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Abstract

Detection and modeling of self-similarity and symmetry is important in

shape recognition, matching, synthesis, and reconstruction. While the detec-

tion of rigid shape symmetries is well established, the study of symmetries

in non-rigid shapes is a much less researched problem. A particularly chal-

lenging setting is the detection of symmetries in non-rigid shapes affected

by topological noise and asymmetric connectivity. In this paper, we treat
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shapes as metric spaces, with the metric induced by diffusion distances, and

define non-rigid symmetries as self-isometries with respect to the diffusion

metric. Experimental results show the advantage of the diffusion metric over

the previously proposed geodesic metric for exploring intrinsic symmetries

of bendable shapes with possible topological irregularities.

1 Introduction

Symmetry or geometric self-similarity plays a fundamental role in Nature and is

tightly tied to shape analysis and understanding. The exact definition of sym-

metry heavily depends on what we understand by the geometry of the shape.

Broadly speaking, intrinsic geometry describes the properties of the shape which

are invariant to inelastic deformations, while extrinsic geometry is associated

with rigid transformations. In the pattern recognition and computer vision lit-

erature, there exists a significant number of papers dedicated to finding sym-

metries in images [29], two-dimensional [1, 2], and three-dimensional shapes

[22, 32, 34, 35]. A wide spectrum of methods employed for this purpose includes

approaches based on dual spaces [13], genetic algorithms [17], moments calcula-

tion [10], pair matching [12, 27], and local shape descriptors [47] to name just a

few. Traditionally, symmetries are described as extrinsic self-similarity under ro-

tations and reflections. While being adequate for rigid shapes, such a description

is inappropriate for non-rigid ones. Extrinsic symmetry can be broken as a re-

sult of non-rigid shape deformations, whereas its intrinsic symmetry is preserved
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[37, 38].

While finding shape representations that are invariant to bending has been

intensively studied in recent years [5, 14, 15, 18, 19, 28, 30, 31, 40, 42], very

little has been done in the research of regular surfaces and self-similarity study

in non-rigid shapes. Raviv et al. [37] first defined and proposed a computational

framework for exploring exact and approximate intrinsic self-similarities based on

invariance of geodesic distances. They used the numerical scheme presented in

[5, 6] for the computation of minimum-distortion correspondence between metric

spaces. In [34], Ovsjanikov et al. showed how eigenfunctions of the Laplace-

Beltrami operator can be used for identifying reflective intrinsic symmetries. They

transformed intrinsic symmetries to (approximate) Euclidean ones in a feature

space created by the Laplace-Beltrami eigenfunctions. The reader is also referred

to recent papers on such spectral signatures [3, 24, 39, 40, 42].

A major drawback of the mentioned approaches is that topology and connec-

tivity changes (resulting, e.g., from noise and acquisition artifacts) can have a

dramatic influence on the intrinsic geometry defined by the geodesic distances.

Since the geodesic is the shortest path, even a small change in the topology can

cause a significant change in the geodesic metric by affecting the length of many

geodesics, thus the approach proposed in [37] is sensitive to topology changes.

Ovsjanikov et al. [34] explain why topology noise appears in high frequencies,

hence its influence can be reduced in their method. Yet, they can not guarantee

robustness to major topology changes.

In [8, 30] it was shown that diffusion geometry, arising from the study of heat
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propagation on the surface, can gracefully handle topological and connectivity

problems. In this paper, we introduce diffusion symmetries of non-rigid shapes

which are robust to topology changes.

The rest of this paper is organized as follows: In Section 2, we present metric

models of shapes. In Section 3, we define exact and approximate symmetries, and

in Section 4 elaborate on Gromov-Hausdorff distance. Section 5 is dedicated for

the numerical framework, followed by Section 6 where we present experimental

results. Section 7 concludes the paper.

