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Abstract. We study the asymptotic behavior of the statistical solutions to
the Navier–Stokes equations using the normalization map [9]. It is then applied
to the study of mean energy, mean dissipation rate of energy, and mean helicity
of the spatial periodic flows driven by potential body forces. The statistical
distribution of the asymptotic Beltrami flows are also investigated. We connect
our mathematical analysis with the empirical theory of decaying turbulence.
With appropriate mathematically defined ensemble averages, the Kolmogorov
universal features are shown to be transient in time. We provide an estimate
for the time interval in which those features may still be present.
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1. Introduction

This paper is the continuation of our previous work [5]. In that paper, we
study the asymptotic behavior of the helicity associated with the deterministic
solution of the Navier–Stokes equations. The current paper is our study of the
asymptotic properties of the statistical distributions of the solutions of the Navier–
Stokes equations, including the asymptotic behavior of the statistical dynamics of
the helicity.

Date: March 4, 2008.
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In this paper, as in [5], we study the incompressible viscous flows which are
periodic in the space variables and are driven by potential body forces. Then the
velocity field u(x, t),x = (x1, x2, x3) ∈ R3, satisfies the periodicity condition

(1.1) u(x, t) = u(x + Lej , t), x ∈ R3, j = 1, 2, 3,

(where L > 0 is the spatial period and {e1, e2, e3} is the standard basis of R3) as
well as the Navier–Stokes equations

(1.2)
∂u(x, t)

∂t
+ (u · ∇)u(x, t)− ν∆u(x, t) = −∇p(x, t)−∇ϕ(x, t),

(1.3) ∇ · u(x, t) = 0,

where ν is the viscosity of the fluid, p is the pressure and ϕ is the potential of
the body force; here we assume that the mass density is equal to one. Using the
well-known remarkable Galileian invariance of the Navier–Stokes equations we also
can (by a change of the reference system) consider only the flows satisfying the
following zero space average condition

(1.4)
∫

Ω

u(x, t)dx = 0, Ω = (−L/2, L/2)3,

where dx = dx1dx2dx3 is the usual volume element in R3.
Recall that the curl of the velocity, i.e. ∇× u, is usually called the vorticity of

the flow and is denoted by ω. The kinetic energy/mass, the dissipation rate of
energy/mass, and the helicity/mass are defined by

(1.5) E(t) =
1
2

∫
Ω

|u(x, t)|2dx, F(t) =
∫

Ω

|ω(x, t)|2dx

and, respectively,

(1.6) H(t) =
∫

Ω

u(x, t) · ω(x, t)dx.

Above, u ·ω is the helicity density of the flow. For the physical importance of the
helicity in fluid dynamics, see the pioneering work by Moffatt [19] and also other
surveys on this topic (e.g. [20]).

In our previous paper [5], we studied mainly the asymptotic behavior of the
helicity and its connections with that of the energy which had been previously
determined in [8, 9, 10]. Unlike the latter behavior, the former is quite sensitive to
the presence of the inertial nonlinear terms in the Navier–Stokes equations. In this
paper we will present the asymptotic behavior of the statistical dynamics of all of the
above three quantities E(t), F(t) and H(t) for our type of flows. Our main concern
is to identify the asymptotic properties of e2ν(2π/L)2t〈E(t)〉, e2ν(2π/L)2t〈F(t)〉 and
e2ν(2π/L)2t〈H(t)〉 where 〈 · 〉 denotes some appropriate ensemble averages, whose
rigorous mathematical definitions will be given in Section 8. We prove that they
all have limits when t →∞ and that generically these limits are not zero.

One interesting feature in the numerical simulation of the turbulent flows is their
statistical tendency to approximate Beltrami flows (see, e.g. [1, 22]), i.e., the flows
whose velocity and vorticity are parallel. We show that at least asymptotically this
tendency is not generic.

Our rigorous results confirm the well known empirical and computational evi-
dence that the Kolmogorov type estimates for the decaying turbulence of the spa-
tially periodic flows loose validity for large times (even after rescaling of the physical
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entities in order to obtain a simulacrum of stationarity). However, as presented in
Section 8 our methods yield some estimates of the length of the time interval in
which the universal feature may still present.

In our analysis, we use the mathematically defined statistical solutions of the
Navier–Stokes equations both on the phase space and the trajectory space. Since
this is the first time we develop the asymptotic theory for those statistical solu-
tions, we extend our studies to both the energy and the energy dissipation rate.
Another ingredient of our method is the use of the normalization map constructed
for the regular solutions to the Navier–Stokes equations in [9, 10]. At this stage,
we focus on the first rate of decay of the solutions, hence the first component of
that normalization map is used throughout. Because the natural space to study
the statistical solutions are the space of weak solutions, we extend the definition
of that component of normalization map to those solutions. This newly defined
map turns out to be an essential tool in describing the asymptotic behavior of the
statistical solutions of the Navier–Stokes equations. Particularly, it determines the
limits of the ensemble averages referred above. We also use this map to study the
flows which are asymptotically Beltrami. Moreover, the asymptotic behavior of the
mean flows is connected with the nonlinear manifold M1 ([8, 9, 10]) of the initial
data u0 such that the corresponding solution u(t) is regular for all t ≥ 0 and decays
exponentially faster than e−ν(2π/L)2t.

This paper is organized as follows. In Section 2, we present the functional set-
tings of the Navier-Stokes equations, the asymptotic behavior of the deterministic
solutions. The definitions of the statistical solutions both in the phase space and
the trajectory space are recalled as well as their fundamental existence theorem.
In Section 3, we extend the definition of the first component of the normalization
map to the set of Leray-Hopf weak solutions. We prove some basic properties of
that map. In Section 4, we study the asymptotic behavior of the mean energy,
mean energy dissipation rate and mean helicity using the Vishik-Fursikov statisti-
cal solutions. For the latter two mean quantities, the moving averages in time are
used to overcome the lack of regularity of the weak solutions of the Navier–Stokes
equations. In Section 5, we construct some initial Gaussian probability measures
to show that the asymptotic behavior of the above three mean quantities are not
trivial. In Section 6, we focus on the solutions which are asymptotically Beltrami
(see Definition 6.3). Different equivalent conditions for those flows are given. We
prove the existence of a Vishik-Fursikov measure with Gaussian initial data which
is not asymptotically Beltrami (see Definition 6.7). In Section 7, we first show the
connections between the mean flows which decay faster than e−ν(2π/L)2t with the
above nonlinear manifold M1. We then prove the genericity of the mean flows
with non-trivial energy or dissipation rate of energy or helicity, and of the flows
which are not asymptotically Beltrami. In Section 8, we apply our study in the
previous sections to the conventional theory of decaying turbulence. We show that
the Kolmogorov type estimates are transient in time and estimate the time interval
for which those estimates may still be valid. We obtain in Proposition 8.3 certain
lower and upper bounds for the Kolmogorov quotient (see (8.7)). The appendix
provides various basic facts on the Navier–Stokes equations which are used in this
paper.
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2. Preliminaries

2.1. Functional settings of the Navier–Stokes equations. The initial value
problem for the Navier–Stokes equations in the three-dimensional space R3 with a
potential body force is

(2.1)


∂u
∂t

+ (u · ∇)u− ν∆u = −∇p−∇ϕ,

div u = 0,

u(x, 0) = u0(x),

where ν > 0 is the kinematic viscosity, u = u(x, t) is the unknown velocity at
position x ∈ R3 and time t, p is the unknown pressure, (−∇ϕ) is the body force
specified by a given function P and u0(x) is the known initial velocity field. We
consider only solutions u(x, t) such that for any t ≥ 0, u(x) = u(x, t) satisfies

(2.2) u(x + Lej) = u(x) for all x ∈ R3, j = 1, 2, 3,

and

(2.3)
∫

Ω

u(x)dx = 0.

where L > 0 is fixed and Ω = (−L/2, L/2)3. We call the functions satisfying (2.2)
L-periodic functions. We pass now to the functional framework we used in our
previous paper [5] as well as in this study.

Let V be the set of all L-periodic trigonometric polynomials on Ω with values in
R3 which are divergence-free as well as satisfy the condition (2.3). We define{

H = closure of V in L2(Ω)3,
V = closure of V in H1(Ω)3,

where H l(Ω) with l = 0, 1, 2, . . . denotes the Sobolev space of functions f ∈ L2(Ω)
such that for every multi-index α with |α| ≤ l the distributional derivative Dαf ∈
L2(Ω).

For a = (a1, a2, a3) and b = (b1, b2, b3) in R3, define a · b = a1b1 + a2b2 + a3b3

and |a| =
√

a · a. Let 〈·, ·〉 and | · | denote the scalar product and norm in L2(Ω)3

given by

〈u, v〉 =
∫

Ω

u(x) · v(x)dx, |u| = 〈u, u〉1/2, u = u(·), v = v(·) ∈ L2(Ω)3.

Note that we use | · | for the length of vectors in R3 as well as the L2-norm of
vector fields in L2(Ω)3. In each case the context clarifies the precise meaning of
this notation.

Let PL denote the orthogonal projection in L2(Ω)3 onto H. On V we consider
the inner product 〈〈·, ·〉〉 and the norm ‖·‖ defined by

〈〈u, v〉〉 =
3∑

j,k=1

∫
Ω

∂uj(x)
∂xk

∂vj(x)
∂xk

dx and ‖u‖ = 〈〈u, u〉〉1/2,

for u = u(·) = (u1, u2, u3) and v = v(·) = (v1, v2, v3) in V .
Define the Stokes operator A with domain DA = V ∩H2(Ω)3 by

(2.4) Au = −∆u for all u ∈ DA.
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The inner product of u, v ∈ DA and the norm of w ∈ DA are defined by 〈Au, Av〉
and |Aw|, respectively. Note for w ∈ DA that (2.3) implies the norm |Aw| is equiv-
alent to the usual Sobolev norm of H2(Ω)3. We also define the bilinear mapping
associated with the nonlinear term in the Navier–Stokes equations by

(2.5) B(u, v) = PL(u · ∇v) for all u, v ∈ DA.

The estimate of |B(u, v)| will be given at the beginning of the Appendix.
A classical result tracing back to Leray’s pioneering works on the Navier–Stokes

equations in the 1930’s (see, e.g., [14, 15, 16]) is that for any initial data u0(x) in H
there exists a weak solution u(x, t) defined for all x ∈ R3 and t > 0 which eventually
becomes analytic in space and time and ‖u(·, t)‖H1(Ω)3 converges exponentially to
zero as t → ∞ (see also [4, 12, 7]). Thus there is t0 ≥ 0 such that the solution
u(t) = u(·, t) is continuous from [t0,∞) into V and satisfies the following functional
form of the Navier–Stokes equations

du(t)
dt

+ Au(t) + B(u(t), u(t)) = 0, t > t0,

where the equation holds in H. We say that u(t), t ≥ t0, is a regular solution to the
Navier–Stokes equations on [t0,∞). We denote R the set of all initial value u0 ∈ V
such that there is a (unique) solution u(t), t > 0, satisfying

(2.6)


du(t)

dt
+ Au(t) + B(u(t), u(t)) = 0, t > 0,

u(0) = u0 ∈ V,

where the equation holds in H, and u(t) is continuous from [0,∞) into V . In other
words, R is the set of all initial data u0 ∈ V such that the solution u(t) of the
Navier–Stokes equations (2.6) is regular (hence also unique) on [0,∞).

We denote by S(t), t ≥ 0, the semigroup generated by the regular solutions of
the Navier–Stokes equations, i.e., S(t)u0, u0 ∈ R, denotes the regular solution of
(2.6).

Throughout this paper, except for Section 8, we take L = 2π and ν = 1. The
general case is easily recovered by a change of scales.

