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Bikeshare systems are relatively new, highly visible additions to urban 
transportation systems that provide opportunities to cycle or combine 
cycling with other modes of transportation. The research reported here 
presents new evidence about the role of bikeshare systems in travel 
behavior on the basis of diffusion of innovation theory. The study 
hypothesized that bikeshare systems have spatial contagion or spillover 
effects on (a) the propensity of individuals to adopt bikeshare and 
(b) the propensity to bicycle within the general population. The first 
hypothesis (H1) was tested by modeling membership growth as a func-
tion of system expansion and the existing, proximate membership base. 
The second hypothesis (H2) was tested by using bikeshare activity levels  
near home in a model of household-level bicycle participation and trip 
frequency. The study yielded mixed results. Bikeshare membership 
growth appeared to be driven in small part by a contagion effect of 
existing bikeshare members nearby, even after controlling for system 
growth. However, within the general population, a significant relation-
ship was not identified between proximity to bikeshare stations and 
cycling participation or frequency. These findings complement those of 
other recent studies of bikeshare systems, which indicated that systems 
are still evolving. The present findings also have implications for mar-
keting, infrastructure investments, and future research about bikeshare 
operations and innovation.

Bikeshare systems are relatively new, highly visible additions to 
urban transportation systems, which provide opportunities to cycle 
or combine cycling with other modes of transportation. With a dif-
fusion of innovation framework, this paper presents new evidence 
about the role of bikeshare systems in travel behavior, including new 
models that estimate propensity to cycle and control for access to 
bikeshare. It was hypothesized that bikeshare systems have spatial 
contagion or spillover effects on (a) the propensity of individuals to  
adopt bikeshare (i.e., to join as a member), and (b) the propensity 
to bicycle within the general population. The first hypothesis was 
tested by modeling membership growth as a function of system 
expansion and the existing membership base. The second hypoth-
esis was tested by using bikeshare activity levels near home in a 
model of household-level bicycle participation and trip frequency. 

Data for the case study came from Nice Ride Minnesota, a bike-
share program implemented in the Twin Cities (i.e., Minneapolis 
and Saint Paul), Minnesota, in 2010, and from a 2011 travel behav-
ior inventory conducted by the Metropolitan Council, the regional 
planning organization for the Twin Cities metropolitan area.

The study yielded mixed results and had implications for policy, 
practice, and research. After system growth was controlled for, it 
appeared that bikeshare membership growth was driven in small 
part by a contagion effect of existing, nearby bikeshare members. 
However, a significant relationship was not identified between prox-
imity to bikeshare and cycling participation or frequency within the 
general population. Explanations for these findings may be multiple, 
including the fact that the role of bikeshare within the transportation 
system is still evolving.

This paper begins with brief reviews of the literature on diffusion 
of innovation and bikeshare systems. After the data and methodol-
ogy are described, the findings are presented about how bikeshare 
influences, respectively, its own membership and the decisions of 
individuals within the general population to bicycle. The paper con-
cludes with a discussion of the implications and limitations of the 
findings and opportunities for future research.

