) - N,
= (V1) - (e3 = N) + (V) (er = 7)) - No+ o((Vu)N,) - 7).

Take T in Lemma 3.1 to be 7! defined by (3.18). Since N = A on I, and we have from (3.2)

that
(Vu)N,) -7} =u, - (VN)T}) — 2ZLUL ! onT,.

Then thanks to (3.15) and (3.16), we obtain

|03u,1| < CelVu,| + C (e + )]ub| < CelVu,| + C—|uL] onl,.
Applying trace inequality (A.2) to |Vu,|, we have

1 .
I0suallawy < el +velullnen) + ez,

L

Together with (3.23),
[03u,1 | 220, < CE:HULHH2Q)+C\/_ HuLHL2 L=4+,—.
Therefore we obtain (3.22) for j = 1. The case j = 2 is similar. 0

Comparing (3.22) to the Poincaré inequality (A.1), we not only replace dsu; by u for the
L?-norm on T but also gain the factor v /v ~ ° .
Using estimates (3.15) and (3.20), we restate the integration by parts result of Lemma A.1

n [8] as follows.

Lemma 3.5 ( [8]). Let ¥ = T'o, resp. I'.,I'_. Suppose u(x) and v(x) are two functions on .
and () is 73 (x) or Tj4(2) , resp. 7L(x) or #.(x), 71(x) or ¥ (x), with j = 1 or 2. Then

/— vdo = — /—U-ud0+0(6)/|u'v\da. (3.24)
» OT s

Next, we compare the norm ||VZul[ 2 with ||Awul|/z:. We obtain a version of Lemma 5.4
in [8].
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Lemma 3.6. Thereisc; € (0, 1] suchthat ife € (0,21] and w € H?(Q°)? satisfies the boundary
conditions (2.10), (2.11) and (2.12), (2.13), then

[ 2V2ul7. < C([v'?Au|7z + v, [[ulf) (3.25)
and, consequently,
V2l g2 < C(|Au] 2 + [lullm). (3.26)
Proof. We follow the proof in Appendix A of [8]. Integration by parts twice gives
/ v|Viul’dz = / v|Aul*dz + I, (3.27)
€ QE
where ,
* 10|Vu| ou
Iy = — — -Au | do. 3.28
0 /895”(2 ON ~ ON “) 7 (3-28)
We write Iy = o+ + Iy + oo where Iy, Iy _ are the integrals on I';. and I'_, respectively,
and )
*  [(10|Vul ou
I — — -Au | do. 3.29
00 /FO"(z ON  ON “) 7 (3-29)

Exactly as in [8], by using extensions 7', #2 and N and working only on the separate
components ', and ['_ of I', we have

Iy, = O(e)y, / \Vu,|* + |u,|*do, (3.30)
FL
hence N
Ioy+ 1o = 0(5)/ v(|Vul* + |ul*)do. (3.31)
IN

(Many arguments leading to (3.30) are repeated below while we estimate / .)
Let 71, 75 be defined by (3.19). We have

V71, VT2, V271, [V2F2) < Ce onT? x R. (3.32)

In this proof, for calculations below, we use the extension N defined in (3.17) for IN on
I'y. Therefore, regarding estimates of derivatives of IN on I'y we will use the following

IVNo|, [V?No| < Ce onT? x R. (3.33)

Recall that { 71, 72, N } restricted to Iy forms an orthonormal frame on T'y.
For Iy o we have similar calculations up to (A.9) of Appendix A in [8]:
* 5 *u ou o + * y 0*u ou
- — 0' —_—— . ———
r, OTION 07, r OT20N 079
/*(82u+82u>0ud+J
_ v . g
r 011071 072079/ ON
=Lt L+ ls+J =Y (I+ oy +Is, + ),
t=+,—

]070 = [oa
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where [J,| = O(e)v, [;, [Vu,[*do. Same as in [8],

I3,L = II,L+I2,L+O(€)VL |VUJL|2dO'7 L=+, —.

o
Therefore
Lo =2(I) + L) + O(g)/ v|Vu|*do. (3.34)
Ty
Combining (3.34) with (3.31) gives
Iy=2(L + 1) + 0(5)/ (|Vul + [uf)do. (3.35)
0Q°

We now estimate [, and I,. For 7,7 € {7, 72}, taking the derivative J/07" of identity
(3.5) on I'y gives

0*u ou ON ou ON 0*N
Gon TN = o or Y Gror) (336
_QE—ﬁ(u—Su) 'T—QE(U—SU)~ or |
v ot v or'

Using (3.33) to estimate the first and second order derivatives of IN on I'j) we can bound the
second term on the left-hand side and the first two terms on the right-hand side by O(e)(|Vu| +
|u|). Using properties (2.17), (2.18) and (3.32), we bound the last term of (3.36) by O(¢) |u|,.
Thus, we have

O*u Y0 O(u — Su)

SN T _2;T -7+ 0(E)(|Vul + |ul,). (3.37)

For the integrand of ;, writing the dot product in the orthonormal basis {71, 72, IN } gives

J*u ou Pu ou
YoroN o V<8%18N ' Tl) (a_a ' Tl)

2 2
wo(5egm ™) (55 7) v (Gegw M) (55 N)

By (3.37), the first term on the right-hand side of (3.38) is

2
(570w ™) (52 ™)

_ { _ 270<M : +1) +OE) (| Vul + |u|*)} (‘3—“ : ﬁ)

8"7'1 8%1

= 27 (M : 7-1> <8_u : 7-1> +O0@E)v(|IVul? + |u|, |Vul).

0Ty 0T

(3.38)
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The second term on the right-hand side of (3.38) is treated similarly. Also, we use (3.4) for the
last factor of (3.38). We obtain

*u ou

YorON o7,

_—270(—8("8;15“) 7 )(g—f” 1) —270(—6("a;f“) 7 )(5—2 ) (339
. u(afng -N> @—Z : u> +O0(EW(|Vul + |ul, [Vul).

We have on I'y that SIN = —IN, ST = 71, hence ST, = —75. Using these properties and
writing the following sums explicitly, we obtain

(u— Su) ou _|o(u— Su)
2 Z [( o7 '@(a?{“ﬂf‘ o, !
(u—Su) _ ou _|o(u— Su)
’ Z [( 071 2)(371'7%— ‘T'TQ
Therefore, summing the + and — components of (3.39) and integrating over I’ yields
0*u ou
h= Z / ‘lo70N afj do

u @N 2
_/FO ym : {N(u , 8—‘7_1)}d0 + O(e) |v|, FO(\VU|* + |u|, |[Vul,)do

We apply Lemma 3.5 to the middle integral of (3.40):
* 0 /0u ON
oo (on) AN (5 ) o
* OJu 0 ON *
_/FOV&_Na_i-l{N<u8_7-1)}da+O(€)/FOV

o o[ (e ) o

— 0(e) /F*uyvumvm+|uy)da+0(e)/ V| Vul[ulde.