We recall that the spectrum σ(A) of the Stokes operator A consists of the eigen-
values λ1 < λ2 < λ3 < · · · of the form λj = |k|2 for some k ∈ Z3\{0}, j = 1, 2, 3, . . .
Note that λ1 = 1 = |e1|2 and hence the additive semigroup generated by σ(A) co-
incides with the set N = {1, 2, 3, . . . } of all natural numbers. For n ∈ N we denote
by Rn the orthogonal projection of H onto the eigenspace of A associated to n.
Thus,

RnH = {u ∈ H : Au = nu }.
If n is an eigenvalue of A, then RnH is generated by functions of the form

(a1
k + ia2

k)ei(k·x) + (a1
k − ia2

k)e−i(k·x), k ∈ Z3, |k|2 = n,

where
a1
k, a2

k ∈ R3 and a1
k · k = a2

k · k = 0.

Otherwise Rn = 0. For example, R7 = 0, R15 = 0, R23 = 0, . . .. Define

(2.7) Pn = R1 + R2 + · · ·+ Rn and Qn = I − Pn.

Let C = ∇× be the curl operator mapping V into H. For each n ∈ σ(A) we have

(2.8) Rn = R+
n + R−

n and RnH = R+
n H ⊕R−

n H,
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where R+
n , resp. R−

n , is the orthogonal projection of H onto the eigenspace of the
curl operator C associated to

√
n, resp. (−

√
n), and

(2.9) R±
n H = {u ∈ H : Cu = ±

√
nu}.

It is easy to see that

(2.10) B(u, u) = 0 if u ∈ R+
n H ∪R−

n H, n ∈ σ(A).

2.2. The asymptotic behavior of solutions and the normalization map.
Let us recall some known results on the asymptotic expansions and the normal
form of the regular solutions to the Navier–Stokes equations (see [8, 9, 10, 13] for
more details). First, for any u0 ∈ R the regular solution u(t) has the asymptotic
expansion

(2.11) u(t) ∼ q1(t)e−t + q2(t)e−2t + q3(t)e−3t + · · · ,

where qj(t), also denoted by Wj(t, u0), is a polynomial in t of degree at most j − 1
with values trigonometric polynomials in H. This means that for any N ∈ N the
correction term vN (t) = u(t)−

∑N
j=1 qj(t)e−jt satisfies

|vN (t)| = O
(
e−(N+ε)t

)
as t →∞ for some ε = εN > 0.

In fact, vN (t) belongs to C1
(
[0,∞), V

)
∩C∞((0,∞), C∞(R3)

)
, and for each m ∈ N

‖vN (t)‖Hm(Ω) = O
(
e−(N+ε)t

)
as t →∞ for some ε = εN,m > 0.

Define the normalization map W by W (u0) = W1(u0) ⊕ W2(u0) ⊕ · · · , where
Wj(u0) = Rjqj(0) for j ∈ N. Then W is an one-to-one analytic mapping from R
to the Frechet space SA = R1H ⊕ R2H ⊕ · · · endowed with the component-wise
topology. Also, W ′(0) = Id, meaning

(2.12) W ′(0)u0 = R1u0 ⊕R2u0 ⊕R3u0 ⊕ · · · .

Therefore, if ΠN denotes the canonical projection of SA onto R1H ⊕ · · · ⊕ RNH
then

{ΠNW (u0) : ‖u0‖ < ρ } is a neighborhood of 0 in ΠNSA

for all ρ > 0 and N ∈ N.
It is clear that for u0 = 0, one has qn(t) = 0 and Wn(u0) = 0 for all n = 1, 2, . . . .

Moreover, if u0 ∈ R \ {0}, there is an eigenvalue n0 of A such that

(2.13) lim
t→∞

‖u(t)‖2

|u(t)|2
= n0 and lim

t→∞
u(t)en0t = wn0(u0) ∈ Rn0H \ {0}.

The case (2.13) holds if and only if W1(u0) = W2(u0) = · · · = Wn0−1(u0) = 0
and Wn0(u0) 6= 0. In this case

q1 = q2 = · · · = qn0−1 = 0 and qn0 = wn0(u0) = Wn0(u0).

In particular, for n0 = 1, we also have

(2.14) W1(u0) = lim
τ→∞

eτu(τ) = lim
τ→∞

eτR1u(τ),

where the limits are in V .
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2.3. Statistical solutions of the Navier–Stokes equations.

Definition 2.1. We denote by T the class of test functionals

Φ(u) = φ(〈u, g1〉, 〈u, g2〉, . . . , 〈u, gk〉), u ∈ H,

for some k > 0, where φ is a C1 function on Rk with compact support and
g1, g2, . . . , gk are in V .

Definition 2.2. A family {µt}t≥0 of Borel probability measures on H is called a
statistical solution of the Navier–Stokes equations with the initial data µ0 if

(i) the initial kinetic energy
∫

H
|u|2dµ0(u) is finite;

(ii) the function t 7→
∫

H
ϕ(u)dµt(u) is measurable for every bounded and con-

tinuous function ϕ on H;
(iii) the function t 7→

∫
H
|u|2dµt(u) belongs to L∞loc([0,∞));

(iv) the function t 7→
∫

H
‖u‖2dµt(u) belongs to L1

loc([0,∞));
(v) µt satisfies the Liouville equation

(2.15)
∫

H

Φ(u)dµt(u) =
∫

H

Φ(u)dµ0(u)−
∫ t

0

∫
H

〈Au + B(u, u),Φ′(u)〉dµs(u)ds,

for all t ≥ 0 and Φ ∈ T ;
(vi) the following energy inequality holds

(2.16)
∫

H

|u|2dµt(u) + 2
∫ t

0

∫
H

‖u‖2dµs(u)ds ≤
∫

H

|u|2dµ0(u).

Recall that for each u0 ∈ H, there exists a Leray-Hopf weak solution u(t) of
the Navier–Stokes equations with u(0) = u0 (cf. [18, 4, 23]). This weak solution
satisfies u ∈ C([0,∞),Hweak) ∩ L∞((0,∞),H) ∩ L2((0,∞), V ). Additionally, let

(2.17) G = G(u(·)) = {t0 ≥ 0 : lim
τ↘0

|u(t0 + τ)− u(t0)| = 0},

then 0 ∈ G, the Lebesgue measure of [0,∞) \ G is zero and for any t0 ∈ G

(2.18) |u(t)|2 + 2
∫ t

t0

‖u(s)‖2ds ≤ |u(t0)|2, t ≥ t0.

Denote by Σ the set of the Leray-Hopf weak solutions of the Navier–Stokes
equations on [0,∞). Hence Σ ⊂ C([0,∞),Hweak).

Definition 2.3. A statistical solution {µt}t≥0 of the Navier–Stokes equations in
the sense of Definition 2.2 is called a Vishik-Fursikov (VF) statistical solution if
there is a Borel probability measure µ̂, called the Vishik-Fursikov (VF) measure,
on the space C([0,∞),Hweak), such that

(i) µ̂(Σ) = 1;
(ii) for each t ≥ 0, µt is the projection measure Prtµ̂ on H, i.e.

(2.19)
∫

H

Φ(u)dµt(u) =
∫

Σ

Φ(v(t))dµ̂(v(·)), for all Φ ∈ C(Hweak).

For convenience, we also call Pr0µ̂ the initial data of µ̂.
The existence theorems of the statistical solutions are summarized in the follow-

ing ([2, 3, 17]).

Theorem 2.4. Let m be a Borel probability measure on H such that
∫

H
|u|2dm(u)

is finite. Then there exists a VF statistical solution {µt}t≥0 with µ0 = m.
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Note that such VF statistical solution and VF measure in Theorem 2.4 are not
necessarily unique.

Remark 2.5. If u(·) ∈ Σ then the Dirac measure δu(·) is a VF measure. If µ̂ and m̂
are two VF measures, so is its convex combination (1−θ)µ̂+θm̂, for any θ ∈ (0, 1).

3. Supplementary properties of the normalization map

In this section, we first extend the definition of W1(u0), for u0 ∈ R, to W1(u(·)),
for u(·) ∈ Σ. This definition is more suitable for our study of the asymptotic
behavior of the statistical solutions to the Navier–Stokes equations. Basic properties
of W1(u(·)) are derived, in particular its relations with the initial value u(0), hence
showing the connections between the asymptotic and the initial values of the Leray-
Hopf weak solutions.

First, we prove an invariant property of the first component of the normalization
map which leads to the extension of that component map later.

We recall from (2.14) that for u0 ∈ R,

W1(u0) = lim
τ→∞

eτu(τ) = lim
τ→∞

eτR1u(τ),

where the limits are in V .

Lemma 3.1. Let u(·) ∈ Σ and t0 ≥ 0 such that u(t0) ∈ R. Then

(3.1) etW1(u(t)) = et0W1(u(t0)), t ≥ t0.

Proof. If u(0) = u0 ∈ R then S(t)u0 ∈ R for t ≥ 0,

(3.2) W1(u0) = lim
τ→∞

et+τu(t + τ) = et lim
τ→∞

eτS(τ)S(t)u0 = etW1(S(t)u0).

In general, when u0 ∈ H, let t0 ≥ 0 such that u(t0) is small in V hence belongs to
R. By (3.2), for τ ≥ 0 and t = τ + t0 ≥ t0,

(3.3) W1(u(t0)) = eτW1(S(τ)u(t0)) = e−t0etW1(u(t)),

thus proving (3.1). �

Remark 3.2. For the existence and estimate of the above t0 see, e.g., Lemmas A.1
and A.2 below.

Definition 3.3. Let u(·) ∈ Σ. By virtue of Lemma 3.1, we define

(3.4) W1(u(·)) = et0W1(u(t0)),

where t0 ≥ 0 such that u(t0) ∈ R.
We then have the following equivalent definition of W1(u(·)) which does not

involve t0 explicitly

(3.5) W1(u(·)) = et0W1(u(t0)) = et0 lim
τ→∞

eτS(τ)u(t0) = lim
t→∞

etu(t),

where the limit is taken in V . Similarly, using the second limit in (2.14) we have

(3.6) W1(u(·)) = lim
t→∞

etR1u(t).

Note that if u0 = u(0) ∈ R, then t0 = 0 and W1(u(·)) = W1(u0). Thus W1(u(·))
is an extension of W1(u0), u0 ∈ R.

The following is a simple bound of W1(u(·)) in terms of the values u(t), t ∈
G(u(·)), in particular, the initial value u(0).
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Lemma 3.4. Let u(·) ∈ Σ. Then

(3.7) |W1(u(·))| ≤ et|u(t)|, t ∈ G(u(·)).
In particular,

(3.8) |W1(u(·))| ≤ |u(0)|.

Proof. Let t ∈ G(u(·)) and τ ≥ t. It follows from (A.7) that

eτ |u(τ)| ≤ eτe−(τ−t)|u(t)| = et|u(t)|.
Hence |W1(u(·))| = limτ→∞ eτ |u(τ)| ≤ et|u(t)|. �

Remark 3.5. The estimate (3.8) gives an upper bound for |W1(u(·))|/|u(0)|. How-
ever, there is no positive lower bound for the quotient. Indeed, there is a sequence
of solutions un(·) with nonzero W1(un(·)), such that

lim
n→∞

|W1(un(·))|
|un(0)|

= 0.

Proof. Let un
0 = ξ1 + nξ4, where ξj ∈ RjH, j = 1, 4, such that |ξ1| = |ξ4| = 1 and

B(ξ1, ξ1) = B(ξ4, ξ4) = B(ξ1, ξ4) = B(ξ4, ξ1) = 0. For instance, we can take

ξ1 =
e2√

2(2π)3
(eie1·x + e−ie1·x), ξ4 =

e2√
2(2π)3

(e2ie1·x + e−2ie1·x).