Literature Review

Diffusion of Innovation Theory

Diffusion of innovation theory emerged in the first half of the  
20th century and has been broadly applied since in multiple dis-
ciplines to model a wide array of new technologies, brands, and 
social innovations. For example, in the field of marketing in which 
hundreds of applications have been described, literature reviews and 
meta-analyses have been published to describe factors that influence 
adoptions of innovations (1, 2). The basic theory is simple and intuitive. 
Innovations diffuse into society following a logistic growth curve. 
Early demand for an innovation motivates additional future demand. 
Scholars identified two plausible and potentially complementary 
causal mechanisms for the observed trajectories: (a) income distri-
bution of the population, which affected who was able to assume 
the risks associated with new technologies, and (b) a heterogeneous 
population in which certain people were more inclined to be early 
adopters than others (3). For example, although bicycling is not 
a new innovation, the income distribution and the heterogeneous 
population mechanisms of diffusion can be used to interpret how 
changes in levels of bicycling and the presence of bicyclists on the 
street have the potential to induce additional demand. Duesenberry’s 
income distribution theory posited that the cost of an innovation fell 
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with greater consumption, which enabled a larger segment of the 
population to afford it (3). For example, one major (unpriced) cost 
of bicycling is risk or the perception of risk. The visibility of cyclists 
changes driver behavior, which increases the safety for bicyclists 
(i.e., lowers the risk cost), which in turn increases the utility of bicy-
cling for others (4–6). Jacobsen observed an inverse relationship 
between rates of bicycling and incidences of collision with motor 
vehicles across multiple cities, countries, and over time (6). He theo-
rized that, as drivers saw more bicyclists on the street, they learned to 
anticipate the presence and behavior of bicyclists and to drive more 
cautiously. This outcome was consistent with Duesenberry’s cost 
theory. As the number of bicyclists on the street increases, their vis-
ibility triggers greater acceptance and caution among drivers, which 
increases safety for bicyclists. Put another way, the cost (in terms of 
risk) falls as more people bike, so bicycling becomes accessible to 
new segments of the population.

In contrast to this more narrow economic interpretation, Rogers 
argued that innovations were diffused through heterogeneous popula-
tions on the basis of individual propensity to adopt new technologies 
(7). Rogers grouped the population into five categories on the basis 
of their adoption speed: innovators, early adopters, early majority, 
late majority, and laggards. Innovators and early adopters readily 
consume new technologies, while slower groups need to see the tech-
nology tested among their peers before they adopt it. With bicycling, 
this effect can be thought of as a social influence effect. As bicy-
cling becomes increasingly visible, popular, and normalized, slower 
adoption groups become more comfortable with the idea of bicycling 
(8, 9). Evidence from the literature suggests that individuals’ deci-
sions to bike are influenced by their exposure to bicycling in their 
social network and around the city. Goetzke and Rave, for example, 
found a positive relationship between an individual’s social network 
and a city’s bicycle culture and an individual’s propensity to bike for 
shopping and recreation trips in Germany (10).

Bikeshare and Diffusion of Innovation Theory

Bicycling is not a new mode of transportation, but bikeshare pro-
grams are new additions to transportation systems that have been 
made practical through the integration of innovations with informa-
tion technology, which ranges from the Internet to improvements in 
credit card processing technology to GPS. Hence, the evolution of 
bikeshare programs can be interpreted within an innovation of diffu-
sion framework. For any specific bikeshare program, an individual’s 
decision to purchase a bikeshare membership and add bikeshare as a 
potential mode choice can be interpreted as commitment to, or adop-
tion of, a distinctive brand of bicycling. The metaphor of a brand—
a particular type of product with particular characteristics produced 
by a particular vendor or entrepreneur—is appropriate for bikeshare, 
given approaches used in marketing (e.g., the deployment of uniform, 
distinctly painted bicycles with particular features for safety and con-
venience). In addition, the rich data sets from bikeshare systems made 
possible by technological innovations make possible studies unique 
to this transportation alternative. Partly because of the growing prev-
alence of bikeshare systems and partly because these systems gener-
ate data that are publicly available for study, the number of studies 
of bikeshare systems recently has grown.

Fishman et al. synthesized the bikeshare literature in 2013 and 
reported, among other findings, that bikeshare members prioritized 
convenience and value, that bikeshare members were more likely 
than nonmembers to own and use their own bikes, and that bike-

share users were more likely to substitute bikeshare for other sus-
tainable modes of transportation than private vehicles (11). They 
observed that “the potential for bikeshare to act as a catalyst for 
private bike riding has received little attention” (11, p. 162). In an 
assessment of bikeshare systems in North America, Shaheen et al. 
observed that the bikeshare industry had yet to adopt a “dominant 
business model” and that diversity was great across programs in 
terms of funding sources and operations (12, p. 92).

