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ON MULTIPARTITE TOURNAMENT MATRICES
WITH CONSTANT TEAM SIZE*

STEVE KIRKLAND{} AND BRYAN L. SHADER{

Abstract
We consider spectral properties of the class, T4 ¢, of (0,1)-matrices M which satisfy

M+MT=J;—1)® Jo,

where J; denotes the all ones matrix, and I} the identity matrix, of order k. These matrices
generalize tournament matrices. This paper establishes some of the basic properties for
the eigenvalues of matrices in Ty .

1. Introduction. A tournament of order n is a directed graph, T, obtained by
orienting each edge of the complete graph K,. The name derives from considering a
round-robin tournament with n players 1,...,n in which no tie games are allowed. If the
edge between 7 and j is oriented from 7 to j whenever ¢ beats 7, then the resulting digraph
is a tournament. Tournaments have been extensively studied and the books by Moon
[1968] and Beineke and Reid [1978] provide excellent surveys of the subject.

Associated with a tournament T with vertices 1,...,n is the (0,1)-matrix :M = [m;;]

of order n where m;; =1 if there is an arc from 7 to j in T and m;; = 0 otherwise. M is
the adjacency matriz of T. The matrix M satisfies

M+MT =17, -1I,, (1)

where J, and I,, denote the all 1’s matrix and the identity matrix of order n, respectively.
Clearly, there is a one-to-one correspondence between labelled tournaments with n vertices
and tournament matrices of order n.

The tournament matrices are an interesting class of nonnegative matrices. One of
the basic concepts in the study of nonnegative matrices is the notion of irreducibility.
Recall that a square nonnegative matrix, A, of order n > 2 is reducible if there exists a
permutation matrix P such that

PTAP =
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where A; and A; are square (nonvacuous) matrices. If no such P exists, then the matrix
A is irreducible. If for some positive integer m each entry of A™ is positive, then A
is primitive. Thus a primitive matrix is necessarily irreducible. The Perron-Frobenius
Theorem (see Minc [1988]) implies that the spectral radius, p, of a primitive matrix is
an algebraically simple eigenvalue and that the eigenspace corresponding to the Perron-
value p is spanned by an eigenvector, the Perron-vector, each of whose entries is positive.
Thompson [1958] has shown that a tournament matrix of order n > 4 is primitive if and
only if it is irreducible.

Consider the results of a round-robin tournament with n > 2 players and the corre-
sponding tournament matrix M. Then M is reducible if and only if the players can be
partitioned into two nonempty sets S; and Sz such that whenever a player : € S; and a
player j € S, competed, player ¢ beat player j. Any ranking of the players should rank
a player in S; as better than a player in S;. Hence in studying methods for ranking the
players it is often assumed that the tournament has an irreducible adjacency matrix. Sup-
pose M is an irreducible tournament matrix of order n > 4. A ranking method due to
Kendall [1962] and Wei [1952] proposes that the strength of player ¢ be proportional to

the i** entry in a Perron-vector v = (vy,...,v,)T of M. The quantity
var(v) = 2:(1)z —v;)?
1<y

is a measure of how evenly this scheme ranks the players. Namely smaller values of var(v)
correspond to more evenly ranked tournaments. It follows directly from (1) that if M has
Perron-value p, then
2p var(v)
n—1 (n—1v*w (2)

Thus p also provides a measure of how evenly the Kendall-Wei scheme ranks players,
since large values of p necessitate small values of var(v) and hence more evenly ranked
players. We are led quite naturally to the study of eigenvalues of tournament matrices.
Spectral properties of tournament matrices have been examined in a number of papers,
including Brauer and Gentry [1968], deCaen, Gregory, Kirkland, Maybee and Pullman
[1991], Kirkland [1991] and Shader[1991].