0 To

(3.40)

(For the last identity, we use (3.33) again to estimate N /07;.) Therefore, it follows (3.40)
and Cauchy’s inequality that

L= Ce [l (Val + fuflydo < Celol, [ (Vuf + uP)do
To Ty
Similarly,
I, < Ce |1/|*/ (|Vul]* + |u*)do
To

Then combining (3.35) with above estimates of [y, /5 and using the trace inequality (A.2) we
have

I, < Ce \u\*/ (Val + [uP)do < C v, (ull + 2] V7u|2). (3.41)
o0Ne
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By (2.16), it follows (3.27) and (3.41) that
[ 2VPulf7. < [v2Au|7 + C |, [lullf: + C%l0! 2 VPul|7.. (3.42)

For ¢ > 0 sufficiently small, the term Ce?||v'/2V?u||2, on the right-hand side of (3.42) can
be absorbed into the left-hand side, hence we obtain (3.25). Then by (2.16) again, inequality
(3.26) follows (3.25). The proof is complete. ]

For further estimates in sections 4 and 5 below, we need to apply (3.3) and (3.6) with the
same extension . The above extensions N and N, however, cannot be matched on I" and T
in general. Therefore we introduce new extension vector fields in the following.

For z = (2/,23) € T? x R, define

~ 13— ho(2) B h,(2") — x5
M(I'> = W L(LU) —ngb(x,) NO’L(JI) (343)
and its related function
= 23— h0($,) " hL(.CE,) — T3 7o

ThenM|F =N, and./\NfL

r, = — V.. We have on T? x R:
Nl [0:NG] < Ce, - forj =12, INal, [05NG], [V2NG] < C, (3.45)
N, +Nou| < Ce, [N, =Ny < C. (3.46)
Also, AZ/L|13 = :,LZNL and J\:/’L|FO = Z—?NL and

V| < CW <CE, |VoN| <O, |0N,| <O onT2x R, (347)

L

(Above, we used the facts 0 < 6 < dy and 0 < € < 1.) Therefore

VN, < Ce1 onT? x R. (3.48)

Let N = [/\~/'+,/\N/' _] and N = N, N_]. Then N is an extension of the upward/downward
normal vectors on the boundary 0€2°.

Lemma 3.7. Suppose u € H*(Q°)? satisfies the boundary conditions (2.10), (2.11) and (2.12),
(2.13). Then

N x (Vxu)=N xG(u) on T, (3.49)
N x (Vxu)=N x Gu) - Z%Su on T, (3.50)

where G(u) is a vector field on S defined by (3.53) below and satisfies the following estimates
in QF:

|G(u)| < Ce°lul, (3.51)

VG (u)| < C°|Vu| + & ul). (3.52)
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Proof. Using the identity (3.3) and (3.6) with n = N , we have (3.49) and (3.50), where the
vector field G(u) is defined on €2° by

G(u) = GY(u) — GP(u), (3.53)
with N N .
GD(u) = 2N x [(VN)*u] and GP(u) =2N x u. (3.54)
As in [9, 15], we have
GV (u)| < Celu] and |[VGW(u)| < Ce|Vu| + Clu| on QF. (3.55)

By (3.47) and (3.48), one obtains

G (w)| < 2N |u| < C'lul, (3.56)
VGO (w)| < C(|Vu| [N+ [u| [VAN]) < CE|Vu| + 5 ul). (3.57)
Combining (3.53), (3.55), (3.56) and (3.57) yields (3.51) and (3.52). O

The NSE has an important curl structure. The following lemma connects this curl structure
to the boundary conditions, especially on the interface.

Lemma 3.8. Ifu € H*(Q°)? satisfies (2.10), (2.11) and (2.12), (2.13), and ® € H'(Q°)3, then

/*V(VX(qu))-q)dm:/*V(Vx@)-(VXU—G(U))dm

>4 €

*

+ /* v® - (V x G(u))dx — 270/ u-SPdo, (3.58)

5 Ty
where G(u) is defined in Lemma 3.7.

Proof. Let w = V X u, one has
/:V(Vxw)-(IJda:—/:mw(Vx@)dw—i—/*su(wa)-(I)da.

For the boundary integral, by (3.49) and (3.50), "

/8* V(Nxw)-q)da':/*u(N><w)-<I>da'+/*u(N><w)-<I>d0'

Q° r Ty

:/ V(N xG(u)) - ®do—2y [ Su-®do
T'uTl'y o

:—/ V((IJXG(u))-Nda—ZWO/ u-SPdo.
o0° To
Applying the Divergence Theorem to the integral on 0€2° gives

*

/8* V(@ % Glw) Ndo = [ vV (® x Glu)da

Qﬁ £

_ / U(V x &) - Glu) — v® - (V x G(u))da.

€
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Combining the above calculations, we obtain (3.58). O

Comparing Lemma 3.8 with its counterpart for a single layer domain — Lemma 5.2 in [8] —
the additional boundary integrals on I'j in (3.58) shows the interaction between u, and ®_, on
[y fore =+, —.

4. STOKES AND AVERAGING OPERATORS
4.1. Stokes operator and functional form of NSE. For u = [u,,u_| € H*(€2*)? and v =
(v, v_] € H'(9°)3, we have the following Green’s formula (c.f. [15,25]):

/QE vAu -vdx = /E —2v(Du : Dv) +v(V - u)(V - v)dz

+ | 2r(DWN) v (Y w(v- N)}do, @1

where the symbol : denotes the usual scalar product of two matrices.
If w is divergence-free and satisfies the boundary conditions (2.10), (2.11) and (2.12), (2.13),

and v is tangential to the boundary 0€2° then

—/ VAu-vdm:2/ v(Du : Dv)dx

4.2)
+2/'yu-vda+2’yo/ (u— Su)-vdo.
r )
Consequently, we obtain
—/ vAu - vdx = E(u,v), (4.3)
where
E(u,v) = 2/ vDu : D'vd:c+2/ Yu - 'vda'—k%/ (u—Su) - (v—Sv)do. (4.4)
c r To
In case u = v we have .
—/ vAu - udr = E(u). (4.5)
where F(u) is defined by
E(u) = E(u,u) = 2/ v|Dul*dx + 2/ vy|ulPdo + v | |u— Sul*do. (4.6)
e r To

As with [9, 15,25], a Korn’s inequality is needed for the coercivity of E(-,-).

Lemma 4.1. There is €5 € (0, 1] such that if e € (0,e5] and u € H'(Q°)3 satisfying (2.14)
then
v ullze < e E(u)?, 47)
VLl < enB(w)'?, (48)

*

Ew)? < e v (|Vaul g2 + e® 2 12) < V2@ 2 w2 i, (49)
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where c; is a positive constant independent of € and v.