Many studies of bikeshare systems have focused on member-
ship, correlates of bikeshare use, and effects on mode choice. For 
example, Fishman et al. found that the home and work locations of 
nonbikeshare members in Brisbane and Melbourne, Australia, were 
more likely to be geographically dispersed than the home and work 
locations of bikeshare members (11). In related analyses, they found 
that survey respondents “aged 18–34 and having docking stations 
within 250 m of their workplace” were significantly more likely to 
be bikeshare members (13, p. 325). In a comparison of bikeshare 
users in Washington, D.C., Buck et al. found that Capital Bikeshare 
members “were more likely to be female and younger, to have lower 
household incomes, and to own fewer cars and fewer bicycles, and 
were more likely to cycle for utilitarian purposes” (14, p. 112).

Wang et al. showed that bikeshare station activity (i.e., origins 
and arrivals) was associated with neighborhood sociodemographics,  
proximity to the central business district, proximity to water, acces-
sibility to trails, distance to other bikeshare stations, and measures of 
economic activity (15). Rixey reported similar findings: population  
and job density, higher levels of income and education, presence of 
bikeways, and proximity to other stations were positively correlated 
with station use; nonwhite populations and adverse weather were 
negatively associated (16). With respect to the effects of bikeshare 
on other travel modes, Ma et al. studied the association between 
Capital Bikeshare and Washington, D.C.’s Metro rail system (17). 
They found that bikeshare activity within a transit station’s catch-
ment area was positively associated with transit ridership, and 
asserted a spillover effect, although the direction of causality in their 
findings was not clearly established. Fishman et al. estimated reduc-
tions in miles traveled associated with bikeshare use (18). Martin 
and Shaheen found that the effects of bikeshare on transit varied by 
location of residence and across cities. Specifically, they found that, 
in Washington, D.C., bikeshare participants that lived on the urban 
periphery shifted toward use of bus and rail, while residents of the 
urban core tended to use transit less (19). Conversely, in Minneapo-
lis, they found that bikeshare member shifts toward rail included 
residents of the urban core, while modal shifts for buses were more 
dispersed.

More generally, Wang et al. studied neighborhood social effects 
on mode choice and found evidence of contagion, specifically, that 
“the more OSU-affiliated bicycle riders are residing around an indi-
vidual OSU commuter, the more attractive bicycling becomes, con-
trolling for other factors such as gender, status, proximity to campus, 
bicycle infrastructure and attitudes” (20, p. 122). In related studies, 
Efthymiou et al. reported factors associated with adopting vehicle 
sharing systems (21). Researchers also have explored public health 
externalities associated with nonmotorized transportation (22, 23).

With respect to bikeshare and diffusion of innovation theory, 
researchers have explored growth in the numbers of systems and 
used survey methods to assess the likelihood of individual adoption 
of bikeshare, but researchers have not modeled system membership 
growth or whether bikeshare affects bicycle mode choice generally. 
Parkes et al. studied the spread of bikeshare systems through Europe 
and North America (24). They found the number of systems in place 
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over time followed an ess curve in Europe and, as of 2012, appeared 
to be approaching maturity. In North America, however, the curve 
appeared to still be in the “birth” or early “growth” phase. Therrien 
et al. studied bikeshare diffusion in Vancouver, British Columbia, 
Canada, at the individual level through a stated preference survey 
in which residents indicated how likely they would be to use a pro-
posed bikeshare system (25). Their binary logistic regression model 
identified on the basis of self-reporting the characteristics of those 
likely to use the new system (controlling for socioeconomic and 
demographic attributes), and they stratified their sample on the basis 
of these characteristics into Rogers’ categories of adopters (7). Fuller 
et al. studied the effects of the Société de Vélo en Libre-Service (i.e., 
Bixi) public bicycle-sharing system in Montreal, Quebec, Canada, 
on all types of bicycling and found that people exposed to the Bixi 
system were more likely to bike (26). The present study built on 
these applications of diffusion on innovation theory to introduce 
new models of membership growth and the effects of bikeshare on 
bicycle mode choice within a general population.