2 Shapes as metric spaces

We model a shape as a metric space (X ,dX), where X is a two-dimensional smooth

compact connected and complete Riemannian surface (possibly with boundary)

embedded into R
3, and d : X ×X → R+∪{0} is a metric measuring distances be-

tween pairs of points on X . In general, d is independent of X and can be defined

quite arbitrarily, provided that it satisfies the metric axioms ,positive definiteness,

symmetry, and triangle inequality. There are, however, a few natural choices of

d describing different properties of the shape, and giving rise to different geome-

tries.
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2.1 Euclidean geometry

Considering X as a subset of the Euclidean space E = R
3, we can measure the

distances between points x and x′ on X using the restricted Euclidean metric,

dE(x,x′) = dE|X×X(x,x′). (1)

We refer to the properties described by dE as the extrinsic geometry of X . Such

properties are invariant under Euclidean transformations , translation, rotation,

and reflection in E. However, nonrigid deformations may change the extrinsic

geometry, and thus the Euclidean metric is not suitable for modeling shapes ex-

hibiting significant deformations.

2.2 Geodesic geometry

Geometries invariant to bending, like inelastic deformations which do not stretch

or tear the shape, are called intrinsic and are defined using properties of X without

resorting to the ambient space E. The simplest example of an intrinsic metric is

the geodesic metric, defined as the length of the shortest path on the shape,

dX(x,x′) = inf
γ∈Γ(x,x′)

`(γ) (2)

where Γ(x,x′) is the set of all admissible paths between the points x and x′ on X

and `(γ) is the length of the path γ 1. The geodesic metric is invariant to inelastic

1The assumption of completeness implies that dX is realized by a shortest path and thus replace

inf with min.
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shape deformations, and as a particular case is also invariant to rigid transfor-

mations. As a consequence, the geodesic metric is a good choice for describing

non-rigid shapes capturing their properties that do not depend on deformations.

2.3 Diffusion geometry

Well-known in other fields for decades, diffusion geometry has been popularized

in data analysis by Lafon and Coifman [11, 25]. Informally, the diffusion distances

have an effect of averaging over all possible paths connecting two points, while

the geodesic distance is the length of just the minimal one. As a consequence,

the former is more robust than the geodesic distance in cases where topological

changes are present [33, 43].

Formally, the diffusion distance, is related to the heat equation,

(

∆X +
∂

∂ t

)

u = 0, (3)

governing the distribution of heat u on the surface. Here, ∆X denotes the Laplace-

Beltrami operator, a generalization of the Laplacian to non-Euclidean domains.

(Note that we define ∆X as a positive-semidefinite operator, hence its positive sign

in (3)). The fundamental solution ht(x,z) of the heat equation (3), also called the

heat kernel, is the solution with a point heat source at x ∈ X used as the initial

condition at t = 0. The heat kernel ht(x,z) describes the heat distribution at time t

at point z ∈ X .

For compact manifolds, the Laplace-Beltrami operator has discrete eigende-
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composition of the form

∆X φi = λiφi, (4)

where λ0,λ1, ... are eigenvalues and φ0,φ1, ... are the corresponding eigenfunc-

tions. Using this basis, the heat kernel can be presented as [21]

ht(x,z) =
∞

∑
i=0

e−λitφi(x)φi(z). (5)

Note that for a shape consistency of a single connected component λ0 = 0, φ0 =

const, and λi > 0.

The diffusion distance is the family of metrics of the form

d2
X ,t(x,y) = ‖ht(x, ·)−ht(y, ·)‖

2
L2(X) (6)

=
∫

X
|ht(x,z)−ht(y,z)|

2dz

=
∞

∑
i=1

e−2λit(φi(x)−φi(y))
2,

parametrized by the scale t. Since the diffusion distance is derived from the

Laplace-Beltrami operator which is an intrinsic property of the shape, it is an

intrinsic metric and is therefore bending-invariant. Besides that, it shows better

robustness to topology changes, as we present in the following.
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3 Symmetry

The metric model of shapes allows to formalize the notions of invariance, self-

similarity, and symmetry. From the metric viewpoint, a shape is invariant under

a transformation if the metric structure is unaffected by the transformation. More

formally, two shapes (X ,d) and (Y, d̃), where d, d̃ are the respective metrics, are

isometric if there exists a bijective map ϕ : X → Y (called isometry) such that

d̃ ◦ (ϕ ×ϕ) = d. In particular, the shape (X ,d) is self-similar or self-isometric if

there exists a permutation (bijective map f from X to itself) which is an isometry

with respect to d, i.e., d ◦ ( f × f ) = d.