Let p1,...,pa be positive integers. A directed graph obtained by orienting each edge
of the complete d-partite graph K, . ., is a d-partite tournament. Evidently a d-partite
tournament with p; = -+- = pg = 1 is just an (ordinary) tournament, while the 2-partite
tournaments are also known as bipartite tournaments. The d-partite tournaments have
been the object of some study, including a recent paper of Goddard, Kubicki, Gellerman
and Tian [1991] which looks at their cycle structure.

In this paper we focus on the case where p; = p; = --- = pg = £ for some positive
integer £. A digraph which arises from orienting the edges of the complete d-partite graph
Ky, ¢ is a d-partite tournament with team size £. The name derives from considering a
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competition between d teams of ¢ players each, in which each pair of players from different
teams compete in exactly one game. Associated with a d-partite tournament with team
size £ is a (0,1)-matrix M = [m;;] of order d¢ where m;; = 1 if there is an arc from : to
j and m;; = 0 otherwise. Without loss of generality we may assume that the kth team
consists of the players in the set

te={(k—1)€+1,....k0} (1<Ek<d).

Thus M satisfies
M+MT=Jg—1)® Je (3)

where ® denotes the Kronecker product of matrices. A (0, 1)-matrix which satisfies (3) is
a d-partite tournament matriz with team size (.

Suppose M 1is a primitive d-partite tournament matrix with team size £ and let p and v
be its Perron-value and Perron-vector, respectively. As in the Kendall-Wei ranking scheme
for tournaments, one could propose that the strength of player i be given by the :** entry
of v. In Section 2 we provide a relation between p and var(v) analogous to (2). Once again
we are led inexorably towards the study of eigenvalues. This paper establishes some of the
basic spectral properties of d-partite tournament matrices with team size £.

Let d,4, and n be positive integers with n = dl. We denote the set of all d-partite
tournament matrices with team size £ by T4, Suppose M € T;,. In Section 2 we show
that with two types of exceptions M is primitive whenever M is irreducible. Further an
eigenvalue A of M is shown to satisfy

n—/¥¢
5

—£/2 <Re(\) <

Section 3 discusses the geometric multiplicity of an eigenvalue A of M. We show that
if Re(\) = —¢/2 then the geometric and algebraic multiplicities of A coincide, and that if
Re(\) # —1/2 then the geometric multiplicity of A is at most n — d + 1. In Section 4 the
regular matrices in Ty, that is those whose row sums are equal, are studied. We show
that such a matrix is irreducible and has rank at least d. In addition the normal matrices

in T4 ¢ are characterized as the regular matrices which have

as an eigenvalue, d — 1

eigenvalues with real part —¢/2 and n — d purely imaginary eigenvalues. In Section 5 we
conclude by proposing directions for future research.

2. Spectral bounds. Throughout the remainder of this paper we let d, £ and n be
positive integers with d > 2 and n = df. If v = [v1,...,v,]T then for 1 < i < d we let

v = [v(i—1)£+1a R Uif]T-

The i'* team consists of the players in t; = {(: —1)¢+1,...,i¢}. Finally the k x 1 column
vector of all 1’s is denoted by 1.



Suppose M € T4, is a primitive matrix with Perron—value p and Perron-vector v =
[v1,...,v5]T. As previously noted the entries of v provide a measure of the strengths of
the players. With this point of view, it is natural to define the strength, w; of the i*" team
to be the sum of the strengths of its players. Thus w; = llfv(i). Let w = (wy,...,wg)T
be the strength vector of the teams. The quantities

var(v) = Z (vi — v;)?

1<i<j<n

and

var(w) = z (w; — w;)?

1<i<j<d

measure how evenly the players and the teams are ranked, respectively. Pre- and post-
multiplying the equation
M+MT=1TJ,—(Ii®Jy) (4)

by v* and v, respectively, gives

2pv*v = v*Jv — 0¥ ([ ® Jy)v.

Since

v*Jpv = dw*w — var(w),

v (Ig ® Jo)v = wrw,
and

d .
wrw = v — Zvar(v(')) )
=1
we have
n—1~¢ 4 ~
2 ( 5~ p) v*v = var(w) + (d — 1) ;var(v(’)). (5)
n—£€ .