Then un(t) = ξ1e
−t + ξ4e

−4t, n ∈ N, are the corresponding regular solutions with
initial data un

0 . We thus have

|W1(un(·))|
|un(0)|

=
|ξ1|

|ξ1 + nξ4|
=

1√
1 + n2

→ 0, n →∞. �

In the case |W1(u(·)| attains its maximum value |u(0)|, we have the following
maximum principle.

Proposition 3.6. Let u(·) ∈ Σ and u(0) = u0. If |W1(u(·))| = |u0|, then u0 ∈ R,
u0 = W1(u0) and u(t) = u0e

−t for all t ≥ 0.

Proof. By Lemma 3.4 and (A.8), we have |u0| = |W1(u(·))| = et|u(t)|, for t ∈
G(u(·)). Let I = (t0, t0 + s), s ∈ (0,∞] be an interval of regularity of u(·). Then
|u(t)|2 = e−2t|u0|2 for t ∈ I, hence

d|u(t)|2

dt
+ 2|u(t)|2 = 0, t ∈ I.

Comparing with the energy balance equation

d|u(t)|2

dt
+ 2‖u(t)‖2 = 0, t ∈ I,

we infer that ‖u(t)‖ = |u(t)| for all t ∈ I. Hence u(t) ∈ R1H in any interval of
regularity. Due to its weak continuity, u(t) ∈ R1H for all t ∈ [0,∞). Consequently,
one can check that B(u(t), u(t)) ∈ R2H for all t ∈ [0,∞). In any interval of
regularity,

du(t)/dt + Au(t) = −B(u(t), u(t))
which belongs to both R1H and R2H. This is possible only if both sides of the
equation are zero. The weak continuity of u(·) now implies that u(t) = u0e

−t for
all t ≥ 0, hence W1(u(·)) = u0. �

Another consequence of Lemma 3.4 is the following.
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Corollary 3.7. Let u(·) ∈ Σ, then for t ≥ 0 and T > 0 we have

(3.9) |W1(u(·))|2 ≤ 1
T

∫ t+T

t

e2τ |u(τ)|2dτ ≤ |u(0)|2,

and

(3.10)
∫ t+T

t

‖u(τ)‖2dτ ≤ e−2t

2
|u(0)|2 − e−2(t+T )

2
|W1(u(·))|2.

Proof. The first inequality of (3.9) comes from (3.7) and the fact that G(u(·)) is
dense in [0,∞). The second inequality of (3.9) is from (A.8).

For t0, t
′
0 ∈ [t, t + T ] ∩ G(u(·)) such that t0 < t′0, we have from the inequalities

(2.18), (A.8) and (3.7) that∫ t′0

t0

‖u(τ)‖2dτ ≤ e−2t0

2
|u(0)|2 − e−2t′0

2
|W1(u(·))|2.

Then (3.10) follows by taking t0 ↘ t and t′0 ↗ t + T . �

Note that (3.10) is a slightly better estimate than (A.9).
It follows from (2.12) that the map W1 : R → SA is differentiable at 0 and

W ′
1(0)u = R1u for all u ∈ V . Noting that W1(0) = 0, we then have

|W1(u)−R1u| = o(‖u‖), for ‖u‖ → 0.

The following lemma provides an explicit estimate for |W1(u) − R1u| in terms
of |u|2. This approximation of W1(u) by R1u using the quadratic term |u|2 when
|u| → 0 will be exploited in Sections 4 and 6. But first let us note from (A.5) that

|〈R1B(u, v), w〉| = |〈B(u, v), R1w〉| ≤ c5|u| |v| |AR1w|1/2 |A3/2R1w|1/2.

Since |R1w| = |AR1w| = |A3/2R1w|, we obtain

(3.11) |R1B(u, v)| ≤ c5|u| |v|, u ∈ V, v ∈ DA.

Lemma 3.8. Let u(·) ∈ Σ, then

(3.12) |R1u(0)−W1(u(·))| ≤ c5|u(0)|2.

More generally,

(3.13) |etR1(u(t))−W1(u(·))| ≤ c5e
t|u(t)|2, t ∈ G(u(·)).

Consequently, when eventually u(t0) ∈ R then

(3.14) |R1(u(t))−W1(u(t))| ≤ c5|u(t)|2, t ≥ t0.

Proof. We have
dR1u

dt
+ R1u = −R1B(u, u),

whence

etR1u(t) = et′R1u(t′) +
∫ t′

t

eτR1B(u(τ), u(τ))dτ, t′ > t ≥ 0.
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Let ξ1 = W1(u(·)) and t ∈ G(u(·)). Using (3.11) and (A.8), we derive

|etR1u(t)− ξ1| ≤ |et′R1u(t′)− ξ1|+
∫ t′

t

eτ c5e
−2(τ−t)|u(t)|2dτ

≤ |et′R1u(t′)− ξ1|+ c5|u(t)|2e2t(e−t − e−t′)

≤ |et′R1u(t′)− ξ1|+ c5e
t|u(t)|2.

Letting t′ → ∞ gives (3.13), by (3.6). Also, when u(t0) ∈ R and t ≥ t0, ξ1 =
etW1(u(t)), hence (3.14) follows. By setting t = 0 in (3.13), we obtain (3.12). �

According to Remark 3.5, the quotient |W1(u(·))|/|u(0)| is not bounded below
by a positive constant in general. However, Lemma 3.8 immediately shows that
this can be the case for u(0) belonging to some “cones” in H near the origin.

Corollary 3.9. Given θ ∈ (0, 1), there are positive numbers α1 and α2 such that
if u(·) ∈ Σ satisfies

|u(0)| ≤ α2 and |u(0)−R1u(0)| ≤ α1|u(0)|

then

(3.15) |W1(u(·))| ≥ θ|u(0)|.

Proof. By Lemma 3.8,

|W1(u(·))| ≥ |R1u(0)| − |R1u(0)−W1(u(·))|
≥ |u(0)| − |u(0)−R1u(0)| − c5|u(0)|2

≥ (1− α1 − c5|u(0)|)|u(0)|.

Then (3.15) follows with α1 < 1− θ and α2 = (1− θ − α1)/c5. �

The conditions in Corollary 3.9 require small |u(0)|. We show below that the con-
clusion in Corollary 3.9 still holds for u in a V -neighborhood of a special unbounded
set B1 in H. Let

(3.16) B1 = {u ∈ R1H : u 6= 0, B(u, u) = 0}.

Note that B1 contains R+
1 H ∪R−

1 H, hence is not empty. Also, if u ∈ B1, then e−tu
is the regular solution with initial data u, hence W1(u) = u.

Proposition 3.10. Let u∗ ∈ B1 and θ ∈ (0, 1). There exists ε2 = ε2(|u∗|, θ) > 0
such that if ‖v0‖ ≤ ε2 then u0 = u∗ + v0 ∈ R and

(3.17) θ|u0| ≤ |W1(u0)| ≤ |u0|.

Proof. Let ε(|u∗|) be defined as in Lemma A.3,

(3.18) ε1 = min
{
|u∗|
2

, ε(|u∗|)
}

and ε2 = min
{

ε1,
(1− θ)(|u∗| − ε1)

1 + ec5|u∗|

}
,

where c5 > 0 is given in Appendix. Since ‖v0‖ ≤ ε1, we have u0 ∈ R according to
Lemma A.3. Let u(t) = S(t)u0 and v(t) = u(t)− e−tu∗. By (A.14), we obtain

et|u(t)| ≥ |u∗| − et|v(t)| ≥ |u∗| − |v0|ec5|u∗|.

It follows that
|W1(u0)| = lim

t→∞
et|u(t)| ≥ |u∗| − |v0|ec5|u∗|,
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and we obtain

(3.19) |W1(u0)| ≥ |u0| − |v0| − |v0|ec5|u∗| = |u0| − |v0|(1 + ec5|u∗|).

Note that |u0| ≥ |u∗| − ε1 > 0, then ‖v0‖ ≤ ε2 implies

|v0| ≤
(1− θ)|u0|
1 + ec5|u∗|

,

hence (3.19) yields |W1(u0)| ≥ |u0| − (1− θ)|u0| = θ|u0|. �

Lemma 3.11. The function F : u(·) ∈ Σ → W1(u(·)) is Borel measurable. Conse-
quently, F is µ̂-measurable for any VF measure µ̂.

Proof. We have for each t ≥ 0 that the function Ft : u(·) ∈ Σ → etu(t) ∈ H is
weakly continuous, hence Hweak-Borel measurable. Since the Borel sets of Hweak

are the same as those of H, the function Ft is (strongly) Borel measurable. The
fact that W1(u(·)) = limt→∞ etu(t) implies that F is Borel measurable. �

4. Asymptotic behavior of the mean flows

In this section, let µ̂ be a VF measure on the trajectory space Σ (see Definition
2.3) and let {µt}t≥0 be the family of its projections which is a statistical solution
on the phase space H (see Definition 2.2). Recall that µ0 satisfies the finite initial
energy condition:

(4.1)
∫

Σ

|u(0)|2dµ̂(u(·)) =
∫

H

|u|2dµ0(u) < ∞.

This condition, (3.8) and the fact that W1(u(·)) ∈ R1H imply∫
Σ

‖W1(u(·))‖2dµ̂(u(·)) =
∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≤
∫

Σ

|u(0)|2dµ̂(u(·)) < ∞.

We first describe the asymptotic behavior of the mean energy.

Proposition 4.1. We have

(4.2) lim
t→∞

e2t

∫
H

|u|2dµt(u) =
∫

Σ

|W1(u(·))|2dµ̂(u(·)).

Proof. First, e2t
∫

H
|u|2dµt(u) = e2t

∫
Σ
|u(t)|2dµ̂(u(·)). Since e2t|u(t)|2 ≤ |u(0)|2,

by (A.7), and
∫
Σ
|u(0)|2dµ̂(u(·)) < ∞, applying Lebesgue’s dominated convergence

theorem gives

lim
t→∞

e2t

∫
H

|u|2dµt(u) =
∫

Σ

lim
t→∞

e2t|u(t)|2dµ̂(u(·)) =
∫

Σ

|W1(u(·))|2dµ̂(u(·)). �

For the mean energy dissipation rate,
∫
Σ
‖u(t)‖2dµ̂(u(·)) is only defined almost

everywhere on (0,∞). However, by virtue of Lemma A.2, we can study the as-
ymptotic behavior of the mean energy dissipation rate on the set of solutions with
uniformly bounded initial values in H. More precisely, we obtain:

Lemma 4.2. For any r > 0, we have
(4.3)

lim
t→∞

∫
{u(·)∈Σ:|u(0)|<r}

e2t‖u(t)‖2dµ̂(u(·)) =
∫
{u(·)∈Σ:|u(0)|<r}

‖W1(u(·))‖2dµ̂(u(·))
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and
(4.4)

lim
t→∞

∫
{u(·)∈Σ:|u(0)|<r}

e2tH(u(t))dµ̂(u(·)) =
∫
{u(·)∈Σ:|u(0)|<r}

H(W1(u(·)))dµ̂(u(·)).

Proof. By virtue of Lemma A.2, there is t(r) > 0 such that for any u(·) ∈ Σ with
|u(0)| < r we have

u(t) ∈ R and et‖u(t)‖ ≤ 2e|u(0)|, t ≥ t(r).

Note that the integrals on the left hand sides of (4.4) and (4.4) are well-defined for
t ≥ t(r). Then noting that∫

{u(·)∈Σ:|u(0)|<r}
|u(0)|2dµ̂(u(·)) ≤

∫
Σ

|u(0)|2dµ̂(u(·)) < ∞,

we apply Lebesgue’s dominated convergence theorem. �

Since
∫

H
‖u‖2dµt(u) is not known to be defined for all t ∈ [t0,∞) for some

t0 ≥ 0, we can not obtain the same result as Proposition 4.1 for the dissipation rate
of energy. However, the energy inequality (2.16) suggests the consideration of the
moving average in time 1

T

∫ t+T

t
e2s
∫

H
‖u‖2dµs(u)ds and its limit as t → ∞. We

also consider similar moving averages of the mean energy and helicity.