It can be easily shown that symmetries form a subgroup of the group of permu-

tations (Π(X),◦), where Π(X) = {g : X
1:1
→X} and ◦ is the function composition

operator. We denote the group of symmetries of X by

Sym(X ,d) = { f ∈ Π(X) : d ◦ ( f × f ) = d}. (7)

3.1 Approximate symmetries

Because the true symmetry is an idealized rather than naturally occurring phe-

nomenon, a relaxation of the notion of symmetry is required [47]. In the Euclidean

case, approximate symmetry can be defined as a non-trivial Euclidean transforma-

tion i satisfying i(X)≈ X . In the more general setting, the relaxation of the notion

of symmetry is possible by allowing d ◦ ( f × f ) ≈ d in the definition of self-

isometry. More formally, we say that the shape (X ,d) is ε-self-isometric if there

8

Te
ch

ni
on

 - 
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

CI
S-

20
09

-2
0 

- 2
00

9



exists a permutation f ∈ Π(X) with distortion

dis( f ,d) = ‖d ◦ ( f × f )−d‖∞ (8)

= max
x,x′∈X

∣

∣d(x,x′)−d( f (x), f (x′))
∣

∣ ≤ ε.

We denote the family of all ε-self-isometries of (X ,d) by

Isoε(X ,d) = { f ∈ Π(X) : dis(g, f ) ≤ ε}. (9)

In particular, for ε = 0 we get the symmetry group Iso0(X ,d) = Iso(X ,d). Note

that unlike Iso(X ,d), Isoε(X ,d) is not a group for ε > 0, since it does not satisfy

the closure property: a composition of two ε-self-isometries is in general a 2ε-

self-isometry.

3.2 Local asymmetry

In many cases, the shape asymmetry is as important as symmetry, as it indicates

some abnormality of a shape. Given an ε-symmetric shape and one of its approx-

imate symmetries f ∈ Isoε(X ,d), we can compute the contribution of each point

to the shape asymmetry as the local shape asymmetry,

asym(X ,d)( f ,x) = max
x′∈X

|dX(x,x′)−dX( f (x), f (x′))|, (10)

quantifying the distortion of f at a point x. Points with large local asymmetry are

responsible for symmetry breaking. Global shape asymmetry can be calculated as
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the supremum of all local ones, which is the same as the distortion dis( f ,d).

3.3 Symmetry space

Though we cannot use a group structure to represent approximate symmetries,

we can still explore the space of permutation Π(X), where each function g has

its distortion dis(g,d). If the distortion is a smooth function then choosing local

minima as symmetry candidates is the logical thing to do. For smooth mappings

this is the case, which means that local minima of distortions are good candidates

for significant approximate symmetry. See supporting proof in Appendix A for

the continuity of the distortion near true symmetries.

The space of functions Π(X) can also be endowed with some standard metric

that measures the distance between two permutations f and g on X , defined as

dΠ(X)( f ,g) = max
x∈X

d( f (x),g(x)) = d( f (X),g(X)), (11)

which, in turn, depends on the choice of the metric d. We refer to the set

BΠ(X)(g,r) = { f ∈ Π(X) : dΠ(X)(g, f ) ≤ r} (12)

as the closed metric ball (intrinsic or extrinsic, according to the choice of the

metric in the definition of dΠ(X)) of radius r centered at g. (We will omit r referring

to a ball of some unspecified radius).

Since true symmetries have zero distortion (i.e. dis(g,d) = 0), they are the
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global minimizers of the distortion function dis(g,d). Moreover, they are also

local minimizers of the distortion, in the sense that for every approximate sym-

metry g, there exists a sufficiently small neighborhood BΠ(X)(g), such that any

f ∈ BΠ(X)(g), dis( f ) ≥ dis(g). While trivial for true symmetries, this observa-

tion motivates our definition of approximate symmetries as local minima of the

distortion.

We therefore define approximate symmetries as

Symε(X ,d) = {g ∈ Isoε(X ,d) : dis(g,d) ≤ dis( f ,d)∀ f ∈ BΠ(X)(g)}. (13)

Numerically, we observed that for a small ε , the number of local minima is similar

to the number of true symmetries of a symmetric shape.