Thus —p indicates how evenly the teams and the players on the same team are ranked.

This analogue of the Kendall-Wei scheme piques our interest in the spectral properties of

matrices in Ty . We observe that (5) implies that the spectral radius of M is bounded
n—4¢

above by and that equality holds if and only if var(w) = 0 and var(v(?) = 0 for each

-/
1 <1z < d. It follows that p < nT with equality if and only if M is a regular matrix.

We now establish the analogue of Thompson’s [1958] result on irreducible tournament
matrices.



THEOREM 1. Assume M € Ty is an irreducible matrix. Then exactly one of the
following holds:

1) d=2, ,

(ii) d=3, and M or MT equals
o J, O
O O Jg|,
Je O O

(i) M is primitive.

Proof. If X and Y are subsets of {1,...,n} we let M[X,Y] denote the submatrix of
M whose rows are indexed by the elements of X and columns by the elements of Y. We
write M[X,Y] = J if each entry of M[X,Y]isa 1. .

Assume d > 2 and M is not primitive. Then there exists an integer £ > 2 and a
partition S; U---U Sk of {1,...,n} such that

M(S;, S;] # O if and only if (z,5) € {(1,2),...,(k —1,k),(k,1)}.

Hence for each i (1 <17 < k) there exists a j (1 <7 <d) with S; C ¢;. Without loss of
generality assume that S; C t;. If S; is not contained in ¢, then

M[Slasj] + M[S]"Sl]T =J )

and hence at least one of M[Sy,S;] or M[S},S] is nonzero. Since there exists a unique j
such that M[S1,S;] # O and a unique j' such that M[S}, S1] # O, there are at most two
m’s such that S,, i1s not contained in ¢; and hence there are at most 2 teams besides ¢;.
Thus d = 3 and each of t; and t3 consists of a unique S,,. Applying a similar argument
to t, we conclude t; consists of a unique S,,. It now follows that (ii) holds.

0

Next we establish some basic spectral inequalities for matrices in T . Recall that, as
in the tournament case, a matrix in Ty ¢ is regular if its row sums are equal.

THEOREM 2. Suppose M € T4, and that X is an eigenvalue of M with corresponding
eigenvector v. Then

n—/{¢

’

(i) 5 < Re()) <

n—/

(i) Re(\) =

if and only if M is regular,

(iii) Re(A) = —g if and only if v*J,v = 0 and for 1 < i < d each v¥ is a multiple of
1.



—£
Proof. We have already shown that the Perron-value, p, of M satisfies p < _71_5_

Since |A| < p, Re(M) < nT—E with equality holding if and only if p = A and M is
regular. By pre- and post-multiplying (4) by v* and v, respectively, and then applying the
Cauchy-Schwarz inequality we conclude that

d
2Re(A)v*v = v*Jv — Z |’U(i)*]lg|2
=1

d
>v*Jv — zﬁv(i)*v(i)
i=1

=v*Jv — fv*v

> —tv*v .

It now follows that Re(\) > —¢/2 and that (iii) holds.
0

COROLLARY 3. Suppose M € Tq¢, A is an eigenvalue of M and v is a corresponding
eigenvector. Assume Re(\) = —€/2 and that u is an eigenvector of M which corresponds
to a different eigenvalue . Then u*v = 0.

Proof. Pre-and post-multiplying (4) by v* and u, respectively we have

d
v*Mu+ v*MTu = v*Ju — Zv(i)* Jou®

1=1

Simplifying and using Theorem 2 we obtain

d
(y+Xou ==Y v®Ju®
i=1
= —v*u .