Proposition 4.3. For any T > 0, we have

(4.5) lim
t→∞

1
T

∫ t+T

t

e2s

∫
H

|u|2dµs(u)ds =
∫

Σ

|W1(u(·))|2dµ̂(u(·)),

(4.6) lim
t→∞

1
T

∫ t+T

t

e2s

∫
H

‖u‖2dµs(u)ds =
∫

Σ

‖W1(u(·))‖2dµ̂(u(·)),

and

(4.7) lim
t→∞

1
T

∫ t+T

t

e2s

∫
H

H(u)dµs(u)ds =
∫

Σ

H(W1(u(·)))dµ̂(u(·)),

where H(u) = 〈Cu, u〉, for u ∈ V .

Proof. Fix T > 0. For the mean energy, (4.5) is a consequence of Proposition 4.1.
We prove (4.6) next. For t ≥ 0 and r > 0, let

I(t) =
1
T

∫ t+T

t

∫
H

e2s‖u‖2dµs(u) = I1(t, r) + I2(t, r),

where

I1(t, r) =
1
T

∫ t+T

t

∫
{u∈H:|u|<r}

e2s‖u‖2dµs(u),

I2(t, r) =
1
T

∫ t+T

t

∫
{u∈H:|u|≥r}

e2s‖u‖2dµs(u).

Also, let

J =
∫

Σ

‖W1(u(·))‖2dµ̂(u(·)) = J1(r) + J2(r),

where
J1(r) =

∫
{u(·)∈Σ:|u(0)|<r}

‖W1(u(·))‖2dµ̂(u(·)),
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J2(r) =
∫
{u(·)∈Σ:|u(0)|≥r}

‖W1(u(·))‖2dµ̂(u(·)).

Then

(4.8) |I(t)− J | ≤ |I1(t, r)− J1(r)|+ I2(t, r) + J2(r).

First, by Lemma 3.4, we have

(4.9) J2(r) ≤
∫
{u(·)∈Σ:|u(0)|≥r}

|u(0)|2dµ̂(u(·)) =
∫
{u∈H:|u|≥r}

|u|2dµ0(u).

Second, by using Fubini’s theorem,

I2(t, r) =
1
T

∫ t+T

t

∫
{u(·)∈Σ:|u(0)|≥r}

e2s‖u(s)‖2dµ̂(u(·))ds

=
1
T

∫
{u(·)∈Σ:|u(0)|≥r}

∫ t+T

t

e2s‖u(s)‖2dsdµ̂(u(·))

≤ 1
T

∫
{u(·)∈Σ:|u(0)|≥r}

e2(t+T )

∫ t+T

t

‖u(s)‖2dsdµ̂(u(·)).

Using (A.9), we continue to estimate

I2(t, r) ≤
e2T

T

∫
{u(·)∈Σ:|u(0)|≥r}

1
2
|u(0)|2dµ̂(u(·))

=
e2T

2T

∫
{u∈H:|u|≥r}

|u|2dµ0(u).

Given ε > 0. By (4.1), there is r = r(ε) > 0 such that

e2T

2T

∫
{u∈H:|u|≥r}

|u|2dµ0(u) < ε/3,

hence

(4.10) J2(r) < ε/3 and I2(t, r) < ε/3, t ≥ 0.

By Lemma 4.2, there is t0 = t0(r) ≥ 0 such that for all s ≥ t0∣∣∣ ∫
{u(·)∈Σ:|u(0)|<r}

e2s‖u(s)‖2dµ̂(u(·))− J1(r)
∣∣∣ < ε/3.

Hence

|I1(t, r)− J1(r)| ≤
1
T

∫ t+T

t

∣∣∣ ∫
{u(·)∈Σ:|u(0)|<r}

e2s‖u(s)‖2dµ̂(u(·))− J1(r)
∣∣∣ds

(4.11)

<
1
T

∫ t+T

t

ε/3ds = ε/3.

Combining (4.8), (4.10) and (4.11), we have that for all t ≥ t0,

|I(t)− J | < ε/3 + ε/3 + ε/3 = ε,

thus proving (4.6).
For the mean helicity, the proof of (4.7) is similar. �
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Motivated by the existence of the limits in Proposition 4.3 we now study the
following ensemble averages of the energy, energy dissipation rate and helicity:

(4.12)
1
T

∫ t+T

t

∫
H

|u|2dµs(u)ds,
1
T

∫ t+T

t

∫
H

‖u‖2dµs(u)ds and

1
T

∫ t+T

t

∫
H

H(u)dµs(u)ds.

The following is a direct consequence of Proposition 4.3 and the elementary fact
that if f is a measurable function on some interval (c,∞) such that

lim
t→∞

e2tf(t) = a ∈ R,

then

(4.13) lim
t→∞

e2t

T

∫ t+T

t

f(s)ds =
1− e−2T

2T
a.

for any fixed T > 0.

Corollary 4.4. We have for any T > 0 that

(4.14) lim
t→∞

e2t

T

∫ t+T

t

∫
H

|u|2dµs(u)ds =
1− e−2T

2T

∫
Σ

|W1(u(·))|2dµ̂(u(·)),

(4.15) lim
t→∞

e2t

T

∫ t+T

t

∫
H

‖u‖2dµs(u)ds =
1− e−2T

2T

∫
Σ

|W1(u(·))|2dµ̂(u(·)),

and

(4.16) lim
t→∞

e2t

T

∫ t+T

t

∫
H

H(u)dµs(u)ds =
1− e−2T

2T

∫
Σ

H(W1(u(·)))dµ̂(u(·)).

Remark 4.5. The limits in Corollary 4.4 yields the lower and upper bounds for
the ensemble averages in (4.12) when t is large. However, we need later bounds
valid for all t ≥ 0, namely,

(4.17) e−2(t+T )

∫
Σ

|W1u(·))|2dµ̂(u(·)) ≤ 1
T

∫ t+T

t

∫
H

|u|2dµτ (u)dτ

≤ e−2t

∫
H

|u|2dµ0(u),

(4.18) e−2(t+T )

∫
Σ

|W1u(·))|2dµ̂(u(·)) ≤ 1
T

∫ t+T

t

∫
H

‖u‖2dµτ (u)dτ

≤ e−2t

2T

∫
H

|u|2dµ0(u)− e−2(t+T )

2T

∫
Σ

|W1(u(·))|2dµ̂(u(·)),

for T > 0 and t ≥ 0. They follow readily from (3.10) and (3.9).

According to Proposition 4.1, one can understand the asymptotic behavior of
the mean energy by studying

∫
Σ
|W1(u(·))|2dµ̂(u(·)). However, there is yet no ex-

plicit way to find W1(u(·)) and µ̂. Fortunately, W1(u(·)) is related to R1u(0) by
(3.12). Therefore, in some cases, we can reduce our study to

∫
H
|R1u|2dµ0(u)

which only involves the initial measure µ0 and the finite rank projection R1. Simi-
larly, the study of the asymptotic behavior of the mean helicity can be reduced to∫

H
H(R1u)dµ0(u).



16 Ciprian Foias, Luan Hoang and Basil Nicolaenko

To start, we derive some bounds for
∫
Σ
|W1(u(·))|2dµ̂(u(·)) using µ0.

Proposition 4.6. We have

(4.19)
∫

R+
1 H∪R−

1 H

|u|2dµ0(u) ≤
∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≤
∫

H

|u|2dµ0(u).

Proof. The second half of (4.19) follows from (3.8) and (2.19). If u0 belongs to R+
1 H

or R−
1 H, then B(u0, u0) = 0 and hence the corresponding solution is u(t) = u0e

−t,
which implies W (u(·)) = u0. Therefore,∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≥
∫
{u(·)∈Σ:u(0)∈R+

1 H∪R−
1 H}

|W1(u(·))|2dµ̂(u(·))

=
∫
{u(·)∈Σ:u(0)∈R+

1 H∪R−
1 H}

|u(0)|2dµ̂(u(·))

=
∫

R+
1 H∪R−

1 H

|u|2dµ0(u),

thus yields the first half of (4.19). �

Next, we want to find some sufficient conditions in order that∫
Σ

|W1(u(·))|2dµ̂(u(·)) 6= 0 or
∫

Σ

H(W1(u(·)))dµ̂(u(·)) 6= 0.

Note from Proposition 4.6 that the integral
∫
Σ
|W1(u(·))|2dµ̂(u(·)) is positive

whenever
∫

R+
1 H∪R−

1 H
|u|2dµ0(u) is positive. However, the latter condition does not

hold even when µ0 is a Gaussian measure on R1H. Therefore we need to study
other criteria which cover more classes of measures. We turn to a statistical version
of (3.12) and its similar estimate for the helicity.

Lemma 4.7. We have

(4.20)
∫

Σ

|R1u(0)−W1(u(·))|dµ̂(u(·)) ≤ c5

∫
H

|u|2dµ0(u),

and for any r > 0, ∫
Σ

|H(R1u(0))−H(W1(u(·)))|dµ̂(u(·)) ≤ Ir,(4.21)

where

(4.22) Ir = 2c5r

∫
{u∈H:|u|<r}

|u|2dµ0(u) + 4
∫
{u∈H:|u|≥r}

|u|2dµ0(u).

Proof. The inequality (4.20) follows directly from (3.12):∫
Σ

|R1u(0)−W1(u(·))|dµ̂(u(·)) ≤ c5

∫
Σ

|u(0)|2dµ̂(u(·)) = c5

∫
H

|u|2dµ0(u).
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Note that |CR1u| = ‖R1u‖ = |R1u|. For the helicity,∫
Σ

|H(R1u(0))−H(W1(u(·)))|dµ̂(u(·))

≤
∫

Σ

|CR1u(0)− CW1(u(·))||R1u(0)|dµ̂(u(·))

+
∫

Σ

|CW1(u(·))||R1u(0)−W1(u(·))|dµ̂(u(·))

≤ 2
∫

Σ

|u(0)||R1u(0)−W1(u(·))|dµ̂(u(·))

≤ 2
{∫

{u(·)∈Σ:|u(0)|<r}
+
∫
{u(·)∈Σ:|u(0)|≥r}

}
|u(0)||R1u(0)−W1(u(·))|dµ̂(u(·)).

Using (3.12) for the integral on {u(·) ∈ Σ : |u(0)| < r}, and using (3.8) for the
integral on {u(·) ∈ Σ : |u(0)| ≥ r}, we obtain∫

Σ

|H(R1u(0))−H(W1(u(·)))|dµ̂(u(·))

≤ 2c5

∫
{u(·)∈Σ:|u(0)|<r}

|u(0)|3dµ̂(u(·)) + 4
∫
{u(·)∈Σ:|u(0)|≥r}

|u(0)|2dµ̂(u(·))

≤ 2rc5

∫
{u∈H:|u|<r}

|u|2dµ0(u) + 4
∫
{u∈H:|u|≥r}

|u|2dµ0(u) = Ir. �

Using Lemma 4.7, we establish some sufficient conditions under which the inte-
gral

∫
Σ
|W1(u(·))|dµ̂(u(·)) or

∫
Σ
H(W1(u(·)))dµ̂(u(·)) does not vanish.

Corollary 4.8. We have the following

(i) If
∫

H
|R1u|dµ0(u) > c5

∫
H
|u|2dµ0(u), then

∫
Σ
|W1(u(·))|dµ̂(u(·)) > 0 and

subsequently,
∫
Σ
|W1(u(·))|2dµ̂(u(·)) > 0.

(ii) If
∫

H
H(R1u)dµ0(u) > Ir, resp.