4 Gromov-Hausdorff distance

An early attempt to compare shapes as metric spaces was done by Elad and Kim-

mel [14] who proposed to embed pairwise geodesic distances into a third fixed

metric space (Z,dZ). Usually, a low dimensional Euclidean space is a good candi-

date from the computational point of view. Such a minimum distortion embedding

was referred to as canonical form. It can be explicitly calculated by minimizing

min
ϕ:X→Z

max
x,x′∈X

|dX(x,x′)−dZ(ϕ(x),ϕ(x′)|. (14)
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Assuming the embedding distortion is low enough, the comparison of (X ,dX)

and (Y,dY ) can be reduced to rigid matching of canonical forms, e.g. using the

Hausdorff distance,

dZ
H(ϕ(X),ψ(Y )) = max{ max

y∈ψ(Y )
min

x∈ϕ(X)
dZ(x,y), max

x∈ϕ(X)
min

y∈ψ(Y )
dZ(x,y)}. (15)

A general theoretical framework for metric spaces comparison was proposed by

Gromov [9, 18], and introduced to shape analysis by Mémoli ans Sapiro [31].

Since it is generally impossible to select a common metric space (Z,dZ) accom-

modating all shapes, Gromov suggested to optimize also for Z, resulting in the

following distance, referred to as the Gromov-Hausdorff distance,

dGH(X ,Y ) = inf
ϕ :X→Z
ψ:Y→Z

Z

dZ
H(ϕ(X),ψ(Y )), (16)

where ψ and ϕ are isometric mappings. The Gromov-Hausdorff distance can

be alternatively expressed in terms of correspondences between the two metric

spaces [9] as

dGH(X ,Y ) =
1

2
inf
C

dis(C), (17)
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where C ⊂ X ×Y is a correspondence between the spaces, and dis(C) is its distor-

tion

dis(C) = sup
(x,y),(x′,y′)∈C

|dX(x,x′)−dY (y,y′)|. (18)

Note that for C to be a valid correspondence, for each x ∈ X there must exist at

least one y ∈Y such that (x,y) ∈C, and vice versa, for each y ∈Y there must exist

at least one x ∈ X such that (x,y) ∈C.

In [5], it was shown how (17) can be efficiently approximated using a convex

optimization framework. In this paper, we adopt this scheme for the computation

of self-isometries.

5 Numerical framework

For practical computation of symmetries, the surface X has to be discretized and

sampled at N points, constituting an r-covering (i.e., X =
⋃N

n=1 BX(xn,r), where

BX denotes a closed ball on X induced by the metric dX ). We denote this sampling

by Xr = {x1, ...,xN} ⊆ X . A good sampling strategy can be achieved using the (2

optimal) farthest point sampling algorithm [20], which guarantees that Xr is also

r-separated, i.e. dX ,t(xi,x j) ≥ r for any i 6= j. In the following, we assume that X

is approximated by a triangular mesh X̂ built upon the vertices Xr.
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5.1 Approximation of distances

In order to approximate the geodesic distances, we use the fast marching method

[23], which produces a first-order approximation for the geodesic distances be-

tween Xr on X̂ . The main idea of fast marching is to simulate wavefront propa-

gation on a triangular mesh, associating the time of arrival of the front with the

distance traveled, assuming constant propagation speed. A linear time is required

to obtain the geodesic distance between two points [44, 45, 46].

The diffusion metric is computed according to (6). For this purpose, we first

compute the discrete approximation of the Laplace-Beltrami operator on the mesh.

A Finite Elements Method (FEM) approach is possible [39], but in this work we

used the following generic form

(∆X̂ f )i =
1

ai
∑

j

wi j( fi − f j), (19)

where f : X̂ → R is a scalar function defined on the mesh X̂ and represented as a

vector of function values at the vertices of the mesh, wi j are weights, and ai are

normalization coefficients. In matrix notation, Equation (19) can be written as

∆X̂ f = A−1L f , (20)

where A = diag(ai) and L = diag
(

∑l 6=i wil

)

− (wi j).

There exists several discretizations of the Laplace-Beltrami operator [4, 48],

for which A and W are defined. Here we adopt the cotangent weight scheme
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[36], in which ai is set to be half of the area of the circumcentric dual of vertex i,

and wi j = cotαi j + cotβi j, where αi j and βi j are the angles opposite to the edge

between the i’th and j’th vertices, if they are connected, and zero otherwise.

By solving the generalized eigendecomposition problem [26]

Aφ = λLφ , (21)

the k smallest eigenvalues λ0, ...,λk and corresponding eigenfunctions φ0, ...,φk :

X̂ → R of the discretized Laplace-Beltrami operator are computed.