Methodology

Theory and Hypotheses

In Rogers’ heterogeneous population diffusion of innovation frame-
work, bikeshare systems (e.g., Nice Ride Minnesota, Minneapolis 
and Saint Paul; Capital Bikeshare, Washington, D.C.; and Divvy 
Bikeshare, Chicago, Illinois) can be thought of as distinctive brands 
of cycling (7). The Nice Ride bikes, for example, all are painted a 
bright lime-green, equipped with standard baskets, and operate with 
flashing front lights visible to oncoming traffic. Matching lime-green 
helmets are sold and often given away as promotions. Adoption of 
the brand depends on individual tendencies toward innovation and 
imitation and overall rates of adoption. The high visibility of bike-
share systems and bicycles suggests that bikeshare systems may 
have a distinct effect on further adoption of the system and cycling 
in general.

Equation 1 describes the probability of adopting an innovation 
(bi(t)) as a function of inclinations toward innovation (pi(t)) and 
imitation (qi(t)) and the proportion of adopters (G(t)) at time t, with 
use of the equation presented by Meade and Islam (3).

( ) ( )= +b t p q G ti i i (1)

Nice Ride, as a brand of bicycling, is highly visible. People whose 
exposure to Nice Ride users is high are expected to have an increased 
likelihood of bicycling, given the larger effects of imitation (qi). In 
other words, the probability that an individual adopts Nice Ride is 
a function of that person’s tendency toward innovation (early adop-
tion) and tendency to imitate peers, taking into account how many 
peers in fact use the brand (i.e., bicycling).

The study hypothesized that bikeshare systems had a spatial con-
tagion or spillover effect as follows:

H1.  Propensity to become a Nice Ride member (i.e., potentially 
begin to use the bikeshare system) and

H2.  Propensity to bicycle among the general population.

Two models were estimated to test these hypotheses. For H1, a 
parsimonious, lagged variable regression model was used to pre-
dict net bikeshare system membership change in a census block 

group as a function of prior bikeshare system membership levels, 
which controlled for system expansion locally (at nearby stations) 
and systemwide. A positive and significant coefficient on the prior 
bikeshare system membership would indicate a potential diffusion 
of innovation effect in which the presence of early bikeshare adopt-
ers influenced the decisions and behaviors of people around them. 
The membership models were restricted to measures of member-
ship and system growth, because detailed data on individual mem-
bers and data to measure changes in characteristics of areal units of 
analysis (i.e., census block groups) were not available for each year 
of the analysis. Costs were not included, because net changes were 
negligible in annual costs of membership for the years modeled.

For H2, a household’s propensity to bicycle and its frequency 
of bicycle trips were modeled as a function of bikeshare trips that 
started or ended near the household. Dedicated bicycle infrastruc-
ture and population density near the home location were controlled 
for and so were the sociodemographic characteristics of the house-
hold. A positive and significant coefficient on bikeshare trip activity 
would suggest a potential diffusion or spillover effect of bikeshare 
on general population cycling in which the visibility of a specific 
brand (bikeshare cycling activity) nearby changed an individual’s 
own propensity to use the technology (any type of cycling).

Data Sources

Two main data sources were used: (a) trip and subscriber records 
from the local bikeshare system and (b) regional travel behavior 
inventory survey data about general population households and 
daily trips (27–29).