∫
H
H(R1u)dµ0(u) < −Ir, for some r > 0,

where Ir is defined by (4.22), then∫
Σ

H(W1(u(·)))dµ̂(u(·)) > 0, resp.
∫

Σ

H(W1(u(·)))dµ̂(u(·)) < 0.

Proof. By (4.20), we have∫
Σ

|W1(u(·))|dµ̂(u(·)) ≥
∫

Σ

|R1u(0)|dµ̂(u(·))−
∫

Σ

|R1u(0)−W1(u(·))|dµ̂(u(·))

≥
∫

H

|R1u|dµ0(u)− c5

∫
H

|u|2dµ0(u),

hence obtaining (i). The proof of (ii) follows from (4.21) and the following triangular
inequalities∫

Σ

H(W1(u(·)))dµ̂(u(·)) ≥
∫

Σ

H(R1u(0))dµ̂(u(·))

−
∫

Σ

|H(R1u(0))−H(W1(u(·)))|dµ̂(u(·)),
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Σ

H(W1(u(·)))dµ̂(u(·)) ≤
∫

Σ

H(R1u(0))dµ̂(u(·))

+
∫

Σ

|H(W1(u(·)))−H(R1u(0))|dµ̂(u(·)).

�

5. Statistical solutions with initial Gaussian measures

In this section, we focus on VF statistical solutions of the Navier–Stokes equa-
tions with initial Gaussian probability measures. In particular, we will construct
some Gaussian measures on H to which we can apply Corollary 4.8 to obtain∫

Σ

|W1(u(·))|2dµ̂(u(·)) > 0 or
∫

Σ

H(W1(u(·)))2dµ̂(u(·)) 6= 0

for any VF measure µ̂ having one of those Gaussian measures as the initial data.

Example 5.1. Let N1(= 12) be the dimension of R1H and {wj , j = 1, . . . , N1}
be an orthonormal basis in R1H and {wn, n > N1} be an orthonormal basis in
(I −R1)H. For each u of H, we write

(5.1) u =
∞∑

j=1

xjwj .

Let µ be a Gaussian probability measure on H such that the density of the

distribution of the random variable xj is given by 1√
2πσj

exp
(
− x2

j

2σ2
j

)
, with σj > 0

for all j ∈ N and the random variable xj , j ∈ N, are independent, (see e.g. [24]).
Of course, the σj must satisfy the condition

∞∑
j=1

σ2
j < ∞.

The variance of µ is

(5.2) σ2 =
∫

H

|u|2dµ(u) =
∞∑

j=1

σ2
j .

This measure satisfies the following.

Lemma 5.2. For every r > 0, we have

(5.3)
∫
{u∈H:|u|≥r}

|u|2dµ(u) ≤
∫
{u∈H:|R1u|≥r/2}

|R1u|2dµ(u) +
4σ2σ2

r2
+ σ2,

where σ2 =
∑N1

j=1 σ2
j and σ2 = σ2 − σ2.

Proof. Note that∫
{u∈H:|u|≥r}

|u|2dµ(u) ≤
∫
{u∈H:|u|≥r}

|R1u|2dµ(u) +
∫

H

|(I −R1)u|2dµ(u)

≤
∫
{u∈H:|R1u|≥r/2}

|R1u|2dµ(u) +
∫
{u∈H:|(I−R1)u|≥r/2}

|R1u|2dµ(u) + σ2
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and∫
{u∈H:|(I−R1)u|≥r/2}

|R1u|2dµ(u)

≤
[ ∫

H

|R1u|2dµ(u)
]
µ({u ∈ H : |(I −R1)u| ≥ r/2})

≤ σ2

∫
{u∈H:|(I−R1)u|≥r/2} |(I −R1)u|2dµ(u)

(r/2)2
≤ 4σ2σ2

r2
.

Thus (5.3) follows. �

Proposition 5.3. Let 0 < ε < 1/(c5

√
2πN1) and µ be the Gaussian probability

measure defined in Example 5.1 with σj = ε, j = 1, . . . , N1, and σ2 = 2N1ε
2. For

any VF measure µ̂ with initial data µ, we have
∫
Σ
|W1(u(·))|2dµ̂(u(·)) > 0.

Proof. From (5.2), we have

(5.4)
∫

H

|u|2dµ(u) = 2N1ε
2.

Also, ∫
H

|R1u|dµ(u) ≥ 1√
N1

∫
RN1

(|x1|+ |x2|+ . . . + |xN1 |)(5.5)

×
N1∏
j=1

1√
2πσj

exp
(
−

x2
j

2σ2
j

)
dx1 . . . dxN1

=
√

2√
πN1

N1∑
j=1

σj .

Hence

(5.6)
∫

H

|R1u|dµ(u) ≥
√

2√
πN1

N1ε =
√

2N1√
π

ε.

Thus,
∫

H
|R1u|dµ(u) > c5

∫
H
|u|2dµ(u). Then we apply Corollary 4.8. �

If the upper bound of ε is slightly smaller, we obtain a lower bound for the
integral

∫
Σ
|W1(u(·))|2dµ̂(u(·)) which is comparable with the initial kinetic energy.

Corollary 5.4. Let µ and µ̂ be the measures in Proposition 5.3. If 0 < ε <
1/(2c5

√
2πN1) then

(5.7)
1
4π

∫
H

|u|2dµ(u) <

∫
Σ

|W1(u(·))|2dµ̂(u(·)) ≤
∫

H

|u|2dµ(u).
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Proof. The second inequality of (5.7) is from Proposition 4.6. For the first inequal-
ity, we use (4.20), (5.6) and (5.4) to have∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≥
[∫

Σ

|W1(u(·))|dµ̂(u(·))
]2

≥
[∫

H

|R1u|dµ(u)− c5

∫
H

|u|2dµ(u)
]2

≥

[
2
√

N1√
2π

ε− 2N1c5ε
2

]2

> ε2
N1

2π
=

1
4π

∫
H

|u|2dµ(u). �

Remark 5.5. It is already known that

(5.8)
∫

H

|u|2dµt(u) ≤ e−2t

∫
H

|u|2dµ0(u), t ≥ 0.

If µ0 = µ is a measure satisfying the conditions in Corollary 5.4, then Proposi-
tion 4.1 and Corollary 5.4 now imply that

(5.9)
∫

H

|u|2dµt(u) ≥ 1
4π

e−2t

∫
H

|u|2dµ0(u), t ≥ t0,

for some t0 ≥ 0.

Example 5.6. We consider the Gaussian measure µ defined in Example 5.1. To
find µ0 = µ that satisfies the condition in Corollary 4.8, we will be more specific in
choosing the orthonormal system w1, w2, . . . , wN1 in R1H.

First we recall that R+
1 , resp. R−

1 , is the orthogonal projections of H onto the
eigenspaces of the curl operator C corresponding to the eigenvalue 1, resp. (−1).
Since dim R+

1 H = dim R−
1 H = N = N1/2 = 6, we choose {w1, . . . , wN} to be an

orthonormal basis in R+
1 H and {wN+1, . . . , w2N} to be one in R−

1 H. Then

(5.10)
∫

H

H(R1u)dµ(u) =
∫

H

|R+
1 u|2dµ(u)−

∫
H

|R−
1 u|2dµ(u) = σ2

+ − σ2
−,

where σ2
+ =

∑N
j=1 σ2

j and σ2
− =

∑2N
j=N+1 σ2

j .

We will find a Gaussian measure that satisfies part (ii) of Corollary 4.8. For that
purpose, we need to estimate the quantity Ir defined by (4.22).

Lemma 5.7. Let r > 0, δ ∈ (0, 1) and µ be the measure constructed in Example
5.1 with 0 < σj ≤ r/(2N1Mδ), j = 1, 2, . . . , N1, where Mδ > 0 satisfies

(5.11)
1√
2π

∫
{t∈R:|t|≥Mδ}

t2e−t2/2dt = δ.

Let Ir be defined by (4.22) with µ0 = µ. Then

(5.12) Ir ≤ σ2
(
2c5r + 4δ +

16σ2

r2

)
+ (2c5r + 4)σ2.

Proof. Recall that, for r > 0,

Ir = 2c5r

∫
{u∈H:|u|<r}

|u|2dµ(u) + 4
∫
{u∈H:|u|≥r}

|u|2dµ(u).
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By the change of variable t = xj/σj , we have∫
{xj∈R:|xj |≥r/(2N1)}

|xj |2
1√

2πσj

exp
(
−

x2
j

2σ2
j

)
dxj

=
1√
2π

∫
{|t|≥r/(2N1σj)}

σ2
j |t|2e−|t|

2/2dt ≤ 1√
2π

∫
{|t|≥Mδ}

σ2
j |t|2e−|t|

2/2dt ≤ δσ2
j .

Hence∫
{u∈H:|R1u|≥r/2}

|R1u|2dµ(u) =
∫
{x∈RN1 :|x|≥r/2}

|x|2
N1∏
j=1

1√
2πσj

exp
(
−

x2
j

2σ2
j

)
dx

≤
N1∑
j=1

∫
{xj∈R:|xj |≥r/(2N1)}

|xj |2
1√

2πσj

exp
(
−

x2
j

2σ2
j

)
dxj

≤ δσ2.

Applying Lemma 5.2, we obtain∫
{u∈H:|u|≥r}

|u|2dµ(u) ≤ δσ2 +
4σ2σ2

r2
+ σ2.

Since 2c5r
∫
{u∈H:|u|<r} |u|

2dµ(u) ≤ 2c5rσ
2, we have

Ir ≤ 2c5r
(
σ2 + σ2

)
+ 4
(4σ2σ2

r2
+ σ2 + δσ2

)
,

and (5.12) follows. �

Now, the condition in the second statement of Corollary 4.8 can be fulfilled by
some explicit Gaussian measures.

Proposition 5.8. There exists a Gaussian probability measure µ0,+, resp. µ0,−,
as defined in Example 5.6 such that any VF measure µ̂+, resp. µ̂−, with initial
data µ0,+, resp. µ0,−, satisfies

(5.13)
∫

Σ

H(W1(u(·)))dµ̂+(u(·)) > 0,

resp.

(5.14)
∫

Σ

H(W1(u(·)))dµ̂−(u(·)) < 0.

Proof. Let σj = ε+ for j = 1, . . . , N , and σj = ε− for j = N + 1, . . . , 2N .
For (5.13), we take ε+ =

√
2ε and ε− = ε, for some ε > 0. By (5.10), we have

(5.15)
∫

H

H(R1u)dµ(u) = N(ε2+ − ε2−) = Nε2.

Note that σ2 = 3Nε2. In addition, if

2c5r <
1
18

, 0 < 4δ <
1
18

, 0 < ε <
r

4
√

2N1Mδ

,
16σ2

r2
<

1
18

and (
1
18

+ 4)σ2 <
ε2N

2
,



22 Ciprian Foias, Luan Hoang and Basil Nicolaenko

where Mδ is defined in (5.11), then it follows from Lemma 5.7 that

Ir ≤ 3Nε2(2c5r + 4δ +
16σ2

r2
) + (2c5r + 4)σ2

< 3Nε2(
1
18

+
1
18

+
1
18

) +
ε2N

2

= Nε2 =
∫

H

H(R1u)dµ(u).

Then applying Corollary 4.8 (ii), we obtain (5.13).
For (5.14), we choose ε− =

√
2ε and ε+ = ε, then the sum ε2+ + ε2− is still 3Nε2,

hence Ir remains less than Nε2. However,
∫

H
H(R1u)dµ(u) = −Nε2 and therefore∫

H
H(R1u)dµ(u) < −Ir. Again, (5.14) follows from Corollary 4.8 (ii). �

Next, we construct Gaussian measures µ such that the corresponding VF mea-
sures µ̂ satisfy

∫
Σ
|W1(u(·))|2dµ̂(u(·)) is arbitrarily large.

Proposition 5.9. For any M > 0, there exists a VF measure µ̂ such that its initial
data is a Gaussian probability measure and

(5.16)
∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≥ M.