Proof. By Lemma 4.13 of [9] applied to each domain 2,, we have
|2Y2Vul2, < 4|2 Dul|?; + C|lv'?ul?2, < 2E(u) + C|jv?ul2.. (4.10)
By Poincaré’s inequality (A.1),
v a3 < O w2 Vul + Celu2ula .
By relation (2.17), the last L?>-norm can be bounded by
122y < Clle™ >y Pullam < Ce Eu).
Hence
[0 2|2, < C2|[v 2V, + C' P E(u). (4.11)
Using this in (4.10) yields
|v2Vu||2: < 2B(u) + C2||v'?Vul2, + Ce' P B(u) < CE(u) + C2|[v/*Vul|2..
For sufficiently small € we obtain
V2V ul2, < CE(u). (4.12)

By (4.11) and (4.12), we obtain (4.7). In turn, (4.7) and (4.12) imply (4.8).
By definition (4.6), property (2.18), relations (2.15) and (2.17) and the trace inequality (A.2),

E(u) < 2|v|, [Vulj: + O [, [|ul|7: o0
<2, [Vul}: + Clvl, & (el Vulf + = ulli:)
< Cll, IVullz: + Clwl, e lulz.
Thus one obtains the first inequality in (4.9). The second one is obvious. 0J

We now present the functional formulation for the NSE in the context of boundary conditions
(2.14), (2.11) and (2.13). First, we recall the Helmholtz-Leray decomposition:

LX)’ = H, @ H;, (4.13)
where
H ={uc L*(Q)?:V-u=00nQ° u-N,=0ond},
H ={V¢:pe (D)}
Then we have for 2°:
L*(Q°) =H o H, (4.14)
where
H=H,oH ={ucl?*Q):V-u=00n9Q°, u-N =0ondQ},
H*=Hr® H-={V¢:¢c H(Q)}.
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Let P, be the orthogonal projection from L?*(Q2°)3 onto H,. Define the Leray-Helmholtz
projection for the two-layer domain Q° by P = [P,, P_| = P, @ P_, i.e., P is the orthogonal
projection from L?(Q2°)3 onto H.

Define V = H'(Q2°)> N H.

Consider € < ¢(, where ¢y is from Lemma 4.1. By the same classical arguments as in [4,12]
and by Lemma 4.1, there exist a bounded operator A : V' — V' such that

(Au,v)yry = E(u,v), u,veV,
and a bi-linear form B(-, -) from V' x V to the dual space V//, such that
(B(u,v),w)yy = ((u-V)v,w) forallu,v,weV. (4.15)

The domain of A, considered as an unbounded operator on H, is a subspace D4 such that
Au € H forall u € D 4. Then A and D 4 can be characterized by

Dy ={u € H*(QF) : V-u = 0and u satisfies (2.10), (2.11) and (2.12), (2.13)}.  (4.16)

and
Au= —vPAu foru € Dy. 4.17)

We also have V = D 41/> — the domain of the fractional power A'/2.
The Navier—Stokes equations can now be written in the following variational form

d
EW’U) + E(u,v) + (B(u,u),v) = (f,v) forallv eV, (4.18)
or, equivalently, in the functional form as
d
d_? + Au + B(u,u) = Pf, (4.19)

in the space V. (For more details, see e.g. [5,27].) We have
(Au,v) = E(u,v), w € Dy,veV, (4.20)

|AY 2|2, = B(u), ucV. (4.21)

Below, we find relations between the Lebesgue and Sobolev norms of u with the A-related
norms || AY?ul| 2, ||Auw||z2.
First, a simple interpolation inequality:

|AY w2, = (Au,u) < ||u||p2||Au| 2, w € Dy (4.22)

Lemma 4.2. There is a positive number ¢ such that for all € € (0, £5), one has the following:
(1) If w € V then

WL Jullze < ee =072 AV 2|2, (4.23)

W ([ul g < el A0l 2. (4.24)
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(1) If w € D 4 then

W, [Jullre < e’ 0| Au e, (4.25)
|1/|* |lw|lm < 025(1_5)/2||Au||,;z, (4.26)
|2 | AV 12 < coeT0/2)| Au]| 2. (4.27)

Proof. Thanks to (4.21), the estimates in (4.23) and (4.24) are restatements of (4.7) and (4.8),
respectively. For u € D4 and u # 0, thanks to (4.22) and (4.23), one has

A 2u)2, < e | Aull e < eac=D7 ]2 [ A 20 o | Au]

hence one obtains (4.27). Inequalities (4.24) and (4.27) then imply (4.26). Applying (4.23) and
then (4.27), we have (4.25). ]

Proposition 4.3. If u € D 4 then
|Au + vAul| 2 < C |, (£%||V2ul| g2 4+ 7|Vl 2 + 7wl 2). (4.28)

Proof. Let w = V x uw and ® = Au + vAu. Assume ® # (. By the Helmholtz-Leray
decomposition (4.14), ® = Vq where ¢ = [¢,,q_] € H'(QF). Since Au € H and ® € H*+
are orthogonal in L?(€2°)3, we have

/ ]<I>|2d:1::/ (Au+VAu)-<I>da::/ VAu-q)dw:—/ vV X w - ®de.
QE

€ € €

By virtue of Lemma 3.8 noting that V x & = 0, we obtain

|®?dx <

+2%‘ [N x (N x u)] - S do
QE

To

=1+ I, (4.29)

/* v® - (V x Clu))da

€

By Lemma 3.7,

I = / v® - (V x Glu))da| <

€

C’/ v|®|(°|Vul| + & ul)dz
QS
< Clwl 1®] AVl 2 + & ]2}

To estimate /5, we use an idea in [4, 15]. Shifting g, by a constant we can assume that g, has
zero average on §2,. Using a dilation argument (c.f. Lemma 3.8 of [15]), we have

lqllze < ClIVallL-.
Combining this with the trace inequality (A.2) gives

gl 2oy < \/—HQHLQ +CVellValr: < THVQHLz
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Letv = N X u. Then

Iy = 2| J]|, where J = / [—N x S®]-vdo.
o
Noticing SIN = —IN, we have
J = [SNXS(I)]~'vd0'—/[S(Nx@)]~vda—/(N><(I>)~S'vd0'.
Ty Ty Lo
Let 71 and 75 be defined in (3.19). We have N = 71 X 75 on I, thus

* *

B * B * 6q B 8q B

J = 110(N x Vq) - Svdo = /1“0 <8_7~'1T2 a—ﬂﬁ) Svdo
[T 0q . aq . .
=/ 97, (T2 - Sv) 97, (71 - Sv)do.

Applying Lemma 3.5 to this boundary integral on I yields
* (19S5 o118 o -
J=1| (-a (T2 5v) | 0T ”))da +0() [ la(F1 - Sv)| + |q(F2 - Sv)|do.
FO 8‘7‘1 87-2

To
Note |[Sv|, = |v|, = |u|,. Then

Y Oy Sv) 07 - Sv) /
1= [ (-a" 5 0" Ydo < 0) [ al.ful e

Since ST = 71 and ST9 = —T9, We obtain

1= [ (— a2 a2 400 [ al, ful o

:/F* (Sqa<%2.v) _Sqa(%l.v))da+0(€) . ful. do.