Thus (v + X + £)v*u = 0 and we conclude that v*u = 0.
0

By considering the trace, it is easy to see that a regular tournament matrix of order
n has n — 1 eigenvalues with real part —1/2. However if £ > 2 and M € T, is regular
then the trace argument only guarantees that M has an eigenvalue with real part at least

_(n=9
2(n —1)

However, there are examples of matrices in T4, which give simultaneous



equality in the bounds of Theorem 2. Let R be a regular tournament matrix of order d.

Then M = R® J; is a regular d-partite tournament matrix of order n. It is easily verified
n —

that M has a simple eigenvalue , d — 1 eigenvalues with real part —¢/2 and 0 as

an eigenvalue with algebraic multiplicity n — d. There are other constructions that yield
simultaneous equality in Theorem 2. Consider the matrix

M=S®(Je—I)+ ST @I,
where
010
S=10 0 1
100
Then M € Ty, Since S® (J, — I;) and ST ® I, are commuting normal matrices, they are

simultaneously diagonalizable. It can now be easily verified that the eigenvalues of M are

n-¢ _, 443 (£—2)
=0, — 5

5 , 0 with multiplicity £ — 1 and +i/3 both with multiplicity
£—1.

3. Multiplicity of Eigenvalues. In this section we discuss the geometric multi-
plicity, and to a lesser extent the algebraic multiplicity, of d-partite tournament matrices
with team size £. We begin with a lower bound on the number of distinct eigenvalues of
an irreducible matrix in T3, We are indebted to D. Gregory for a simplification of the
following proof.

THEOREM 4. Suppose £ > 2 and that M is an irreducible matrix Tq . Then M has
at least 4 distinct eigenvalues.

Proof. Since M is a nonnegative, irreducible matrix and tr(M?) = 0, the matrix M
has a real positive eigenvalue p and a complex conjugate pair of nonreal eigenvalues « =+ 1.
Suppose that these are the only eigenvalues of M.

First assume M is primitive. Then p has algebraic multiplicity 1 and o £ 37 each have

1 ‘
algebraic multiplicity nT Since p and a + Bt are roots of

det(A] — M) = (A — p)(A% = 2a\ 4 a® + g2)("=D/2

p and 2« are algebraic integers. Since a minimal polynomial over the rationals has distinct
roots, the minimal polynomial of a+87 over the rationals is either (A—p)(A\? —2aA+a?+5?%)
or (A2 — 2a) + a? + $#%). Thus either 2a + p or 2« is rational. Because

0= 00 = p+ (15 20
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and n > 3, both p and 2« are rational. We conclude that p and 2« are integers and that
n—1 .. . n—1
< 5 ) divides p. In particular p >

, a contradiction.

Now assume M is imprimitive. By Theorem 1 either d = 2, or one of M and M7T
equals

O J¢ O
o 0 J,
Je O O

In the latter cases M has 4 distinct eigenvalues. In the former case, the Perron—Frobenius
Theorem implies that —p is an eigenvalue of M, and hence p, —p and a & f are 4 distinct
eigenvalues of M.

a

An immediate consequence is an upper bound on the algebraic multiplicity of an eigen-
value.

COROLLARY 5. Let M be an irreducible matrix in T4, with £ > 2, and let A be a

. T . —2
nonreal eigenvalue of M. Then the algebraic multiplicity of A\ is at most z .

A Hadamard tournament matriz of order n is a tournament matrix H which satisfies

HHT = HTH = (”11>1n+(”;3) J.

(note that n is necessarily congruent to 3 mod 4). It is shown in deCaen, Gregory, Kirk-
land, Maybee and Pullman [1991] that an irreducible tournament matrix, M, of order
n > 3 has at least 3 distinct eigenvalues and has exactly 3 distinct eigenvalues if and
only if M is a Hadamard tournament matrix. It is easy to show that the eigenvalues of a

-1
z of multiplicity 1, and —% + % each

T n— .
of multiplicity — We now use Hadamard tournament matrices to construct two classes

Hadamard tournament matrix of order n are

of d-partite tournament matrices with exactly 4 distinct eigenvalues.” First suppose that
d = 3 mod 4 and that H is a Hadamard tournament matrix of order d. Then H ® J, € T4,
n—0 £ i/d d—1