Proof. Let µ be a Gaussian measure as in Example 5.6 and let µ̂ be a VF mea-
sure with initial data µ. Fix M > 0 and θ ∈ (0, 1). Take σ+ > 0 such that
θ5σ2

+ ≥ M . Since limK→∞
∫
{u∈H:1/K≤|R+

1 u|≤K} |R
+
1 u|2dµ(u) = σ2

+, we can choose
K sufficiently large so that

(5.17)
∫
{u∈H:1/K≤|R+

1 u|≤K}
|R+

1 u|2dµ(u) ≥ θσ2
+.

Let B1(θ) = {u + v : u ∈ B1, ‖v‖ < ε2(|u|, θ)}, where B1 is defined by (3.16) and
ε2(|u|, θ) is in (3.18). By virtue of Proposition 3.10, (3.18) and (A.16), there is
ε > 0 depending on K and θ such that

B±1 (K, θ) def== {u + v : u ∈ R±
1 H, 1/K ≤ |u| ≤ K, ‖v‖ ≤ 2ε} ⊂ B1(θ).

According to Proposition 3.10, |W1(u)| ≥ θ|u| for u ∈ B±1 (K, θ). Thus we have∫
Σ

|W1(u(·))|2dµ̂(u(·)) ≥
∫
{u(·)∈Σ:u(0)∈B1(θ)}

θ2|u(0)|2dµ̂(u(·))(5.18)

= θ2

∫
{u∈H:u∈B1(θ)}

|u|2dµ(u)

≥ θ2

∫
B+

1 (K,θ)

|u|2dµ(u)

≥ θ2

∫{
u∈H:1/K≤|R+

1 u|≤K,|R−1 u|≤ε,

‖(I−R1)u‖≤ε

} |R+
1 u|2dµ(u)

= θ2
{∫

{u∈H:1/K≤|R+
1 u|≤K}

|R+
1 u|2dµ(u)

}
µ({u ∈ H : |R−

1 u| ≤ ε})

× µ({u ∈ H : ‖(I −R1)u‖ ≤ ε}).
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Assume for the moment that there are σj , for j > N , such that

(5.19) µ({u ∈ H : |R−
1 u| ≤ ε}) ≥ θ,

(5.20) µ({u ∈ H : ‖(I −R1)u‖ ≤ ε}) ≥ θ.

Then combining (5.18), (5.17), (5.19) and (5.20) we obtain

(5.21)
∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≥ θ2(θσ2
+)θ2 = θ5σ2

+ ≥ M,

hence (5.16). It remains to verify (5.19) and (5.20).
Verification of (5.19). We have

µ({u ∈ H : |R−
1 u| ≤ ε}) =

∫
{x∈RN :|x|≤ε}

N∏
j=1

1√
2πσN+j

e
−

x2
j

2σ2
N+j dx

≥
N∏

j=1

∫
{|xj |≤ε/N}

1√
2πσN+j

e
−

x2
j

2σ2
N+j dxj

=
N∏

j=1

∫ ε/(NσN+j)

−ε/(NσN+j)

1√
2π

e−
y2

j
2 dyj .

For δ ∈ (0, 1), let m(δ) be the positive number such that∫ m(δ)

−m(δ)

1√
2π

e−
t2
2 dt = δ.

Let σN+j = ε− ≤ ε/(Nm(θ1/N )) for j = 1, . . . , N . We then obtain

µ({u ∈ H : |R−
1 u| ≤ ε}) ≥

(∫ m(θ1/N )

−m(θ1/N )

1√
2π

e−
t2
2 dt

)N

= θ.

Verification of (5.20). We will determine σj for j > N1 such that (5.20) holds.
Suppose Awj = λjwj where (λj)∞j=1 is the increasing sequence of eigenvalues of
the Stokes operator. For w =

∑∞
j=N1+1 xjwj ∈ (I − R1)H, we have ‖w‖2 =∑∞

j=N1+1 λj |xj |2. Note that

{
∞∑

j=N1+1

xjwj : |xj | ≤
2Nε

2j/2λ
1/2
j

} ⊂ {w ∈ (I −R1)H : ‖w‖ ≤ ε}.

For j > N1, let σj > 0 be sufficiently small such that

2Nε

2j/2λ
1/2
j σj

≥ m(θ2N1/2j

).
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We obtain

µ({u ∈ H : ‖(I −R1)u‖ ≤ ε}) ≥
∞∏

j=N1+1

∫
{|xj |≤ ε

2j/2λ
1/2
j

}

1√
2πσj

e
−

x2
j

2σ2
j dxj

≥
∞∏

j=N1+1

∫ m(θ2N1/2j
)

−m(θ2N1/2j
)

1√
2π

e−
t2
2 dt

=
∞∏

j=N1+1

θ2N1/2j

= θ,

hence (5.20) is satisfied. The proof is complete. �

Remark 5.10. In the above proof, if σ2
−, σ2 ≤ 1 and σ2

+ ≥ 2α, where α = θ/(1−θ),
then σ2

+ ≥ α(σ2
− + σ2) and

(5.22) σ2
+ ≥ ασ2/(1 + α) = θσ2.

From (5.22) and (5.21), we have∫
Σ

|W1(u(·))|2dµ̂(u(·)) ≥ θ6

∫
H

|u|2dµ(u).

Hence we have proved that for any given M > 0 and θ ∈ (0, 1), there exists a VF
measure µ̂ with Gaussian initial data µ such that

(5.23)
∫

H

|u|2dµ(u) ≥ M

and

(5.24) θ

∫
H

|u|2dµ(u) ≤
∫

Σ

|W1(u(·))|2dµ̂(u(·)) ≤
∫

H

|u|2dµ(u).

6. Asymptotic Beltrami flows

A C1 vector field u(x) in R3 is a said to be Beltrami if

(6.1) ∇× u(x) = α(x)u(x), x ∈ R3, some α(x) ∈ R.

Note that if u = u(·) is an eigenfunction of the curl operator C, then (6.1) holds
with α ≡ ±

√
n, for some n ∈ σ(A). The converse is considered in the following.

Lemma 6.1 ([1]). Let u = u(·) ∈ RnH \ {0} where n ∈ σ(A). If ∇ × u(x) =
α(x)u(x) a.e., for some α(·) ∈ R, then u is an eigenfunction of the curl operator,
i.e., Cu =

√
nu or Cu = −

√
nu.

Corollary 6.2. Let u ∈ RnH \ {0} where n ∈ σ(A). Then u is Beltrami if and
only if u is an eigenfunction of the curl operator, i.e., Cu =

√
nu or Cu = −

√
nu.

Let u(·) ∈ Σ be such that there is t0 ≥ 0, u(t0) ∈ R \ {0}. Then

n = lim
τ→∞

‖u(t0 + τ)‖2

|u(t0 + τ)|2
= lim

t→∞

‖u(t)‖2

|u(t)|2

is an eigenvalue of the Stokes operator A.
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Note that the eigenvalue n above depends on the asymptotic behavior of the
solution but not on the value of t0. Therefore we define

(6.2) n∗(u(·)) = lim
t→∞

‖u(t)‖2

|u(t)|2
.

Denote n∗ = n∗(u(·)). Define

(6.3) W∗(u(·)) = lim
t→∞

en∗tu(t),

and

(6.4) W ∗(u(·)) =
W∗(u(·))
|W∗(u(·))|

= lim
t→∞

u(t)
|u(t)|

,

where the limits in both (6.3) and (6.4) are taken in either H or V . Recall that
both W∗(u(·)) and W ∗(u(·)) belong to Rn∗H \ {0}.

Since u(t0) ∈ R, we have

lim
t→∞

en∗tu(t) = en∗t0 lim
τ→∞

en∗τu(t0 + τ) = en∗t0Wn∗(u(t0)),

hence

(6.5) W∗(u(·)) = en∗t0Wn∗(u(t0)).

In particular, if t0 = 0, i.e., u0 = u(0) ∈ R then W∗(u(·)) = Wn∗(u0).
In the case u(t0) = 0 for some t0 ≥ 0, we let

(6.6) n∗(u(·)) = ∞ and W∗(u(·)) = 0.

Denote n∗ = n∗(u(·)) and ξn∗ = W∗(u(·)), ξn∗ = W ∗(u(·)). Recall that

(6.7)
u(t)
|u(t)|

→ ξn∗ in H and V , t →∞,

and hence

(6.8)
Cu(t)
|u(t)|

→ Cξn∗ in H, t →∞.

It is known (e.g. [13]) that en∗tu(t) → ξn∗ , for t →∞, in any Hm(Ω) norm, m ∈ N,
consequently, in sup norm. Hence for x ∈ R3

(6.9) lim
t→∞

en∗tu(t,x) = ξn∗(x) and lim
t→∞

en∗t∇× u(t,x) = ∇× ξn∗(x).

Since ξn∗(x) is analytic, we have

(6.10) lim
t→∞

en∗t|u(t,x)| = |ξn∗(x)| 6= 0, a.e..

Definition 6.3. We say that a time dependent vector field u(x, t) is asymptotically
Beltrami if there are α(x, t) ∈ R such that

(6.11) lim
t→∞

∇× u(x, t)− α(x, t)u(x, t)
|u(x, t)|

= 0, a.e. on R3.

Remark 6.4. The limit in (6.11) requires that a.e. on R3, u(x, t) 6= 0, for all
t ≥ t0(x).

We obtain the following equivalent conditions for a Leray-Hopf solution to be
asymptotically Beltrami.

Theorem 6.5. Let u(·) ∈ Σ such that u(t0) ∈ R \ {0}, for some t0 > 0. The
following are equivalent
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(i) u(·) is asymptotically Beltrami.
(ii) There is a subsequence tk ↗∞ and α(x, tk) ∈ R such that

(6.12) lim
k→∞

∇× u(x, tk)− α(x, tk)u(x, tk)
|u(x, tk)|

= 0, a.e. on R3.

(iii) W∗(u(·)) is a Beltrami vector field.
(iv) For n∗ = n∗(u(·)),

(6.13) lim
t→∞

|Cu(t)− ε
√

n∗u(t)|
|u(t)

= 0,

where ε = 1 or −1.

Proof. Assume (i). Of course, (ii) follows.
Assume (ii). From (6.7) and (6.8) we can assume, without loss of generality, that

(6.14) lim
k→∞

u(x, tk)/|u(tk)| = ξn∗(x) 6= 0, a.e.,

(6.15) lim
k→∞

∇× u(x, tk)/|u(tk)| = Cξn∗(x), a.e..

Thus from (6.14),

(6.16) lim
k→∞

|u(x, tk)|/|u(tk)| = |ξn∗(x)| 6= 0, a.e.,

and together with (6.12),

(6.17) lim
k→∞

∇× u(x, tk)− α(x, tk)u(x, tk)
|u(tk)|

= 0, a.e..

From (6.15) and (6.17), it follows that

(6.18) lim
k→∞

α(x, tk)
u(x, tk)
|u(tk)|

= Cξn∗(x), a.e.,

and hence limk→∞ α(x, tk) = α(x) exists a.e. on R3 and Cξn∗(x) = α(x)ξn∗(x) a.e.
on R3. By Lemma 6.2, ξn∗ is an eigenfunction of the curl operator C. Hence ξn∗ is
Beltrami, so is W∗(u(·)), and we have (iii).

Assume (iii). Then Cξn∗ = ε
√

n∗ξn∗ , where ε = 1 or −1. By (6.7) and (6.8),

lim
t→∞

[Cu(t)
|u(t)|

− ε
√

n∗
u(t)
|u(t)|

]
= Cξn∗ − ε

√
n∗ξn∗ = 0,

where the limit is taken in H, thus proving (iv).
Assume (iv). The limit in (iv) is |Cξn∗ − ε

√
n∗ξn∗ |, hence Cξn∗ = ε

√
n∗ξn∗ and

(6.19) ∇× ξn∗(x) = ε
√

n∗ξn∗(x), x ∈ R3.