011 0T To

0

0

0

We have
'7~'1"U:'U,‘(7~'1XN):—U'7~'2 and 7~'2"U:U,'<‘7'2XN):U'7~'1.

It follows that

J:/F*Sq<8(u-7~'1)+3(u-7~'2)>d0+0(6)/r \q|, |u|, do

. 071 075
[ ou ou * 0T, 0T
_/I‘Osq<a—7~_l'T1+a—7~_2'T2>d0'+/I‘OSq<U'a—7~_1+U'a—7~_2>dO'

+0() | lal, |ul, do
To

* a 6
— [ Sa(Gr rit g 2)do +06) [ lal.lul.do
r

o 0T, 079 I
Therefore,

|J| S/ |q|*|Vu|*d0—|—O(5)/ \ql, |u|, do
1)

To
< Ollgl|r2y) IVl z2(rg) + ellwllz2(ry))- (4.31)
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Using (4.30) to estimate ||q||.2r,) and applying the trace inequality (A.2) to the remaining
terms in (4.31), we have
€
Ve
< Cll@e (I92ullzz + 7| Va2 + ]z ).
Thus, by (2.17),

Iy = 2301J] < C v, | lls2 (I1V2ull 2 + =7 [Vl 2 +elfull2 ).

C 1
1< Il ( IVl + VANl + - fulle + eVE Vi)

Combining above estimates for I; and /5 with (4.29) gives
1@[17: < I + L < Clvl, @2’ Vaul 2 + &7 ||}
+ O, @l (1 V2ul 2 + £ [ Vullze + e full2 ).
Then dividing both sides of this inequality by || ®||;2 # 0 yields
[Au + vAu| 2 = [ @]z < C |, (]| VPul| 2 + 7Vl 2 + 7 |ul|2),
hence we obtain (4.28). ]

Proposition 4.3 above is a counterpart of Corollary 5.3 in [8] and Theorem 2.1 in [7]. How-
ever, its proof is more involved due to the interface boundary condition expressed in /5, which
results in the term ||V?u|| 2 of higher derivatives. (See also [4, 15] for similar estimates.)

The equivalence between two norms || Aul| 2 and ||u|| g2 then follows.

Proposition 4.4. There is 0 < €, < min{ey, &9} such that ife € (0,e.] and w € D 4, then
O~ Az < [, lullgz < C(1+ 02| Aul| 2. (4.32)
Proof. Let 0 < ¢ < min{ey, &5} and u € D 4. On one hand,
[Aullz2 = [vP(=Au)|2 < V|, [|Aul[2 < Clv], [ullg.
On the other hand, it follows from Lemma 3.6 and Proposition 4.3 that
|[ullaz < Cllullm + IVl < Cllullm + C|Au] 22 + Cllufm)

< Cllull + C(|Aw+ v~ Aull + | v Aull2)

< Clullu + CE™ VPl gz + eVl g2 + &l 2) + C ] || Aul| 2

< Ce||ufl gz + C I, [ Aulle + C* Hullar + Ceul| 2.

Since 8§y > 0, for ¢ sufficiently small, absorbing C'e%||w|| ;2 into the left-hand side, using (4.25)
and (4.27) we obtain

| < C vl | Aul| e 4+ Ce®~ (92 |p| 71| AV )| 12) + C2 10 w1 ]| Aul| )
< C(1 4 0702y 1|71 || Au| 2.

Thus the second inequality in (4.32) follows. UJ
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Corollary 4.5. If 5o = 1, ¢ € (0,¢e.] and w € D 4 then
CH|Aullz2 < v, Jullm < C||Au]|L: (4.33)
and
|Au + vAul 2 < Clel|Au 2 + v A u 2 + ], £ ul|2)- (4.34)

Proof. In this case g — (14 6)/2 = (1 — §)/2 > 0, hence (4.33) follows (4.32).
By (4.28),

[Au + vAu|r2 < Clyl, eIVl + [Vl + 2 ull2).

Applying (4.33) and (4.24) to estimate the first two norms on the right-hand side, we obtain
(4.34). 0

4.2. Averaging operators. We extend the averaging operators M, and M in [8] (see also [9,
15]) for single layer domains to the two-layer ones. Their properties are stated below (c.f. [9]

for the proofs).
First, we define an averaging operator My on L*(2°) by My = [M", M, | where
o)) = - [ o () €T xR, (439
r) = T ,Ys)ays, r=\T,xs ) .
0 €L9.(2") Jho(a)

for . = +,— and ¢ € L*()). Then
MO¢ = [Mgr¢+7 M(;(b*] for ¢ = [¢+7 ¢*] S L2<Qe)3'

Note that (My¢)(z) is independent of x3. Also, My is an orthogonal projection on L?(Q2°),

hence
1Mol + | — Mogp|Z2 = |7 (4.36)
Define a function ¥ = [¢),%_] = (1;,15) on T? x R by
G) = (o, o) (@) 25 agix,) {(@3 = ho)Vahu(a') + (h(a') = 25)Vaho(a') }  (437)

fore =+, —, and z = (2/,23) = (21, 22, x3) € T? X R, where we recall Vo = (0/dx1,0/015).
Note that

Ui, = Vaho, Gy, =Vohi, Ouh=(1/9)Vag 1=+, (438)
| < Ce, [0s9| <C, |Vap| <Ce, [V <C. (4.39)
Letp € H'(Q°) and j = 1,2, then
;Mo = Mo(0;¢) + Mo(v;050). (4.40)
Consequently, for m = 0, 1,2, and ¢ € H™(€2°),
[Mo@|[rm ey < C(m)|| @] m @), (4.41)

where positive number C'(m) is independent of .
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Letu € H and v = (Myuy, Myus). Then
1
Vy-v=-0- Evgg, where g = (g4, g_]. (4.42)

Next, we define the operator M. For u = (w1, us, u3) € L*(Q°)3, let
v = (Mouy, Mous)

and define
Mu = (v,0 - ) = (Mou1, Mousg, ¥, Mouy + 9, Myus), (4.43)

Same as in [9] we have that Mu € H provided u € H.
Letu € H'(2°)? and v = Mu = (v, v3). Then we have

lvsg| < Celv|, |Osv3] < Clo|, |Vavs| < Ce(|v|+ |Vap|) in Q° (4.44)
and, consequently,
lv| < Clo|, |Vl < C(Jo] + |Vaeo|)  in Q°. (4.45)
Combining (4.45) with (4.40) and (4.41), we have for m = 0, 1,2, and u € H™(£2°) that

H’U’ H™(£2F) < C(m)HuHHm(Qs) (446)

Applying 2D Ladyzhenskaya inequality (A.6) to v, we derive from (4.45) that

[ol|p+ < Ce™ V4|2 |lul|? foru e HY(QF)?, (4.47)
Vol < Ce Va2 ullls  foru e H*(QF)?. (4.48)

Now, let w = u — Mwu. The following Poincaré’s inequality for w is from Lemma 3.5
of [9]:

Lemma 4.6. Ifc € (0,¢.] and u € H'(Q2°)? satisfies the boundary condition (2.14) then
Hw||L2 < C&”V’UJHLz (449)

Consequently,
lwllz= < Ce w2 | A ul| 2, we V. (4.50)

Above, inequality (4.50) results from (4.49) and (4.24).