5 3 + > each with algebraic multiplicity ) and

0 (with algebraic multiplicity n — d). Now suppose that d =2, £ = 3 mod 4 and that H
is a Hadamard tournament matrix of order £. Let

and has 4 eigenvalues:

| —o ]

H
Je—HT I 0

8



Then M € T4, and since

" (52) ve-1

0 l (él—_l) (Je— 1)

2 _1 iE+1
2 2

(each with multiplicity 1) and +

O

the eigenvalues of M are: * (each with

multiplicity £ — 1). Thus M has exactly 4 distinct eigenvalues. In addition the eigenvalues
ii\/ﬁ +1
eigenvalue given in Corollary 5.

It is known (see deCaen, Gregory, Kirkland, Maybee and Pullman [1991]) that the ge-
ometric and algebraic multiplicities of an eigenvalue A with Re(\) = —1/2 of a tournament

yield equality in the upper bound for the algebraic multiplicity of a nonreal

matrix are equal. We extend this result to d-partite tournament matrices.

THEOREM 6. Let M € T4 and suppose X is an eigenvalue of M with Re(\) = —£/2.
Then the geometric and algebraic multiplicities of A are equal.

Proof. Since the eigenvalue A lies on the boundary of the field of values of M, the
theorem follows from standard results on such eigenvalues (see Theorem 1.6.6 of Horn and
Johnson [1991]). However we also give a more direct proof. Suppose that the geometric
multiplicity of A is less than its algebraic multiplicity. Then there exists an eigenvector u
and a generalized eigenvector v such that Mu = Au and Mv = v + u. Without loss of
generality we may assume that v*u = 0. By Theorem 2, u*1, = 0 and each u() (1 <
¢ < d) is a multiple of 1,. Pre- and post-multiplying (4) by u* and v, respectively, yields

d
w*u 4+ (A 4+ Nu*v = u* T — Zu(i)*ng(i).

1=1

Since v 1, = " , uw*Jo,v = 0 and u*v = 0, we conclude that u*u = 0. This
- contradicts our assumption and hence the multiplicities of A are equal.

0

Next we address the geometric multiplicity of an eigenvalue of a matrix in T4, The
result rests upon a simple lemma which we state without proof (see Theorem 1.4.9 of Horn

and Johnson[1985]).

LEMMA 7. Let A be a matrix of order n and suppose that A is an eigenvalue of A with
geometric multiplicity at least t. Then A is an eigenvalue with geometric multiplicity at
least m — n + t of each principal submatrix of A of order m > n —t+ 1.

9



THEOREM 8. Let M € T4, and suppose that X is an eigenvalue of M with geometric
multiplicity at least n — d + 2. Then Re()\) = —1/2.

Proof. By Lemma, 7, each principal submatrix of M of order d has X as an eigenvalue
of geometric multiplicity at least 2. The submatrix

MH{1,£+1,20+1,...,(d—1)+1},{1,+1,20+1,...,(d = 1)+ 1}]

is a tournament matrix of order d. Since the geometric multiplicity of an eigenvalue f of a
tournament matrix is greater than 1 only if Re(8) = —1/2 (Maybee and Pullman[1990]),
we conclude that Re(\) = —1/2.

COROLLARY 9. A matrix in T4 has rank at least d — 1.

Irreducible matricesin T4 (d > 6) with minimum rank can be constructed as follows.
Let S be a singular irreducible tournament matrix of order d (Maybee and Pullman [1991]
have shown that such matrices exist for any d > 6). Let M = S® Jy. Let v = (v1,...,v4)7
be a nonzero null vector of S and let {uy,...,up_;} be a basis for the nullspace of J,.
Then it is easy to verify that

e;®u;: 1<:1<d and 1<j7</{-1}U{v® 1,},
J

is a linearly independent set of vectors in the nullspace of M (where {e1,...,eq} are the
standard basis vectors for the d x 1 vectors). Hence the rank of M equals d — 1.