By (6.9) and (6.10),

lim
t→∞

∇× u(x, t)− ε
√

n∗u(x, t)
|u(x, t)|

=
∇× ξ(x)− ε

√
n∗ξn∗(x)

|ξn∗(x)|
, a.e..

This limit is zero by (6.19), hence (6.11) holds with α(x, t) ≡ ε
√

n∗. �

Corollary 6.6. Let u(·) ∈ Σ be not identically zero in (t0,∞), for some t0 > 0. If
u(t) is asymptotically Beltrami then CW∗(u(·)) = ε

√
n∗(u(·))W∗(u(·)), with ε = 1

or ε = −1, and (6.11) holds with α = ε
√

n∗(u(·)).
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We now turn to the statistical study of the asymptotically Beltrami flows using
the statistical solutions of the Navier–Stokes equations.

Definition 6.7. Let µ̂ be a VF measure on Σ as in Definition 2.3. We say that the
µ̂ is asymptotically Beltrami if almost surely every solution u(·) in Σ is asymptotic
Beltrami; more precisely,

(6.20) µ̂({u(·) ∈ Σ : u(·) is asymptotically Beltrami}) = 1.

We infer from Theorem 6.5 and Corollary 6.2 that if a Leray-Hopf solution u(·)
is asymptotically Beltrami then

CW1(u(·)) = W1(u(·)) or CW1(u(·)) = −W1(u(·))
(this trivially holds if W1(u(·)) = 0), or equivalently,

R−
1 W1(u(·)) = 0 or R+

1 W1(u(·)) = 0.

Therefore, the necessary condition for µ̂ to be asymptotically Beltrami is that

(6.21) µ̂({u(·) ∈ Σ : |R+
1 W1(u(·))| |R−

1 W1(u(·))| = 0}) = 1,

or equivalently,

(6.22)
∫

Σ

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̂(u(·)) = 0.

Another alternative interpretation of (6.22) is the following. Since R+
1 u and R−

1 u
are orthogonal, we have that

|R+
1 u||R−

1 u| = 0 if and only if |R+
1 u|+ |R−

1 u| − |R1u| = 0.

Therefore, the necessary condition (6.22) for µ̂ to be asymptotically Beltrami is
equivalent to

(6.23)
∫

Σ

[
|R+

1 W1(u(·))|+ |R−
1 W1(u(·))| − |W1(u(·))|

]
dµ̂(u(·)) = 0.

Proposition 6.8. If µ̂ is a VF measure with initial data µ satisfying

(6.24)
∫

H

[
|R+

1 u|+ |R−
1 u| − |R1u|

]
dµ(u) > 3c5

∫
H

|u|2dµ(u),

then µ̂ is not asymptotically Beltrami.

Proof. Suppose (6.24) holds. Using (4.20) with µ0 = µ, one can show that (6.23)
does not hold. �

Theorem 6.9. There exists a VF measure µ̂ with initial Gaussian probability mea-
sure such that µ̂ is not asymptotically Beltrami.

Proof. Let µ be a Gaussian measure as in Example 5.6 and µ̂ be a VF measure
with initial data µ. Let σj = ε > 0 for j = 1, . . . , 2N . Let ωn be the area of the
(n− 1)-dimensional unit sphere in Rn, n ≥ 2. We have∫

Rn

|z|e
−|z|2/(2ε2)

(2π)n/2εn
dz =

1
(2π)n/2εn

∫ ∞

0

re−r2/(2ε2)ωnrn−1dr, y =
r√
2ε

=
ωn

√
2ε

πn/2

∫ ∞

0

yne−y2
dy

= αnε.
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Condition (6.24) is now equivalent to

(6.25) (2αN − α2N )ε > 3c5(Nε2 + Nε2 + σ2).

Since 2αN − α2N > 0, condition (6.25) is satisfied with

σ2 = Nε2 and ε < (2αN − α2N )/(9Nc5). �

Remark 6.10. In Proposition 6.8, we can use (6.22) instead of (6.23) to replace
(6.24) with the following condition

(6.26)
∫

H

|R+
1 u| |R−

1 u|dµ(u) > Ir,

for some r > 0, where Ir is defined by (4.22) with µ0 = µ. Also one can adjust
the construction of µ in the proof of Theorem 6.9 such that µ should satisfy (6.26),
hence ∫

Σ

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̂(u(·)) > 0

and µ̂ is not asymptotically Beltrami.

7. Some generic properties of VF measures

First we will show that

(7.1)
∫

Σ

|W1(u(·))|2dµ̂(u(·)) > 0

is a generic property for a VF measure µ̂. For this we will give a useful characteri-
zation of a VF measure with that property.

Let

(7.2) Σ1 = {u(·) ∈ Σ : W1(u(·)) = 0}.
It is easy to see that

(7.3) Σ1 = {u(·) ∈ Σ : u(t) ∈M1, for all t ≥ t0 = t0(u(·))},
where M1 = {u ∈ R : W1(u) = 0} (see [8]). It is worth mentioning that M1 is a
manifold in V . For our convenience, we will also define

(7.4) Σ1,t = {u(·) ∈ Σ : u(t) ∈M1}.
Then Σ1,t ⊂ Σ1,t′ for t ≤ t′ and Σ1 = ∪t≥0Σ1,t.

Proposition 7.1. Relation (7.1) holds if and only if µ̂(Σ1) < 1.

Proof. Suppose (7.1) does not hold. Let r > 0. According to Lemma A.2, there is
t1 = t1(r) > 0 such that u(t1) ∈ R whenever |u(0)| < r. Then

0 =
∫
{u(·)∈Σ:|u(0)|<r}

|W1(u(·))|2dµ̂(u(·))

=
∫
{u(·)∈Σ:|u(0)|<r}

et1 |W1(u(t1))|2dµ̂(u(·)).

Hence W1(u(t1)) = 0 µ̂-a.e. on {u(·) ∈ Σ : |u(0)| < r}. Thus

1 ≥ µ̂(Σ1) ≥ µ̂({u(·) ∈ Σ : |u(0)| < r, u(t1(r)) ∈M1})
= µ̂({u(·) ∈ Σ : |u(0)| < r, W1(u(t1(r))) = 0})
= µ̂({u(·) ∈ Σ : |u(0)| < r}).
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Letting r →∞, we obtain µ̂(Σ1) = 1.
We now assume that µ̂(Σ1) = 1. Since W1(Σ1) = {0}, we have W1(u(·)) = 0

µ̂-a.e. on Σ, thus (7.1) fails. �

For the initial data µ0 of µ̂ we obtain the following.

Corollary 7.2. Let

N1 = {u0 ∈ H : ∃u(·) ∈ Σ, u(0) = u0, and u(t) ∈M1, t ≥ t0 = t0(u(·))}.
If µ0(N1) < 1 then (7.1) holds.

Proof. Since N1 = Pr0Σ1, we have

1 > µ0(N1) = µ̂(Pr−1
0 N1) ≥ µ̂(Σ1).

Hence (7.1) holds, by virtue of Proposition 7.1. �

Remark 7.3. We do not know if µ0(N1) = 1 implies µ̂(Σ1) = 1.

Definition 7.4. Let µ̂ and µ̃ be two Borel measures on Σ. We define d1(µ̂, µ̃) by
the total variation of the measure µ̂− µ̃, that is,

(7.5) d1(µ̂, µ̃) = sup
{ N∑

j=1

|µ̂(Ej)− µ̃(Ej)|
}

,

where the supremum is taken over all Borel partitions {E1, E2, . . . , EN}, N ∈ N,
of Σ. It is known that the space of finite Borel measures on Σ with metric d1 is
complete.

For our study, it is more suitable to let M be the set of all VF measures and
define the following metric for µ̂ and µ̃ in M:

(7.6) d(µ̂, µ̃) = d1(µ̂, µ̃) +
∫

Σ

|u(0)|2d|µ̂− µ̃|(u(·)),

where |µ̂− µ̃| is the total variation measure of the signed measure (µ̂− µ̃).

We have:

Proposition 7.5. The metric space (M, d) is complete.

Proof. Let (µ̂n)∞n=1 be a Cauchy sequence in (M, d). Then (µ̂n)∞n=1 is a Cauchy
sequence with respect to d1. Therefore there is a Borel measure µ̂ on Σ such that
limn→∞ d1(µ̂n, µ̂) = 0. Obviously, µ̂ is a probability measure on Σ. For r > 0, let

BΣ(r; 0) = {u(·) ∈ Σ : |u(0)| < r}.
We have the function u(·) ∈ BΣ(r; 0) → Pku(0) is continuous for r > 0, k ∈ N.
Given ε > 0, there is N > 0 such that for n′ > n > N , we have∫

BΣ(r;0)

|Pku(0)|2d|µ̂n − µ̂n′ |(u(·)) < ε,

for any r > 0 and k ∈ N. Letting n′ →∞ and then r →∞, k →∞, we obtain∫
Σ

|u(0)|2d|µ̂n − µ̂|(u(·)) ≤ ε.

Thus limn→∞ d(µ̂n, µ̂) = 0. Since
∫
Σ
|u(0)|2dµ̂n(u(·)) is finite for each n, it follows

that
∫
Σ
|u(0)|2dµ̂(u(·)) is finite. Hence µ̂ is a VF measure. Therefore (M, d) is

complete. �
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In what follows, M is considered as a metric space with metric d. A property
P (µ̂) of a VF measure µ̂ is called generic if the set of all VF measures µ̂ enjoying
the property P (µ̂) contains an intersection of dense open sets in M.

Lemma 7.6. Let µ̂, m̂ ∈ M, ε ∈ (0, 1) and µ̃ = (1− ε)µ̂ + εm̂. Then µ̃ ∈ M and

(7.7) d(µ̃, µ̂) ≤ 2ε + ε

{∫
Σ

|u(0)|2dµ̂(u(·)) +
∫

Σ

|u(0)|2dm̂(u(·))
}

.

Proof. The fact that µ̃ ∈ M follows from Remark 2.5. For any Borel partition
{Ej , j = 1, . . . , N}, some N ∈ N, of Σ, we have

N∑
j=1

|µ̃(Ej)− µ̂(Ej)| = ε

N∑
j=1

{
µ̂(Ej) + m̂(Ej)

}
≤ 2ε,

thus yielding d1(µ̂, µ̃) ≤ 2ε. Moreover,∫
Σ

|u(0)|2d|µ̃− µ̂|(u(·)) =
∫

Σ

|u(0)|2d|εm̂− εµ̂|(u(·))

≤ ε

∫
Σ

|u(0)|2dµ̂(u(·)) + ε

∫
Σ

|u(0)|2dm̂(u(·)).

Hence (7.7) follows. �

Theorem 7.7. The set ME of all µ̂ ∈ M such that (7.1) holds is open and dense
in M. Subsequently, (7.1) is generic.

Proof. For the density, suppose µ̂ ∈ M \ ME and ε ∈ (0, 1). Denote M =∫
Σ
|u(0)|2dµ̂(u(·)). Let u0 ∈ R1H \ {0} such that Cu0 = u0 and |u0| = 1. Then

S(t)u0 = u0(t) = e−tu0, for all t ≥ 0. Clearly, u0 ∈ R, W1(u0) = u0 and
W1(u0(·)) = u0, by Definition 3.3. Set µ̃ = (1 − ε)µ̂ + εδu0(·). Then µ̃ ∈ M
and ∫

Σ

|W1(u(·))|2dµ̃(u(·)) = (1− ε)
∫

Σ

|W1(u(·))|2dµ̂(u(·)) + ε|W1(u0(·))|2

= 0 + ε|u0|2 6= 0,

hence µ̃ ∈ ME . By Lemma 7.6, we have d(µ̂, µ̃) ≤ ε(M + 3). Therefore ME is
dense in M.