The Nice Ride Minnesota bikeshare system in Minneapolis and 
Saint Paul was launched in 2010. Ridership increased steadily 
throughout the period analyzed, from 2010 (about 100,000 trips) 
through 2013 (more than 300,000 trips). Nice Ride Minnesota pro-
vided a database of subscribers and trips taken on the Nice Ride 
bikeshare system. The origin station, destination station, start time, 
end time, and subscriber ID were electronically recorded for every 
trip. For subscribers, the database contained the date a subscriber 
joined, age, geographic location, gender, and subscription type. Fig-
ure 1 shows the geocoded approximate locations of Nice Ride’s sub-
scribers. Walk-up day pass users were not included in the subscriber 
database or the map.

The regional planning agency (i.e., Metropolitan Council) admin-
isters a travel behavior inventory every decade, which includes travel 
diaries for all members of households that participate. Data from 
the 2011 travel behavior inventory were provided by the Metropoli-
tan Council to explore the effects of Nice Ride on cycling among 
non–Nice Ride subscribers (general population). The travel behav-
ior inventory surveyed 14,055 randomly selected households (about 
1%) in the Minneapolis–Saint Paul Metropolitan Region. Each 
resident over the age of 5 kept a 24-h diary with a record of all trips 
made by all modes. The survey was administered on weekdays from 
December 2010 to February 2012, including Nice Ride’s 2011 season. 
The analysis included only Minneapolis households (N = 1,941) 
because of Nice Ride’s limited presence in Saint Paul at that time.

Each household record contained the number of trips made by 
all members of the household, the number of bicycle trips, socio
demographic characteristics, and a set of spatial measures around 
the household (e.g., population density and availability of bicycle 
infrastructure near the home). These variables are defined in the 
next section.
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Variables and Modeling

This study included two main sets of models. One set tested H1: the 
effects of Nice Ride system membership on membership growth, 
while controlling for system growth; the other tested H2: effects 
of Nice Ride trip activity on household cycling participation and 
frequency among the general population.

Nice Ride Membership Growth Model (H1)

The effect of Nice Ride system membership on membership growth 
was analyzed with the use of a lagged variable linear model of net 
change in membership density on census block groups from the 
previous season as a function of the density of members in the pre-
vious season, controlling for local system growth and systemwide 
growth. Equations 2a and 2b show these relationships; definitions of 
variable symbols and descriptive statistics are presented in Table 1. 
Local growth was measured as net change in station density (i.e., 
number of stations per square kilometer) from the previous season. 
Systemwide growth was modeled in two ways: as an indicator vari-
able for the current season, with the 2011 season as the base case 
(Equation 2a), or as the net change in number of stations system-
wide from the previous season (Equation 2b). For example, there 

were 65 stations in 2010 and 116 stations in 2011, so the system 
growth variable for 2011 was 116 − 65 = 51. The model was built 
with data from the 2010 through 2013 systems, and with 4,199 census 
block groups in the cities of Minneapolis and Saint Paul.

( )∆ → ∆→ →m f m s t at t i t i t t i, , (2 ), , , 10 1 0 0 1

( )∆ → ∆ ∆→ → →m f m s S bt t i t i t t i t t I, , (2 ), , , ,0 1 0 0 1 0 1

where t0 and ti are season binary indicators.

General Population Cycling Model (H2)

Households near Nice Ride stations, particularly Nice Ride stations 
with high levels of use, were hypothesized to have higher rates of 
participation in cycling (defined as any household member that made 
at least one trip by bicycle) and to have a higher frequency of bicycle 
trips than households not located near Nice Ride stations. The gen-
eral population cycling model explored household participation in, 
and frequency of, bicycling. Participation was defined as any house-
hold member who reported making one or more bicycle trips on their 
assigned travel day. Frequency was the total number of bicycle trips 
made by all members of the household. Participation and frequency 