Lemma 4.7. Assume 6g = 1 and ¢ € (0,¢.].
(i) Poincaré inequalities. If u € D 4 then

IVw|z < Ce \V\:l |Aul|zz < Cellu|| g2, 4.51)
w2 < Ce? v|" || Aul| 2 < Ce?||ul| g2 (4.52)

and, consequently,
|lw|| g < Ce |1/|*_l |Aul|z2 < Cel|ul|ge. (4.53)
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(i1) Sobolev inequalities. If u € V then
lwllze < Cllw||as < C |, | A 2. (4.54)
If u € Dy then
IVwllzs < C vl || Aull 2 < Cllul| 2. (4.55)
(iii) Agmon inequality. If u € D 4 then
Jwl| e < CeY2v| || Aul| 2. (4.56)
Proof. (i) Same as Lemma 4.3 in [8],
[0iwj|[ 12, [[Osws|| 2, ||Ows]r2 < Cellullgz, 4,5 =1,2.

By Lemma 3.4, (2.16) and (2.17),

1
1/2

(z)l/Q ) ’71/2,11,‘

|9s0;l22 = sz < € (<llullw + <2 !

14 LZ(F))
< Cleflullge + 2 (w712 A2 2).

Summing up the above estimates for ||0;w|| .2, for i, j = 1,2, 3, and using (4.33) and (4.27),
we obtain

Vw2 < Celv| ' ||Aul| 2 + CeMHO2 [u| 12 (0-972 |p| 712 || Au)| 12)
< Celv|;" || Aul| 1,

hence inequality (4.51) follows. This and (4.49) imply (4.52).
(i1) and (iii) Now that we have (i), the proofs of (ii) and (iii) can be proceeded the same way
as in Lemmas 4.4 and 4.5 of [8]. O

5. ESTIMATE OF A NONLINEAR TERM

Regarding the nonlinear term in the NSE, here is the main estimate of the paper.

Proposition 5.1. Assume
2/3<d<1landd,=1. (5.1)
Given o > 0, there is C,, > 0 such that for any € € (0,¢,| and u € D 4, we have
(B(u, ), Au)| = ‘/ (- V)] - Au de|
< aflAul7: + cse'? [P |AV 2 u 2 ]| Au (5.2)
o+ Cae™ (W1 lule + lfwlz2 ) 420 3.

where ¢, is from Proposition 4.4, and c3 > 0 is independent of <, v, o and u.
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Proof. The equality in (5.2) comes from the fact that B(u,u) = P[(u - V)u] and PAu = Au.

We now prove the inequality. The proof follows the key steps in Proposition 6.1 of [8] and
uses many calculations there. Let v = Muandw =u —v,alsow =V X uwand ® = v X w.
We first rewrite

Ig—/ (u~V)u‘Audw:/ {ux(qu)—%V!u\Q}Auda}

5 £

€ € €

:/ (uxw)-Audm:/ (wxw)-Audm+/ (v X w) - Audx
=Ji1+ Jo— Js,

where
*

Jl:/ (w x w) - Audez, J2=/ ® - (Au + vAu)dx, ng/ P - vAudzr.

£ € €

Estimate of .J;. By Agmon’s inequality (4.56), Holder’s inequality and relation (4.24)
[N < [Jwllp w2 || Au] 2
< C("2 vl | Aullge) (w172 A2 1) | Aul 2,

hence
1| < CeV2 |w| P2 || AV 2u| 2 ]| Aul . (5.3)

Estimate of .J5. First, we apply (4.45) and Cao-Titi inequality (A.8) to have
1@]|2 < C= 20| L Il w2 lwll
< Ce™V2|u]| 2l e g2
hence by Lemma 4.2 and Corollary 4.5,
@22 < C= 2 ] || 22| A 2| o] Awe (5.4)
By Holder’s inequality and (4.34),
| Jo| < [|1®] 2 ]| Au + v A 12
< C||®| 2 (el Aull 2 + C [} | APl 2 + 27 [, [lullz2).
Using (5.4), we have
|Jo] < C(Joq + Joo + Jos),
where
Ty = 2 Ul | 2 AV o | Aul [,
Top = e 2w | 2 || 2 A P3| Aul

T = & 732 ||| 2| AV 2| 2 | Au 1
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Using (4.25) to estimate ||ul|z2 in Jo gives
Jon < O P | 2| APl | 2 Awl 7.

We define Jy = ¢ V/2 ||/ ||u|| 2| AY2ul| 2| Au| 1> and use it as an intermediate term
aiding other estimates. By Young’s inequality,

Jo < || Aul2s 4+ Coe vl ! |2 | AY 2|2, forall @ > 0. (5.5)

Using interpolation inequality (4.22) to estimate || AY/?u|| .2, but not || A*2u||2,, in Jo 5 and
then applying (5.5), we have

Jon < Jo < allAu|2e + Coc™ | Ju2a]| A0 2.
For J, 3, applying Young’s inequality yields
Jog < af| Aul[2s + Coc®®P 72| 2. || AV 2w 1.
Using (4.23) to estimate HuHi/f in the last product gives
_ _ _ 2/3
Tog < allAulf2s + Coe®3 2 a1 (0072 [u | [V || A2 12) P A 2|14
_ — 4/3
= af|Au2a + Cac® B [ V3 u| 15| AV 2w 2.
Since 6 > 2/3,
Jog < al|Aul2z + Coc™ [V ||ul 50| AV ul ..

Therefore we obtain

[l < 20 Aulff + CeY2 w| 72 [ AV 20 | Aul:
(5.6)
_ —1/3 4/3 —1
 Cae™ (W2l 15+ 1 el )1 A2

Estimate of J;. We have from Lemma 3.8 that

*

ng/*1/<I>-(wa)dw:/*l/(Vx@)-wdw—/ v(V x ®) Glu)dx

€ £ £

*

—i—/* vd - (V x G(u))da:—270/ u-SPdo
. T
= J31+ J3o+ J33+ J3a4.
e We estimate Js 3 first. By Lemma 3.7, Holder’s inequality, estimate (5.4) and Lemma 4.2,
[ Jas| < C |, ||@] 2 (e |ullan + el 2)
< Clul, (72wl ul 2 1A 2 ull e Awll )2 ) (o I 1A 2l + 7 2
< V2| Y | Al | Aull 4+ 272 a1 A P || A