5.2 Coarse matching

Discrete permutations on Xr can be represented as N-tuples of the form π =

(π1, ...,πN) ∈ {1, ...,N}N . Finding all permutations with a distortion lower than

ε requires computation of the distortion of O(N!) possible mappings. However,

the search space can be greatly reduced by ruling out mappings that cannot have

low distortion. We observe that for a good candidate of an approximate symmetry,

the intrinsic properties of the surface, such as local intrinsic geometry around xi

should be similar to that around xπi
. In order to quantify this behavior, for each

xi ∈ Xr we compute the histogram hi = hist({d̂i j : d̂i j ≤ ρ}) of the approximate

distances (d̂i j = dX(xi,x j)) in a ρ-ball centered at xi [16, 28, 37].

In order to reduce the number of possible permutations, we chose a small

number of points using farthest point sampling strategy on diffusion distances to

represent the symmetry. Experiments showed that resampling the surface starting
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from the second sampled point produces a better sampling because the location of

the first point is arbitrary and its support may occlude a better one. Each point has

many possible matches and clustering of the candidates is performed. Two points

are in the same cluster if and only if there exists a chain of points on the surface

with similar distance histograms. Earth mover’s distance (EMD) [41] can be used

as the distance between histograms.

For a given point x, we compute its histogram hx and find all points y with a

similar histogram, denoted by

Hδ (x) = {y : d(hx,hy) ≤ δ}, (22)

where d is the distance between the histograms, and δ is calculated a priori ac-

cording to the histogram distance between neighboring points. We perform ε

separation of the set Hδ (x) to subsets Hi
δ (x) according to

y,z ∈ Hi
δ (x) iff y,z ∈ Hδ (x) and ∃ {yk}

m
1 ∈ Hδ (x)

s.t. y1 = y, ym = z, ∀1 ≤ k ≤ m−1 (23)

dX(yk,yk+1) ≤ ε.

Once possible sets are constructed, we search for a global correspondence

between candidates of each set. Since the number of sets is small, the search

becomes feasible. Solving (23) is done in similar spirit to union-set data structure

methods, as follows:
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1. Choose one point y at random.

2. Find the farthest point q from it.

3. Resample the mesh using farthest point sampling starting with q.

4. Repeat the following stages for each point sample x.

(a) Calculate Histδ (x).

(b) i=1. ∀i Si = {}

(c) Choose a point z ∈ Histδ (x)\
⋃i

k=1 Sk.

(d) Set Si = {z}.

(e) For each point q ∈ Si:

Si = Si

⋃

{g ∈ Hδ (x) s.t. d(q,g) ≤ ε}

(f) repeat step (e) until convergence.

(g) if
⋃i

k=1 Sk 6= Hδ (x): i=i+1, goto step (c)

(h) mx
i = argminq{d(hx,hq) s.t. q ∈ Si}.

Each point x has {mx
i } set as possible matches.

In many practical problems, exhaustive search is possible. In cases where

search complexity is still prohibitive, we use a branch and bound algorithm similar

to [16]. While complexity remains the same, the search space becomes extremely

small in practice. As presented in [37], we apply a branch and bound procedure,

for M points, as follows.
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1. Given a correspondence of k−1 feature points (1, ...,k−1) 7→ (π1, ...,πk−1),

we would like to establish k 7→ πk.

2. Prune: For each potential correspondence πk ∈Ck, evaluate maxi=1,...,k |d̂ik−

d̂πi,πk
|. If the obtained distortion is larger than ε , discard the potential cor-

respondence.

3. Branch: For each remaining πk, recursively invoke Step 1 with (1, ...,k) 7→

(π1, ...,πk).

4. Bound: If k = M, compute the distortion dis(π,d). If dis(π,d) < ε , mark

π as an ε-symmetry.