FIGURE 1    Map of Nice Ride Minnesota monthly, annual, and 30-day pay-as-you-go subscribers. (Source: Stamen Toner OSM.)
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were modeled jointly with a zero-inflated negative binomial regres-
sion model. The explanatory variables included the number of Nice 
Ride bikeshare trips that started or ended within 400 m (¼ mi) of the 
household, along with other sociodemographic and built environ-
ment variables, summarized in Table 1. The researchers selected the 
number of Nice Ride trips that started or ended within 400 m as the 
key variable of interest. It was hypothesized that Nice Ride’s visibil-
ity was the principal mechanism behind a potential spillover effect; 
other unobservable factors (e.g., personal contacts or relations) also 
may have been factors. Trip activity at a station implied visibility of 
the station itself and visibility of bicyclists that used Nice Ride on 
the streets around the station, whereas a simple measure of stations 
near the household was an incomplete measure of visibility. Given 
multicollinearity between Nice Ride measures, it was inappropriate 
to use multiple Nice Ride station and trip activity measures in the 
same model.

Results

Diffusion Effects on Expanding Membership

Table 2 presents the findings for the parsimonious Models 1A and 1B  
of bikeshare membership on membership growth. The R2-values for 
both models were approximately .07, which meant that only 7% 
of the change in block group Nice Ride membership per 1,000 resi-
dents could be explained by system growth (new stations) and 
membership growth nearby. All variables in both models were sig-
nificant. The coefficients for subscribers and increase in stations were 
nearly identical between the two models.

Table 3 shows the elasticities of each variable with other vari-
ables held at their means for Model 1B. The elasticities show that the 
systemwide growth variable had the largest effect on membership 
growth at the block group level, with a 1% change in the number of 

TABLE 1    Descriptive Statistics of Modeling Variables

Variable Description N Mean SD Min. Max.

Hypothesis H1–Model 1. Spillover Effects on System Membershipa

Δmt0→t1,i 
Dependent variable: net subscribers per 1,000 residents from  

t0 to t1 for block group i
4,199 0.56 2.97 −30.36 62.20 

mt0,i
Subscribers per 1,000 residents in t0 for block group i 4,199 1.55 4.71 0.00 78.95

Δst0→t1,i
Net stations per km2 from t0 to t1 for block group i 4,199 0.06 0.87 −23.02 23.02

ΔSt0→t1,I
Net stations from t0 to t1 for entire system I 4,199 35.00 11.43 25.00 51.00

Hypothesis H2–Model 2. Spillover Effects on General Population Cycling

hb Dependent variable: household participation in cycling (binary) 1,941 0.12 0.33 0.00 1.00

hrb Dependent variable: number of household bike trips 1,941 0.40 1.34 0.00 12.00

sod Number of Nice Ride trips within 400 m (thousands)b 1,941 0.86 2.46 0.00 15.34

ek Population density within 400 m (people per acre) 1,941 14.31 7.80 0.58 49.32

el km of bike lanes within 400 m 1,941 0.20 0.46 0.00 2.88

ep km of bike trails within 400 m 1,941 0.11 0.23 0.00 1.82

hr Number of trips by any modec 1,941 7.81 5.36 1.00 37.00

hw Number of workers 1,941 1.04 0.81 0.00 4.00

hu Student(s) (binary) 1,941 0.22 0.42 0.00 1.00

hc Child(ren) younger than 6 years (binary) 1,941 0.08 0.28 0.00 1.00

at1 = 2011 indicates 2011 season binary indicator (base case); t1 = 2012 indicates 2012 season binary indicator; t1 = 2013 indicates 2013 season 
binary indicator.
b2010 Nice Ride system data.
cSample restricted to Minneapolis households whose members made at least one trip.

TABLE 2    Ordinary Least Squares Regression Model  
of Spillover Effects on Membership Growth

Variable

Model 1A
Seasonal Indicator 
Variables

Model 1B
System Growth 
Variable

Coefficient SE Coefficient SE

mt0,i
0.061*** 0.010 0.061*** 0.010

Δst0→t1,i
0.300*** 0.052 0.300*** 0.052

t1 = 2011 (Base case) (Base case)

t1 = 2012 −1.353*** 0.110 na na

t1 = 2013 −1.681*** 0.111 na na

Δst0→t1,I
na na 0.064*** 0.004

Constant 1.456*** 0.078 −1.781*** 0.149

R2-value .0714 .0713

Note: na = not applicable. 
***Significant at p < .01; **significant at p < .05; *significant at p < .10.