The final result of this section bounds the real part of an eigenvalue in terms of its
geometric multiplicity.

THEOREM 10. Suppose M € T4, and that A is an eigenvalue of M. If the geometric
multiplicity of X is at least n — ad + 1 for some integer 1 < a < £, then

—a/2 <Re(M) < a (”;f) .

Proof. Suppose the geometric multiplicity of ) is at least n —ad+1. By Lemma 7, ) is
an eigenvalue of any principal submatrix of M of order ad. M has principal submatrices of

order ad that are d-partite tournament matrices with team size a. Theorem 2 now implies

that
ad —a

and the result follows.
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4. Regular matrices in T ¢. In this section we discuss the regular matrices in Ty ¢.

Let Rq,¢ denote the set of regular matrices in T4, and suppose M € Ry . Since a matrix
n(n — £) n—4¢

in T3¢ has exactly ———— ones, each row and hence each column of M has exactly 5

n—f_ Yd-1)

ones. Because is an integer, either ¢ is even or d is odd. Suppose d

is odd and let R be a regular tournament matrix of order d. Then R® J; € Rg¢. Now
suppose £ is even and let P be a (0,1)-matrix of order £ with exactly £/2 ones in each row
and column. Then

0 P P
Jo—PT O :

M = € Rye.
: ' 0 P
\ Jo—PT ... J,—PT O]

Thus R, ¢ is nonempty if and only if d is odd or £ is even. Throughout the remainder of
this section, unless otherwise stated, we assume d is odd or £ is even. The following lemma
will be useful.

LEMMA 11. Let M € R4 and suppose v is an eigenvector of M corresponding to an

eigenvalue \ different from nT_- Then v*1, = 0.

Proof. Pre- and post-multiplying (4) by v* and 1,, respectively, yields

d
n—£¢ * * )"
( 5 -|—)\> (v*'l,) =v*J 1, — ié] v Jellp

d
=nov*l, — @Z’U(i)‘ 1,.
=1

Thus (X — @) v*1,, = 0 and the result follows.

0

In Moon [1968] it was shown that a regular tournament matrix is irreducible. We now
establish the analogous result for regular d-partite tournament matrices.

PROPOSITION 12. Suppose M € Ry . Then M is irreducible.

Proof. Suppose S; U S, is a partition of {1,...,n} with both S; and S, nonempty

such that M[Sy, So] = O. Since M is regular, M[Sy,S;] and M[{1,...,n},S;] each contain
1S1\(n — £)

exactly ~———-——= ones. It follows that M][S2,51] = O. Since M[S1, S2] = O, M[S2,51] =

11



O and S; U S, partitions the rows of M, the matrix M can not be in Ty ¢, a contradiction.
We conclude that M is irreducible.

i

It is well-known (see Brauer and Gentry [1968]) that a tournament matrix is normal if

and only if it is regular. Our next result provides a characterization of the normal matrices
n ‘Id,g.

THEOREM 13. Let M € T4 Then M is normal if and only if M is regular, M has
d — 1 eigenvalues with real part —£/2, and M has n — d purely imaginary eigenvalues.

Proof. First suppose that M is normal. Then M and M7 commute. It follows from
(4) that M, MT and J,, — (I4 ® J;) are pairwise commuting normal matrices. Thus M,
MT and J, — (Iq ® J¢) can be simultaneously diagonalized by an orthogonal matrix. The
eigenvalues of J, — (I4 ® J¢) are n — £ of multiplicity 1, —¢ of multiplicity d — 1, and 0 of
multiplicity n — d. It now follows that M has the desired eigenvalues.