5.3 Generalized MDS

Once a coarse match is found, it is used as an initialization of the second refine-

ment stage. Solving (17) requires to find a correspondence which distorts the

metric the least. Following the discretization in [5], for N mesh points xi on X̂

we search for x′i locations, (not necessarily coincide with the mesh vertices), with

similar diffusion distances between them, minimizing

min
x′1,...,x

′
N∈X̂

max
i, j=1,...,N

∣

∣d̂i j − d̂X(x′i,x
′
j)
∣

∣

2
. (24)

We use the convex optimization scheme presented in [5], referred to as generalized

multidimensional scaling (GMDS), to solve (24).
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6 Experimental results

In order to show the advantages using diffusion distances, we performed sev-

eral experiments on meshes taken from the TOSCA dataset [7]. The first coarse

matching exploration stage took a couple of seconds per surface, and the second

stage using GMDS refinement procedure took less than a minute for approxi-

mately 2000 points on a Pentium Core 2 Duo 3.0 GHz CPU.

Figure 1 depicts the histograms of geodesic and diffusion distances of two

matching points. Without a topology change, all histograms are almost identical,

while with a topology change only the diffusion histograms preserve their simi-

larity.

Figure 1: Geodesic and diffusion histograms of two matching sample points with

and without topology changes. Black circles mark points where topology changes

were introduced, and over the major non-matching parts of the histograms.

In Figure 2 we present geodesic and diffusion maps from a point source. In
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contrast to geodesic distances, diffusion distances are largely unaffected by topol-

ogy changes.

Figure 2: Color coded distances from the foot (marked with an arrow) using two

different metrics under topology changes. In contrast to geodesic distances, diffu-

sion distances are hardly affected by topology changes. Black circles mark points

where topology changes were introduced.

Figure 3 shows the best five coarse symmetries of a human body undergoing

several topology changes. The reflective symmetry (E) is found as well as ad-

ditional twists (B,C,D). In a small number of points false negatives appear, and

these can be rejected using either the GMDS procedure, adding descriptors, or
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increasing the sample size.

Figure 3: Coarse symmetries of a human body. Similar parts appear in similar

colors, and the total distortion is indicated as a numerical value. The distortion

less identity symmetry is (A). The full reflective symmetry is (E) while (B), (C),

and (D) represent possible symmetries with partial reflection. Black circles mark

points where topology changes were introduced.

The price paid to cope with topology changes is discriminatively. One can

think of diffusion distances as an averaging process. As such it discriminates less

the geometric features. From Figure 4 it is evident that the diffusion histograms

of the palms, the legs and the face, are similar. Measuring the distance between

the diffusion histogram descriptors alone can produce false positive matchings.

Indeed, the histograms are not identical, but to cope with reasonable deformations

we need to increase the thresholds, which can produce false positives. For exam-
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ple, if point 4 and 5 should be considered a match then point 3 could be a candidate

as well. Such false-positives can be removed using the branch-and-bound proce-

dure, as described earlier, or even by exhaustive search on all 5! permutations, by

measuring the diffusion distances between those five points.

Figure 4: Diffusion histograms of different points on the body are not identical

but similar due to the diffusion averaging process. A match between points 4 and

5 can inflict a false-positive match with point 3 as well. Black circles mark points

where topology changes were introduced.

Figure 5 depicts symmetries constructed by using GMDS. We used L2 instead

of L∞ in the process, which provided better numerical results. Each blue line rep-

resents a possible match from a set of 128 matches. We show several matches
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on semi-transparent human bodies. We calculated self-matching on three differ-

ent meshes with and without topology changes, of different strengths (A-C), us-

ing geodesic and diffusion distances. Four experiments were performed for each

mesh, and the quality of the correspondence with and without a topology change,

for geodesic and diffusion distances, was measured in terms of the geodesic dis-

tances from the ground truth. For ground truth xi points and x̂i calculated positions

we quantified the correspondence quality by

dC (x, x̂) =
ΣidX(xi, x̂i)

n ·Diam(X)
, (25)

where Diam(X) is the diameter of X and n is the number of points used in the

optimization stage, which produces a scaling and sampling invariant measure.

Correspondence quality is summarized in Table 1. Without topology changes

both diffusion distances and geodesic distances produce good results, but with

the presence of topology changes the performance of geodesic distances is highly

degrades while diffusion distances keep their accuracy. For example, in mesh (C)

the topology change caused a decrease in correspondence accuracy by 33% using

diffusion distances, and by more than 4 times when using geodesic distances.