L2
< C(Jog+ Jo3).
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Using above estimates of J5 2 and .J; 3 with an adjustment of v and C, to compensate the factor
C', we obtain

gl < 20f| Al + Cae™ (W17l + 7 uliE: ) 1AM 2ul 2 (57)
e We estimate J3 » next. This is similar to the corresponding estimate in [8]. Note that
VX®=(w -Vv—(v-Vw+w(V-v)—v(V- w).
Since v and w are divergence-free, we have
Vx®| =|(w:V)v— (v V)w| <C(|Vv||Vul + |[v| |[VZul). (5.8)
It follows from (3.51) and (5.8) that
Jssl < C |”|*/Q: 1V x ®|c’|ulde < C=’ |y|*/ﬂ*€(yv@||w| T 1ol [V2u))fulda
For the last integral, we apply (4.45), Holder’s inequality and (A.8) to obtain
o, [ VollullVulde < = v, [ (90| + [ol)lul Vulda
< O v, || (IVeo| + o)) |ul || 22| Vel 2
< O |, (2ol g7 10 e el 2 el 377) e

H? L2 H1

_ 1/2 1/2
< 2 |, [lul} a2 |l

and then by Lemma 4.2(1) and Corollary 4.5,
& lwl, /ﬂ | Volful[Vulde < Ce™ 2 w72 |lul| 12| AV 2ul |7, || Aul
< Clp <Cy.

Similarly,

ol [ follulVulde

QS

<Ce IVI*/QE 0| |u|[Vulde < C° ||, || o] [u] [|22]|VPu 2

< 2|, w2 llullmlull g < CY2 w2 [l 2| AV 2| Au 2

< Cd.
Therefore, by (5.5),

[ Js2] < 20| Aulf. + Cas™t [ |ull72|A 7. (5.9)

e We estimate .J5 ; by following calculations for the same term in Proposition 6.1 of [8] with
some alterations. We have

J371:/ V(w-V'v)-wd:c—/ v(v - Viw- wdez.
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It is well-known that the second integral vanishes. Hence

Jsq = / v(iw-Vv) wdr

£

*

:/ V((V X 'U)~V'U) 'wdw—i—/ u((V xw)-V'v) cwdx
1 2
SEIESE)
For Jéll) , we have exactly the same as in [8] and then use relations (4.24) and (4.33),
1 _
[J30] < Ce™ 2 v, flull el llullz + Ce™2 [, [l 7 |l e
< Ce Pl fu 2| AV w2 || Al 2 + CeV2 [u ]| AY w3 || A 2
< Clo + CE2 v 2| AV 2u 12| Au 3.
Thus, by (5.5),
1< allAull? + Cae™ [l ulf2 | A 2ulfs + CeY2 [v] 22 | A2 2 || Aul .

For Jéi), letting v = v + v3es3, we have

*

J§21):/ I/(VXU)'V’I_))'VX(1_)+U3€3+w>d$+/ V(wa-V(v363)>-wdw

€

*

:/ I/(wa-ng)-Vx(v363)dm+/ v(Vxw- -Vy) Vxwdr

€ £

+ /: V<V X w - V(’Ugeg)) cwdx
=K + K, + Kj.
As in [8],
K] < CeV2 |, lulla [ullaz Vw2 < O (v, || mlu]Fe,
hence
K| < CeV2 w772 | A ul| 2| Au 2.
Applying Holder’s inequality and (A.8) yields

KL < Clvl, || [Vaoo] - [Vl || p2]| Ve | 2
_ 1/2 1/2 1/2 1/2
< C |, (2l 0]l | Va2 V|| 1E) [ Ve 2
_ 1/2 3/2
< Ce V2 |, ul R IV w35 1w e

< Ce™ V2, |Jullm || Vwl| 2] w2
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Estimating ||Vw|| 2 by (4.51), and also using (4.24) and (4.33) for the H' and H? norms, we
obtain

— —1/2 —1 —1
Kb < Ce™ V2wl ([w][ 2 | AVl 12) (e ] (| Aul| g2) (0], || Aul|2)
< CV2 | 7 || AY | 2 || Au 2.

For K, by estimates in (4.44),
K5 < Clwl, | [VwlelVao] + o) Vulda.
ﬂ€
Using (A.8), we estimate

*
_ — 1/2 1/2 1/2 1/2
e lvl, /ﬂ (IVwl[V20))|Vulde < Ce v, (e Vwll 2 Vw0l o]l e) i
< O |, lfulliz < Ce' I, Jlull |l

< CeV? || 2| AV ul| 2] Aul 2.

By the 2D Agmon inequality (A.7) applied to v, we have

*
IVI*/QE [Vawl|o|[Vuldz < |v], [|o]|L=|[Vw]| 2]Vl 2

_ 1/2 1/2
< Clw|, (62wl ulli) ]

< Ce V2 |2 w52 | AVl 2 || Aul| )5 < CJas < Cip.
Combining with (5.5), we obtain
KL < al|Au|)2s + Ce'2 [u| 72 | AV 2| 2| Aul[2

+ Coe I w2 A 0|7,
Gathering the estimates of K, K and K7, we have

2
T2 < |KY) + | K| + | K|
< af|Au|2. + CV2? |22 || AY?u| 2] Au |2

+ Cae™ I, |72 AP 72
Summing up,
1 2
sl < 531+ 157

< 20| Au): + C2 |22 | AVl 2 || Aul |2 (5.10)

+ Cae™H I ullZa ]| Al ..
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e Finally, we estimate the boundary term J3 4. By (2.17), (5.1) and (2.18), we have

*
sal <290 [ Ju- (Sv x Sw)lde < Cz ], / ful, o], |wl, do
FO 1—‘0

< Celvl, / fol, Jul, |Vul, do.
0]

For an estimation of ¢ fFo |v|, |ul|, |[Vu|, do, we use the calculations in estimating the term /3
on page 595, from line 7 to line 23, of [9]. We obtain

_ 1/2 3/2
[Jsa] < Clvl, e V2wl |u)| 2 + C v, el o ul[37 | o2

1/2 1/2
+C [, & full 2l e |l 2 + C ], € ]2 ] e e

< Clol e Plullelullfy + Clvl, e ullmulfe.
Hence, by (4.24) and (4.33),
sl < CeMull 2| AV Pul[7e + C72 [ 22 | AP 2] Au | 7. (5.11)
It follows from estimates (5.10), (5.9), (5.7) and (5.11) that
[Js| < [Jsal + | a2l + [J33] + [ Js.4]
< Gal| Aulf; + C='2 u] > | AVl 2 | Aul . (5.12)
+ Coe (I Ml + 17 a5+ ez ) A2 3.
Summing up the estimates (5.3), (5.6) and (5.12) for J;, J5 and J3, respectively, we obtain
1] < 8ol AulfZs + C='2 [ ¥ A 2ul| 2| Aul 1.
+ Cae™ (W1 Ml + 177l 15+ ) A a3 o
Using Young’s inequality to estimate |v/|, "/ ||'u,||i/23 < v " |u|?, + ||u| 12, and replacing o
by «/8, we obtain the assertion (5.2) from (5.13). O

6. GLOBAL SOLUTIONS

First, we state the standard local existence theorem for strong solutions of the Navier—Stokes
equations. Below, we use the conventional notation w(t) = w(-,t) and f(t) = f(-,t). We recall
that ¢, is defined in Proposition 4.4.