Conversely, suppose M is regular, M has d — 1 eigenvalues \,...,\q_; with real
part —¢/2 and n — d purely imaginary eigenvalues py,..., fto,_q. Then 1, is an eigenvector

corresponding to and by Lemma 11 is orthogonal to any eigenvector corresponding to

another eigenvalue. By Theorem 6, the geometric and algebraic multiplicities of A\; (1 <
J < d—1) coincide, and by Corollary 3 an eigenvector corresponding to A; (1 <j <d-1)
is orthogonal to an eigenvector corresponding to any other eigenvalue.

Suppose 1 < j <n —d and that v is an eigenvector of M corresponding to p;. Then

d
(1 + 1) = v*J0 — Zv(i)ng(i) (6)

i=1

and it follows from Lemma 11 that v, =0for1 <i<d. A straight forward calculation
shows that v is orthogonal to any eigenvector corresponding to another purely imaginary
eigenvalue. If there exists a vector w such that Mw = pjw + v then

d
w*Mv + w*MTy = w*Jv — Zw(i)hv(i) ,
=1

which implies that v*v = 0. We conclude that the geometric and algebraic multiplicities
of p; coincide.

From the above considerations there is an orthonormal basis of C™ consisting of eigen-
vectors of M, and hence M is normal.

We give another characterization of the normal matrices in Tg ¢.

12



THEOREM 14. A matrix M € T4, is normal if and only if M is regular and each
Mit;, t;] (1 <14,j <d) has constant row sums.

Proof. Since M + M7T = J, — (I4® Jy), M is normal if and only if M commutes with
Jn — (Ia ® Je). By Theorem 13 normal matrices in T4, are regular. Hence M € Ty, is
normal if and only if M is regular and M commutes with Iy ® J,. The result now follows.

0

COROLLARY 15. A regular bipartite tournament matrix is normal.

Proof. Suppose M € T4 ¢ is regular. Then
0 P
Je—PT 0 ]
where P is of order ¢ and has £/2 ones in each row and column. By Theorem 14, M is
normal.

|

0

Suppose M € T4, is normal. By Theorem 14 each M][t;,t;] has constant row sums,

say r;;. Let S = [s;;] be the nonnegative matrix of order d with s;; = % Then

S+ST=J,—1I,. (7)

A nonnegative matrix S satisfying (7) is a generalized tournament matriz of order d (see
Maybee and Pullman [1991]). It is not difficult to show that if X is an eigenvalue of S,

then £X is an eigenvalue of M.

-1

n
A regular tournament matrix of order n has Perron-value and has n — 1 other

eigenvalues with real part —1/2. Thus a regular tournament matrix has full rank. We now
discuss the rank of matrices in Rq ¢.

PROPOSITION 16. Let M € R4,. Then M has at most n — d purely imaginary eigen-
values.

n—4~¢

Proof. Since M is regular, is an eigenvalue of M. Suppose M has k purely

n—42

imaginary eigenvalues and let the remaining eigenvalues of M be

and,Xb...,An_l_k.

Since tr(M) = 0 and the purely imaginary eigenvalues of M occur in conjugate pairs,

n—1—k
n—4¢

0=——+ ; Re();).

By Theorem 2, Re()\;) > —¢/2 (1<j<n-1-k),and it follows that k <n —d.

a

A consequence of Proposition 16 is that a matrix in Ry, has rank at least d. If d is
odd and R is a regular tournament matrix of order d, then R ® J; € Ry ¢ has rank equal
to d. We now prove the converse.

13



THEOREM 17. Let M € R4 and suppose M has rank d. Then d isodd and M = RQJ,
for some regular tournament matrix of order d.
-/
Proof. Since M is regular, =" isan eigenvalue of M. Because 0 is an eigenvalue of

M with algebraic multiplicity at least n — d and tr(M) = 0, Theorem 2 implies that 0 has
algebraic multiplicity exactly n —d and M has d — 1 eigenvalues with real part —¢/2. Thus
by Theorem 14, M is normal. Pre- and postmultiplying (4) by w* and w, respectively,
where w is a a vector in the nullspace of M, and applying Lemma 11, we conclude that
the nullspace of M lies in the subspace

W ={w: w(i)Tllg = 0}.