TABLE 3    Marginal Effects of Model 1B Variables  
on Membership

Change in Variable

Change (%)  
in Δmt0→t1,i

(ey/ex)a

Numeric Change  
in Δmt0→t1,i

(dy/ex)b

1% change in mt0,i
0.170 0.095

1% change in Δst0→t1,i
0.033 0.019

1% change in Δst0→t1,I
3.990 2.226

Note: Elasticities calculated with other variables held at means.
aey/ex = percentage change in outcome for a 1% change in  
independent variable.
bdy/ex = unit change in outcome for a 1-unit change in independent 
variable.
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new stations across the system added and associated with an almost 
4% change in membership growth, or 2.2 additional new members 
in a block group. With the systemwide new station variable held at 
its mean, each 1% increase in stations per kilometer in a block group  
was associated with 0.02 additional new members. A 1% increase 
in the base year’s members per 1,000 residents was associated 
with 0.1 additional new members in the following season, which 
suggested only a modest spillover effect of membership on future 
membership.

Spillover Effects on General Population Cycling

Table 4 presents the results from three models of bicycling partici-
pation and frequency. The binary logistic regression of participation 
in cycling had the highest pseudo-R2-value, at .0810. Although the 
McFadden pseudo-R2-value does not have the same interpretation 
as R2-value in linear regression, this result still indicated that bicy-
cling was not well explained by this set of variables. The α param-
eter was significant in all three models, which suggested that the 
dependent variable hrb was overdispersed, and negative binomial 
regression was appropriate (Table 4). In addition, a Vuong test that 

compared the zero-inflated models with standard negative binomial 
regression was significant at the p < .01 level (not shown).

The variable of interest [i.e., the number of Nice Ride trips that 
started and ended near a household (sod)], was not significant in any of 
the models. This analysis did not find evidence of a spillover effect of 
Nice Ride on household participation in, and frequency of, bicycling. 
The results of additional models, which used the number of stations 
within 400 m instead of trip activity, were insignificant also.

Several other variables were significant in the models, however. 
Population density was positive and significant in all three models 
(participation equation only in Model 2C). Bike paths or trails within 
400 m of home were positively associated with participation in 
cycling (Models 2A and 2C). In addition, the household structure 
(e.g., number of workers, presence of students, overall number of 
trips made) was associated with participation and frequency.

Discussion of Results

This research showed a potential diffusion or spillover effect of  
existing bikeshare members on future system adoption and member
ship growth. The effect was modest but significant: for a census 

TABLE 4    Models of Spillover Effects on General Population Cycling Participation  
and Frequency