Figure 6 depicts the local shape asymmetry of a human body with local asym-

metry introduced by deforming one of the palms followed by adding a topology

change, marked with a black circle. Even though the body does not exhibit non-

trivial extrinsic symmetries, we were still able to find its local intrinsic asymmetry,

marked with an arrow. High asymmetry values are shaded in blue. We extracted
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same topology different topology

Geodesic Diffusion Geodesic Diffusion

A 0.0091 0.0094 0.0156 (71%) 0.0126 (34%)

B 0.0187 0.0125 0.0243 (30%) 0.0125 (11%)

C 0.0160 0.0222 0.0901 (463%) 0.0222 (33%)

Table 1: Correpondense quality measured by dC (x, x̂) (25) on three different

meshes with and without a topology change, using geodesic and diffusion dis-

tances. We added the percentage decrease in accuracy, due to topology changes,

in parentheses. The meshes can be seen in Figure 5.

Figure 5: GMDS self-embeddings. Matching points are connected with a blue

line on partial transparent human bodies. (A) poses small topology changes, (B)

mediocre , and (C) extreme ones. Black circles are drawn over connectors which

caused topology changes.
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a non-trivial intrinsic symmetry that appeared as an intrinsic reflection, and then

used that mapping to detect the abnormality at the palm. The method had diffi-

culties locating asymmetric parts using geodesic distances, yet succeeded using

diffusion distances.

Figure 6: Calculating local asymmetry values for a possible reflective symmetry,

using geodesic distances (right) and diffusion distances (left). The right palm was

stretched and a topology change was inflicted on the legs. A black circle repre-

sents the inflicted topology change, and an arrow represents the high asymmetry

area of the object. Blue color represents local asymmetry. The asymmetry in the

palm was detected using diffusion distances (left) but could not be isolated using

geodesic distances (right).

Figure 7 presents an extrinsic reflective symmetry calculated from pairs of

matching points. We assumed the shape was extrinsically symmetric, and calcu-

lated the reflective plane using Principle Component Analysis (PCA) on the cen-

ters of the connecting lines between matched points. Adding a topology change

rotated the reflective plane by almost 10 degrees when geodesic distances were in

use, but only by one degree while using diffusion distances.
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Figure 7: Extrinsic reflective symmetry calculated from matching pairs of points

using geodesic (left) and diffusion (right) distances. A topology noise is marked

in a black circle, and matching points by a red line. Compared to an accurate

reflective plane, the topological noise rotated the plane by 9.8 degrees while using

geodesic distances, and by 1.2 degrees for diffusion distances.
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For a given metric d, which is t time depended, and a given ε , we can sample

the space of all possible symmetries Symε(X ,d). We measure the distance be-

tween mappings according to (11), and embed this abstract space into R
2 using

multidimensional scaling (MDS) method.

Since the space is obviously non-Euclidean, there are distortions in the pro-

cess, yet, the visual results are informative. In Figure 8 we continued sampling the

symmetries of a human body from Figure 3. We computed 155 potential candi-

dates, calculated their distortion, embedded them in R
2 using classical MDS, and

interpolated their distortion on a plane. We see that the symmetry space itself has

one approximate reflective symmetry, indicating that a reflective symmetry is the

only true symmetry of the shape. In addition, in Figure 9 we present the influence

of ε on the symmetry space.
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Figure 8: The symmetry space of a the human body from Figure 3 embedded in

R
2. Red represent low distortion embeddings (symmetries). The red line shows

the reflective symmetry of the space itself. We measured the distance between

functions according to (11).

Figure 9: ε influence on the symmetry space of the human body from Figure 5

embedded in R
2. As ε grows, more symmetries appear, but the symmetry space

remains symmetric.
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7 Conclusions

We presented a method to extract approximate intrinsic symmetries of bendable

surfaces which are topology aware, using diffusion distances. We showed how

local asymmetry values can be used for detecting shape abnormalities, and pre-

sented a visualization of the entire symmetry space.
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Appendix A

Proposition 1

Let g ∈ Π(X) be a continuous function of the metric space (X ,dX), then dis(g,d)

is a continuous function as well.

Proof

Since g is continuous, ∀ε̂ ∃δ̂ x, x̂ ∈ X such that dX(x, x̂) ≤ δ̂ =⇒

dX(g(x),g(x̂) ≤ ε̂.

In order to prove that dis is continuous it is sufficient to show that
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∀ε ∃δ x, x̂,y, ŷ ∈ X

dX(x, x̂)+dX(y, ŷ) ≤ δ =⇒ (26)

| max
x,y

|dX(x,y)−dX(g(x),g(y))|−max
x̂,ŷ

|dX(x̂, ŷ)−d(g(x̂),g(ŷ))| | ≤ ε.