Since W has dimension n —d, the nullspace of M equals W. Let e; denote the n x 1 column
vector with a 1 in position ¢ and 0’s elsewhere. Suppose 7, € tx. Then (e; —e;) € W. It
follows that column 7 and j of M are equal. We conclude from Theorem 14 that for each
i and j, M[t;,t;] is either the matrix of all 0’s or the matrix of all 1’s. The result now
follows.

0

COROLLARY 18. Let M € R4, and suppose d is even. Then M has rank at least d+1,
and if M is normal then M has a nonzero purely imaginary eigenvalue.

Proof. The result follows immediately from Theorem 17.

U
A regular tournament matrix (i.e. £ = 1) has eigenvalues with real part —£/2. As the
next proposition shows, this is not necessarily the case when £ > 2 .

PROPOSITION 19. Assume £ > 2 and d is odd. Then there exists a matrix M € Ry,
none of whose eigenvalues has real part —£/2.

Proof. Let C = [C;] be the permutation matrix of order d whose 1’s occur in the
positions (1,2),...,(d — 1,d) and (d,1). Let N be the (0,1)-matrix of order d with a 1 in
position (1,1) and 0’s elsewhere. Define the matrices A and B of order n by

A= (Cl+---+0d;2l)®Je

and

B=[-(Ct4 - +CF) 4+ (cHF 4 1ot

The matrix A is in Rg . Since B is a skew-symmetric (0,1, —1)-matrix with line sums 0
and A + B is a nonnegative matrix, A + B € Ry .

14



Suppose that A + B has an eigenvalue with real part —¢/2 and a corresponding eigen-
vector v. By Theorem 2 each v() is a multiple of 1, and v*1 = 0. Thus each (Av)(®
is a multiple of 1,. It follows that each (Bv)(i) is a multiple of 1,. Let v(Y = a;1, and
a=[a,...,aq]T. Then

[_<Cl+..._|_cd;zl')+<Ci¥‘l‘+...+0d_1)]a-—:0.

It follows that ay; = --- = a4 and that v is a multiple of 1,. Since v*1,, = 0, we conclude
that A + B has no eigenvalues with real part —£/2.

0

5. Future Research. In this section we pose a few problems which arise from the
material in the preceding sections. Throughout M will be a matrix in T;, and A an
eigenvalue of M.

Problem 1. If Re(A) # —1/2 and the algebraic multiplicity of A is at most n —d + 1,
are the geometric and algebraic multiplicities of A\ necessarily the same?

Problem 2. Suppose N is a tournament matrix of order n. Then an eigenvalue p of N
with Re(u) # —1/2 is geometrically simple. In particular, the generalized eigenspace of N
corresponding to A is spanned by the generalized eigenvectors in a single Jordan chain. If
Re(M\) > —£/2, what is the structure of the eigenspace of M corresponding to A?

Problem 3. For which values of d and £ does there exist a matrix in Ty, with exactly
4 distinct eigenvalues?

Problem 4. Determine the values of d and £ such that T, contains a matrix with a

. . e -2
nonreal eigenvalue whose algebraic multiplicity equals z ?

Problem 5. What is the maximum possible geometric multiplicity of an eigenvalue with
real part —1/2 for a matrix in Ty 7

Problem 6. If d and ¢ are both even, and M € Ry, does M necessarily have an
eigenvalue whose real part equals —£/27

Problem 7. Find necessary and sufficient spectral conditions for a matrix M € Ty to
be diagonalizable.

Problem 8. If d and £ are both even, what is the minimum possible rank of a matrix
in Rd’g?

Problem 9. For tournament matrices there is a connection between the row sum vector
and both the nonsingularity of the matrix and its Perron-value (see Katzenberger and
Shader [1990], Kirkland[1991]). Is there a similar relationship between these properties of
M and the vectors M1, (M1,)MV, ..., (M1,)®?

15
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