Equation

Model 2A
Binary Logit Model 
of Participation

Model 2B
Negative Binomial 
Model of Frequency

Model 2C
Zero-Inflated 
Negative Binomial 
Model of Participation 
and Frequency

Coefficient SE Coefficient SE Coefficient SE

Participation

sod −0.045 0.041 na na −0.051 0.042

ek 0.047*** 0.010 na na 0.045*** 0.010

el −0.180 0.197 na na −0.185 0.205

ep 0.606** 0.302 na na 0.741** 0.332

hr 0.076*** 0.014 na na 0.067*** 0.015

hw 0.392*** 0.098 na na 0.453*** 0.104

hu 0.313* 0.175 na na 0.282 0.182

hc 0.006 0.233 na na 0.063 0.248

Constant −3.897*** 0.244 na na −3.714*** 0.256

Frequency

sod na na −0.026 0.040 0.022 0.025

ek na na 0.050*** 0.012 0.010 0.007

el na na −0.104 0.236 0.007 0.146

ep na na 0.277 0.394 −0.351 0.237

hr na na 0.123*** 0.021 0.044*** 0.010

hw na na 0.227* 0.123 −0.183** 0.075

hu na na 0.334 0.218 0.134 0.117

hc na na −0.222 0.318 −0.192 0.162

Constant na na −3.206*** 0.293 0.657*** 0.188

ln(α) na na 2.369*** 0.096 −1.754*** 0.328

McFadden 
pseudo-R2

.0810 .0353 .0650 

***Significant at p < .01; **significant at p < .05; *significant at p < .10.
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block group with 1,000 residents and a base-year membership of 
100 residents, Model 1B predicted that one new member would 
join, while it controlled for station density and overall system 
growth. However, the effect was not apparent when the research 
was generalized: no evidence of spillover effects of bikeshare was 
found on the propensity to cycle within the general population. 
It was concluded that the hypothesis that growth in bikeshare 
membership may be associated spatially with existing bikeshare 
membership warrants further study. This effect was assessed with 
parsimonious models that included only the effects of prior, prox-
imate membership and stations. Specifically, it would be useful 
to develop new data sets with individual-level data to test similar 
hypotheses and expand the use of control variables.

This study also hypothesized that bikeshare trip activity would 
increase propensity to cycle among people nearby, because Nice 
Ride’s presence was particularly visible. The fact that no associ-
ate was observed does not mean, however, that none existed. It is 
possible, for example, that the bikeshare system may have been 
too young or too small a component in the transportation system 
overall to have a measurable effect at this time. The Nice Ride 
Minnesota bikeshare system opened in 2010, which limited the 
data available to three lagged periods (i.e., 2010 to 2011, 2011 to 
2012, 2012 to 2013). Bicycling comprises only a small percentage 
of trips made in Minneapolis and Saint Paul, with slightly fewer 
than 90,000 bicycle trips per day between the two cities (or 5% 
and 2% mode shares, respectively) (18). In comparison, only about 
217,000 Nice Ride trips were made during the entire 2011 season 
(from April to November), or about 1,000 trips per day—a tiny per-
centage of an already small mode share. That bikeshare member-
ship has spillover effects on future members suggests potential for 
broader spillover effects as systems mature. As bikeshare systems 
worldwide continue to expand, and existing systems continue to 
grow and mature, new opportunities for future research into spill-
over effects on larger, more established systems will be available. 
Additional studies would be useful that integrated bikeshare data 
with the results of population-based travel behavior models.

The findings of this present study, especially the significant effect 
of existing membership on membership growth, have several impli-
cations for policy. Although the overall systemwide growth variable 
had the largest effect on membership growth in Model 1B, existing 
membership levels in a block group had a larger effect than local 
system growth. Bikeshare organizations may be able to harness this 
energy through “Take your friend on a bike ride” types of marketing 
schemes. Unless and until future research shows otherwise, how-
ever, bikeshare systems should not be treated as a substitute for other 
infrastructure improvements (e.g., provision of safe facilities) that 
increase the propensity to cycle.

The study design and findings also provide a foundation for new 
research into bikeshare diffusion of innovation effects. As bikeshare 
systems continue to emerge and evolve throughout the world, so 
too will new sources of bikeshare data and opportunities to explore 
these relationships. This present research had several notable limita-
tions that invite further inquiry into the topic. The travel behavior 
inventory was administered after Nice Ride had been operational 
only for one season. Nice Ride’s largest system expansion after the 
initial investment occurred over the second season, which coincided 
with light rail construction in many of the areas that received new 
stations. Small segments of the population, such as cyclists, are dif-
ficult to represent in general population surveys administered to a 
low percentage of the population. Preliminary models, which con-
trolled for weather, did not produce different results in the house-

hold bicycling participation and frequency models (not shown in the 
final model). Nonetheless, weather is always a concern in research 
on nonmotorized travel in extreme climates such as Minnesota’s.
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