But if g is ε-symmetry,

max
x,y

|dX(x,y)−dX(g(x),g(y))|−max
x̂,ŷ

|dX(x̂, ŷ)−dX(g(x̂),g(ŷ))|

≤ max
x,y,x̂,ŷ

| |dX(x,y)−dX(g(x),g(y)|− |dX(x̂, ŷ)−dX(g(x̂),g(ŷ))| |

≤ max
x,y,x̂,ŷ

|dX(x,y)−d(x̂, ŷ)|+ |dX(g(x),g(y))−dX(g(x̂),g(ŷ))|

≤ 2δ + ε +2ε̂. (27)

Then, for a small ε̂ , and a locally small ε

δ =
ε − ε −2ε̂

2
(28)

is required for (26) to hold. Note, that ε can be infinitely small only near true

symmetries. Obviously, it does not mean that near ε-symmetry there exists an

1
2
ε-symmetry.

30

Te
ch

ni
on

 - 
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

CI
S-

20
09

-2
0 

- 2
00

9



References

[1] Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity, and

symmetries of geometric objects. Discrete and Computational Geometry 3,

237–256 (1988)

[2] Atallah, M.J.: On symmetry detection. IEEE Trans. Computers c-34(7)

(1985)

[3] Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction

and data representation. Neural Comput. 15(6), 1373–1396 (2003)

[4] Bobenko, A., Springborn, B.: A discrete laplace–beltrami operator for sim-

plicial surfaces. Discrete and Computational Geometry 38(4), 740–756

(2007)

[5] Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of

isometry-invariant distances between surfaces. SIAM Journal on Scientific

Computing 28/5, 1812–1836 (2006)

[6] Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimen-

sional scaling: a framework for isometry-invariant partial surface matching.

Proceedings of the National Academy of Sciences (PNAS) 103(5), 1168–

1172 (2006)

[7] Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geoemtry of

non-rigid shapes. Springer-Verlag (2008)

31

Te
ch

ni
on

 - 
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

CI
S-

20
09

-2
0 

- 2
00

9



[8] Bronstein, A.M., Bronstein, M.M., Kimmel, R., Mahmoudi, M., Sapiro, G.:

A Gromov-Hausdorff framework with diffusion geometry for topologically-

robust non-rigid shape matching. International Journal of Computer Vision

(IJCV) (2009)

[9] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate

studies in mathematics, vol. 33. American Mathematical Society (2001)

[10] Cheung, K., Ip, H.: Symmetry detection using complex moments. In: Proc.

International Conference on Pattern Recognition (ICPR), vol. 2, pp. 1473–

1475 (1998)

[11] Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner,

F., Zucker, S.W.: Geometric diffusions as a tool for harmonic analysis and

structure definition of data: Diffusion maps. Proc. National Academy of

Sciences 102(21), 7426–7431 (2005)

[12] Cornelius, H., Loy, G.: Detecting rotational symmetry under affine projec-

tion. In: Proc. International Conference on Pattern Recognition (ICPR),

vol. 2, pp. 292–295 (2006)

[13] Derrode, S., Ghorbel, F.: Shape analysis and symmetry detection in gray-

level objects using the analytical fourier-mellin representation. Signal Pro-

cessing 84(1), 25–39 (2004)

32

Te
ch

ni
on

 - 
Co

m
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

CI
S-

20
09

-2
0 

- 2
00

9



[14] Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE

Trans. on Pattern Analysis and Machine Intelligence (PAMI) 25(10), 1285–

1295 (2003)

[15] Gal, R., Shamir, A., Cohen-Or, D.: Pose-oblivious shape signature. IEEE

Transactions on Visualization and Computer Graphics 13(2), 261–271

(2007)

[16] Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global regis-

tration. In: Proc. Eurographics Symposium on Geometry Processing (SGP),

pp. 197–206 (2005)

[17] Gofman, Y., Kiryati, N.: Detecting symmetry in grey level images: The

global optimization approach. In: Proc. International Conference on Pattern

Recognition (ICPR), pp. 951–956 (1996)

[18] Gromov, M.: Structures métriques pour les variétés riemanniennes. No. 1 in
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