Theorem 6.1. Assume (5.1). Suppose ¢ € (0,e.] and u® € V and f € L>((0,00), L*(Q2°)?).
Then there exist T' > 0 and a unique solution

u(t) € C([0,7), V)N L*0,T; Dy)

of the equation (4.19) on (0, T) satisfying u(0) = u®.
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Furthermore, if the maximal time interval of the above existence is [0, Tnax) and Trax is
finite, then
lim || AY2u(t)]| 2 = oo. (6.1)

t—Tmax

We call the above solution w(t) a strong solution on [0, T") of the IBVP (2.9), (2.10), (2.11),
(2.12), (2.13) .

We have a few observations before stating our global existence result.

Letu = (uy, Uy, u3z) € L*(Q°)3, we define

Mu = (Myuy, Myus,0). (6.2)
One can verify that M is an orthogonal projection on L?(2°)?, hence
lullze = [IMul7z + (11 = M)ul[Z. (6.3)
For u € V, it follows from (A.4) and (3.21) that
(7 = M)ullz2 < (I = M)(wr, us)llz2 + [[usllze < Cellullan,
and, consequently, by (4.24)
17 = Mz < Ce o 72 AV 2u (6.4)
For a function f € L>(0, co; L*(€¥°)), denote

| fllecrz = esssup || £(¢)|| zz-

te(0,00)

Our main result is:

Theorem 6.2. Assume (5.1). There is a positive number k > 0 such that if ¢ € (0,¢,] and
u’ €V, f e L~((0,00), L?(Q°)3) satisfy that

def

—2 = def
Uo == |v|,” [ Mu|[7: < &7, U, =

H

=31 A1/2,,01/2 2
eyl 7 |A |7 < K7
* k (6.5)

def 2 —4 77 def o_ - =
Fy = P W [MPf| o2 <%, F== WL = M)PF|[fope < 5

then the strong solution u(t) in Theorem 6.1 exists for all t > 0, i.e., Ty = 00.

Moreover,
W a2 < (e T 4 A, t e [0,00), (6.6)
and
elvl 1A 2 u(t) 72 < (A5 + Aa), te0,e70/|vl,), (6.7)
el A u ()7 < ¢ (Age =R Ay, te[e'™/ v, 00), (6.8)
where
AN =Uy+el, MN=F+clk, A=Uy+U;, A=F+F, (6.9)

the number ¢y > 0 is defined in Lemma 4.2, and ¢* > 0 is independent of ¢, v, k, u, f.
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Foru € V, let

E*(u)—/ |Du]2dw+65/ \u|2d0'—|—£/ u — Sul’do. (6.10)
r r

€ 0

Still considering 6; = 1, we then have
O E.(w) < ||, E(u) < CE.(u),

or, equivalently,
CE,(u) < |v| " |AY |2, < CE,(u). (6.11)

Therefore, Theorem 6.2 can be rewritten without using the Stokes operator as:

Theorem 6.3. Suppose the assumptions in Theorem 6.2 hold with U, in (6.5) being redefined

by
Uy £ vl * Bu(u). (6.12)
Then one has (6.6) and, in place of (6.7) and (6.8),
e V] ? Eu(u(t) < ¢"(As + Ay), te 0,60/ |vl,), 6.13)
eV Ba(u(t) < ¢ (Aye2 =ML Ay, tele0/|v],, ). (6.14)

Proof of Theorem 6.2. Note from (6.3) and (6.4) that
72 < [[Mu’|72 + cie® ] [ AVPul)5. < Cfl(Uo +eli) = Clv[i A1 (6.15)
Also,
IPFIZ: = IMPF|7 + (I = M)PF72 < vl (6272 F + " F) < & [vf, Ay (6.16)
Obviously, from (6.9) and (6.5):
A, Ao, Ay, Ay < 252 (6.17)

Set

1 d d
d and Fﬁ:min{1 } (6.18)

163 1272C,
where c3 > 0 is from Proposition 5.1 and Cjy > 0 is the constant in Lemma 6.4 below.
Let0 < e < e, < 1. We estimate ||w(t)]| 2 first. Taking the inner product of equation (4.19)
with u(t) for t € (0, Thax), and applying inequalities (4.23) and (4.50), we have
1d
2dt
< G 2| AY | 2 |MPf|| 12 + Cs |2 | AP 2||(T = M)P £ 12

lllZe + A Pulfe < [(u, £)] < [(Mu, MP£)| +[{(I = M)u, (I = M)Pf)|

1 B T p— _ —
< SIAPulfe + C 0 o IMPFIZ + O [u] 1 [(1 = M)PF17

IN

1
§||A1/2u\|%2 + CEO P (Fy 4+ eFy).
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Hence J
anunig + | AY 2|2, < C57 v As. (6.19)
Using (4.23) in (6.19) gives

vl

d _ 3
s + 545l < Ol A
2

Applying Gronwall’s inequality, we obtain

lu(®)|F2 < [ul3e™2 " M 4 Clulf Ay, t € [0, Tun).

Using (6.15) to estimate ||u’||7., we have

[l < Crwfi (e 0 4 Ag). 1 € [0, Trua). (6.20)
and consequently, by (6.17)

[w(t)||22 < Cy v (Ay 4 Ag) < 4C v|P K%, € [0, Tinax)- (6.21)

For any number 6 € [0,£'7°/|v|, ] N[0, Tuax) and ¢ € [0, Tyax — 0), integrating (6.19) from
t to t 4 6 and using (6.20) yield

t+60 t+6
[ 142 Badr < (@)l + O oft [ adr
t t
< O (Ae= =7 Ay) + 1 ] OA,.
Hence we have
t+6 ) o s
/ A2 u(7)|2odr < Cy ] (Are™2 < Pt LAY € [0, Tiax — 0). (6.22)
t

and, again, by (6.17)

t+6
/ | AV (7)||2dr < 4Cy [V K2, t € [0, Tinax — 0). (6.23)
t
Next, we estimate || A'/2w(t)|| 2. The initial data satisfies
_ d
elv| P | A2, = Uy < K2 < 3
We claim that

elv| P |AY2u(t)||2. < d  forall t € [0, Tinax)- (6.24)

Suppose (6.24) is false. By the continuity of w(t) in V for ¢ € [0, T), there is T' € (0, Trpax)
such that
el P [|AYV?u(t)|?. < d forallt < T,
and
elvl? A Pu(T)|[F: = d. (6.25)
We apply Lemma 6.4 below and have from its conclusion (6.27) that

d
elv| P AV 2u(t) ]2 < Cor? < 5 forallte [0,7).
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Taking ¢ — 1", we have
_ d
e vl A u(T)|z2 < 5 <4

which contradicts (6.25). Therefore (6.24) must hold true. As a consequence of (6.24), the norm

| AY/2(t)]| 12 is bounded on [0, T}ax ), which implies T}, = 00, by virtue of Theorem 6.1.
The estimate (6.6) follows (6.20). Since (6.29) and (6.32) in Lemma 6.4 now hold with

arbitrarily large 7' > 0, we obtain (6.7) and (6.8), respectively. O

Lemma 6.4. Let d be defined in (6.18). There is Cy > 0 such that for any € € (0,¢.], k € (0,1]
and T > 0, if u® € V is such that Uy, U,, F and F, defined in Theorem 6.2 are less than r?,
and u(t) is a strong solution on [0, T) satisfying u(0) = u® and

el |AY2u(t)|2. < d  forall te(0,T), (6.26)

then

e lv| P ||AYV?u(t)||2: < Cok?  forall te[0,T). (6.27)

Proof. Fort € (0,T), taking the inner product of equation (4.19) with Au(t) and applying the
estimate in Proposition 5.1 with v = 1/4, we have

1d

2dt

1 .
< llAulfZ: + ez w12 A 22| A7

AV a2 + [ Aulfe < [(B(u,w), Aw)| + |(Au. PF)

+ 0= (ol full + e ) AVl + 1 Aullfs + |PFI,
hence
A2l + {1 = 202 ]2 | A2 12 | Au3s
< Ce (ol e + e ) [AY2ull3s + 20| PFI-.
By assumption (6.26) and the L?-estimate (6.21), it follows that
SAV s+ {1 = 265/} w3
< Cye ' (K2 + w) v, [[A P07 + C" %A,
where C3 and C' do not depend on «. Since 2e5v/d =1 /2 and k < 1, we obtain
L2z, 4 L aufZ, < 205 o], A2 + C52 ) Ay, 6.28)
dt L2 9 2 = 3 * L2 x4

Consider the case t < min{e!~°/|v|, ,T}. By (6.28) and (4.27),

v,
2¢2e1-0

—||AY 22, + |AY 2|2, < Cet ||, | AY w2 + C972 vl Ay

|
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Applying Gronwall’s inequalit , One has
pplying q Yy

A2 (t) |22 < | AV 0|2 pemc s L2

t
+ / e=c2 vl (t-)/2 (C’e_l v, |AY2u(7)||22 + Ce®2 |I/|f A4> dr
0
t
< AP0 e = T L2 L e |y / | A2 (7)| 2. dr
0
4 t -2 _5-1
—i—Ce‘S’Q]V]* A4/ e & IWLt=T)2q
0

To estimate [ ||AY2wu(7)||2,dT appearing above, we apply (6.22) with t = 0 and 0 = ¢. It
0 L pp g pply
results in

APl < O 2 {Une ™= T2 4 (A 4 )+ A
Therefore
|42 u(t)[3 < Cae™ Wl (A + M), £ <minfe' /], T} (6.29)
and, consequently,
| AV u(t)[3s < ACkET w22, ¢ < min{e=) [v], T}, (630)

If T > e'=°/|v|,, we now consider t € [e17%/ |v|,,T). By (6.28),
d e _ _
A ulls < h S5 ], 14 ulf, + €2 vl A).

Then applying the uniform Gronwall inequality, the form quoted in Lemma 7.2 of [8], (for the

proof, see [6,24,26],) with y = ||AY2u(t)||2,, g = 0and 7 =t — &' 79/ |v|,, we have

1 t t

et/ v, t—e1=8 /v,

It follows from (6.22) that

A2, < { AP u) e+ [ heir) 63

t—el=0/|v|,

t
/ | A2 u(r)|Fadr < Cluf? (A = 00 1A
t

75176/"/‘*
<O (Ae =t 4 ),
Consequently,
t
[ < ofe bl e s I Ay 12 A,
t—el=%/|v|, |V|*
thus
¢ 1 3 —2_6—1
/ h(T)dr < Ce b v (Aem2 = Wht 1 Ay).
t

_Elié/lu‘*
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Then (6.31) implies
|A2u(t)|2. < Ol (Aeme = MLt 4 )
4 Ce P (A= e L L A,

Hence

—2

|AY2u(t)]|2. < Cse™ [v]2 (Ae vl 4 Ay) forte [0/ |v],,T), (6.32)
and, by (6.17),
|AYV2u(t)||2. < 4Csk%e v fort € [0/ v, ,T). (6.33)
It follows from (6.30) and (6.33) that for all t € [0,T),
|AYu(t)|2: < Core™" w2,
where () is independent of ¢, x, . We obtain (6.27) and the proof is complete. O

Remark 6.5. (a) If the friction coefficients on the top and bottom boundaries are larger than
Cev, ie., when § < 1, then Fj can be much larger than O(1) and F; can be much larger than
0(5_1); those two are typical conditions in the case § = 1 (c.f. [8,9, 15]). This effect was not
quantified in [4, 12].

(b) By relations (4.8), (6.11) and inequality (6.14) we have

limsup w3 < Ce™? |V|iA4,
t—o00

which is independent of the initial data. This provides an estimate for the size of the global
attractor (see [9, 15]).

(c) As a consequence of (6.14), the norm |[uy — u_||r2(ry) is of O(e™1), that is, the relative
velocity between two fluids on the common surface can be very large. One scenario for this in
reality (ignoring the incompressibility requirements) is winds blowing over the water.

APPENDIX A. AUXILIARY INEQUALITIES

We recall some auxiliary inequalities for thin domains. Below, the domain €2, will be either
Q2% or Q)¢ introduced in section 2, and, respectively, h; will be h, or h_, and the boundary I';
will be either 'y or I'_. As usual, C' denotes a positive constant independent of ¢.

Poincaré and trace inequalities-1. For any ¢ € H'(€).), we have for i = 0, 1, that

161200y < Cel|039| 120y + CVEl G L2(r) (A.1)
C
9l 22y < %H¢HL2(QE) + CVel|059|| L2(a.)- (A.2)

Poincaré and trace inequalities-IL. If ¢ € W12(),) satisfies

hi(z")
/ o(z',y3)dys =0 forall 2’ € T?, (A.3)
h

o(z’)
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then
9l 200y < Cel|O3]| L2 (0., (A.4)
9]l L2roury) < CVel|059| 120 (A.5)

For direct proofs of the above inequalities, see e.g. [9].
2D Ladyzhenskaya inequality. Let ¢ € H'(€).) be independent of x3, then

_ 1/2 1/2
6]l 2300y < Ce™ 1@l ot 1617 ) (A.6)
2D Agmon inequality. Let ¢ € H?(€).) be independent of x3, then
1/2 1/2
16]lz<(@2) < Ce™ 2@l otq 161 o, - (A7)

The following estimate for a product of 2D and 3D functions originates from [3]; here we
cite the form in Lemma 6.3 of [8].
Cao-Titi inequality. Suppose v, ¢ € H'(2.) and v is independent of x3. Then

_ 1/2 1/2 1/2 1/2
vl 2.y < Ce 2 oll aq 10l e, 1212 N0l i, - (A.8)
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