Now suppose µ̂ ∈ ME . By Proposition 7.1, we have µ̂(Σ1) < 1, hence δ =
µ̂(Σ \ Σ1) > 0. Assume µ̃ ∈ M satisfies d(µ̃, µ̂) < δ. We have

µ̃(Σ1) ≤ µ̂(Σ1) + d1(µ̃, µ̂) < µ̂(Σ1) + δ = 1,

thus µ̃ ∈ ME thanks to Proposition 7.1 again. Thus ME is open. �

We now study the genericity of the following property

(7.8)
∫

Σ

H(W1(u(·)))dµ̂(u(·)) 6= 0.

For that purpose, we denote by MH the set of all µ̂ ∈ M such that (7.8), holds.
Note that MH = M+

H ∪M−
H , where

(7.9) M+
H = {µ̂ ∈ M :

∫
Σ

H(W1(u(·)))dµ̂(u(·)) > 0},
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(7.10) M−
H = {µ̂ ∈ M :

∫
Σ

H(W1(u(·)))dµ̂(u(·)) < 0}.

Theorem 7.8. The set MH is open and dense in M. Subsequently, (7.8) is generic.

Proof. First, let µ̂ ∈ M \MH and ε ∈ (0, 1). Let u0(·), µ̃ and M be as in Theo-
rem 7.7. Above we proved d(µ̃, µ) ≤ ε(3 + M). Also∫

Σ

H(W1(u(·)))dµ̃(u(·)) = (1− ε)
∫

Σ

H(W1(u(·)))dµ̂(u(·)) + εH(W1(u0(·)))

= ε〈Cu0, u0〉 = ε|u0|2 > 0,

hence µ̃ ∈ MH . Thus MH is dense in M.
Second, let µ̂ ∈ M+

H such that∫
Σ

H(W1(u(·)))dµ̂(u(·)) = δ > 0.

Suppose µ̃ ∈ M satisfies d(µ̃, µ̂) < δ. Then we have∣∣∣∣∫
Σ

H(W1(u(·)))dµ̃(u(·))−
∫

Σ

H(W1(u(·)))dµ̂(u(·))
∣∣∣∣

≤
∫

Σ

|H(W1(u(·)))|d|µ̃− µ̂|(u(·)) ≤
∫

Σ

|u(0)|2d|µ̃− µ̂|(u(·)) < δ.

Thus
∫
Σ
H(W1(u(·)))dµ̃(u(·)) > 0 or µ̃ ∈ M+

H . Therefore M+
H is open. Similarly,

M−
H is open and hence so is MH . The proof is complete. �

We now discuss the genericity of the VF measures which are asymptotically
Beltrami (see Definition 6.7). We let

(7.11) MB = {µ̂ ∈ M : µ̂ is asymptotically Beltrami}.

Proposition 7.9. M\MB contains an open and dense subset of M. Consequently,
the property “µ̂ is not asymptotically Beltrami“ for a VF measure µ̂ is generic.

Proof. Let

NB =
{

µ̂ ∈ M :
∫

Σ

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̂(u(·)) > 0
}

.

We know from the necessary condition (6.22) that NB is a subset of M \ MB .
Similar to Theorem 7.8, one can easily prove that NB is open. It suffices to show
that NB is dense.

Suppose µ̂ ∈ M \NB . Let m̂ be in M having initial data µ0 as in Remark 6.10.
We have

∫
Σ
|R+

1 W1(u(·))| |R−
1 W1(u(·))|dm̂(u(·)) > 0. Given ε ∈ (0, 1), let µ̃ =

(1− ε)µ̂ + εm̂. Then∫
Σ

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dµ̃(u(·)) = ε

∫
Σ

|R+
1 W1(u(·))| |R−

1 W1(u(·))|dm̂(u(·))

which is positive, hence µ̃ ∈ NB . Also, it follows from Lemma 7.6 that

d(µ̃, µ̂) < ε(M + 2) where M =
∫

Σ

|u(0)|2dµ̂(u(·)) +
∫

Σ

|u(0)|2dm̂(u(·)).

Therefore NB is dense. The proof is complete. �
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8. A connection to the empirical theory of turbulence

In this section, we connect our analytic study of the statistical solutions of the
Navier–Stokes equations to the empirical theory of decaying turbulence. However,
unlike the preceding sections which are based on rigorous mathematical arguments,
our following discussion involves also heuristic inferences. Here x, L, t, ν are the
dimensional spatial variable, period, time and viscosity. To apply the results es-
tablished in the previous sections, we use the following change of scales:

x =
x′√
λ1

, t =
1

λ1ν
t′,

where λ1 = (2π/L)2 denotes the first eigenvalue of the Stokes operator. Then x′

and t′ play the roles of corresponding adimensional variables the previous sections.
Let us recall the basic features of Kolmogorov’s empirical theory of turbulence.

In that theory, the following quantities are essential:

U2 =
1
L3
〈
∫

[0,L]3
|u(x, t)|2dx〉 and ε =

ν

L3
〈
∫

[0,L]3
|∇ × u(x, t)|2dx〉,

where 〈 · 〉 denotes an “adequate” ensemble average. Note that U2 is twice of
the mean energy/mas and ε is the mean energy dissipation rate/mass. These two
quantities are connected by

U2 ∼
∫ kd

ki

S(k)dk, ε ∼ ν

∫ kd

ki

k2S(k)dk,

where S(k) is the energy spectrum and [ki, kd] is so called the “inertial range”
of the turbulent flows. Assume ki ∼ k0 =

√
λ1 = 2π/L, kd ∼ (ε/ν3)1/4 and

S(k) ∼ ε2/3k−5/3 (based on the dimensional analysis), we obtain

(8.1) U2 ∼ ε2/3

∫ kd

ki

k−5/3dk ∼ ε2/3k
−2/3
i ∼ (Lε)2/3.

In empirical theory of turbulence, both quantities U2 and ε are often considered
time-independent. However, in our study, the body force is potential hence they
decay exponentially. We propose the following seemingly suitable candidates for
these quantities based on our mathematical studies in the previous sections.

Let (µt)t≥0 be a VF statistical solution to the Navier–Stokes equations with the
VF measure µ̂ and T > 0. We define for t ≥ 0

(8.2) U2
t = λ

3/2
1

1
T

∫ t+T

t

∫
H

|u|2dµτ (u)dτ,

and

(8.3) εt = νλ
3/2
1

1
T

∫ t+T

t

∫
H

‖u‖2dµτ (u)dτ,

where we recall that |u| denotes the L2-norm on Ω = (−L/2, L/2)3 and ‖u‖ =
|∇u| = |∇×u|. For our asymptotic study, the first component of the normalization
map is defined now by

(8.4) W1(u(·)) = lim
t→∞

eνλ1tu(t),
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where the limit is taken in any Sobolev norms. We also let

α2
0 = λ

3/2
1

∫
H

|u|2dµ0(u) and α2
1 = λ

3/2
1

∫
Σ

|W1(u(·))|2dµ̂(u(·)).

For the long time dynamics of U2
t and εt, we have the following dimensional

version of the related results in Corollary 4.4.

Proposition 8.1. We have for each T > 0 that

(8.5) lim
t→∞

e2νλ1tU2
t =

1− e−2T

2T
α2

1,

(8.6) lim
t→∞

e2νλ1tεt =
1− e−2T

2T
α2

1.

If (8.1) applies to U2
t and εt then there are absolute positive constants cK and

CK such that

(8.7) cK ≤ U2
t

(L/2π)2/3ε
2/3
t

=
λ

1/3
1 U2

t

ε
2/3
t

≤ CK .

By virtue of Proposition 8.1, relation (8.7) will not hold when t is sufficiently
large and α2

1 > 0. (The case α2
1 > 0 is, in fact, generic according to our study in

Section 7.) We will estimate the time interval when (8.7) may still be valid, hence
the universal features of the turbulent flows may only be observed on that interval
of time. Furthermore, we find rigorous lower and upper bounds for the quotient
λ

1/3
1 U2

t /ε
2/3
t .

To start, we restate the inequalities in Remark 4.5 in their dimensional forms.

Lemma 8.2. We have for T > 0 and t ≥ 0 that

(8.8) e−2νλ1(t+T )α2
1 ≤ U2

t ≤ e−2νλ1tα2
0,

(8.9) νλ1U
2
t ≤ εt ≤

e−2νλ1t

2T
(α2

0 − e−2νλ1T α2
1).

Proposition 8.3. Let Q = α2
1/α2

0. We have for t ≥ 0 that

(8.10) Q

{
2νλ1Te−2νλ1T

1− e−2νλ1T Q

}2/3{
e−2νλ1tα2

0

λ1ν2

}1/3

≤ λ
1/3
1 U2

t

ε
2/3
t

≤
{

e−2νλ1tα2
0

λ1ν2

}1/3

,

or, equivalently,

(8.11)
{

2νλ1T

Q−1e2νλ1T − 1

}2/3{
e−2νλ1tα2

1

λ1ν2

}1/3

≤ λ
1/3
1 U2

t

ε
2/3
t

≤
{

e−2νλ1tα2
0

λ1ν2

}1/3

.

Proof. For the upper bound of λ
1/3
1 U2

t /ε
2/3
t , we have from Lemma 8.2

λ
1/3
1 U2

t

ε
2/3
t

≤ λ
1/3
1 U2

t

(λ1νU2
t )2/3

=
U

2/3
t

λ
1/3
1 ν2/3

≤
{
e−2νλ1tα2

0

}1/3

λ
1/3
1 ν2/3

.
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For the lower bound:

λ
1/3
1 U2

t

ε
2/3
t

≥ λ
1/3
1 e−2νλ1(t+T )Qα2

0{
e−2νλ1t

2T (α2
0 − e−2νλ1T α2

1)
}2/3

= Q

{
e−2νλ1tα2

0

λ1ν2

}1/3{2νλ1Te−2νλ1T

1− e−2νλ1T Q

}2/3

.

Hence we obtain (8.10). The estimates in (8.11) follow immediately. �

Corollary 8.4. The relation (8.1) may only be valid on the time interval [tK , TK ]
where

tK =
1

2νλ1

(
log

α2
1

λ1ν2
− 3 log CK − 2 log

Q−1e2νλ1T − 1
2νλ1T

)
,(8.12)

TK =
1

2νλ1

(
log

α2
0

λ1ν2
− 3 log cK

)
.(8.13)

Proof. For t ≥ 0 such that (8.1) holds, it follows from (8.8) that

cK ≤ λ
1/3
1 U2

t

ε
2/3
t

≤
{
e−2νλ1tα2

0

}1/3

λ
1/3
1 ν2/3

,

thus yielding t ≤ TK . Similarly, using (8.9), we have{
2νλ1T

Q−1e2νλ1T − 1

}2/3{
e−2νλ1tα2

1

λ1ν2

}1/3

≤ CK ,

hence we obtain t ≥ tK . �

Example 8.5. Let L = 2π (λ1 = 1), ν = 1 and µ̂ be the VF measure in Corol-
lary 5.4. We have (4π)−1 ≤ Q ≤ 1. It follows from Proposition 8.3 that(

1
4π

)1/3( 2T

4πe2T − 1

)2/3

(e−2tα2
0)

1/3 ≤ λ
1/3
1 U2

t

ε
2/3
t

≤ (e−2tα2
0)

1/3,

for all t ≥ 0. Also, by Corollary 8.4, we derive

TK =
1
2
{log(α2

0)− 3 log cK},

tK ≥ 1
2

{
log

α2
0

4π
− 3 log CK − 2 log

4πe2T − 1
2T

}
.

Now, if we let M > 0, θ ∈ (0, 1) and µ̂ be a VF measure satisfying (5.23) and
(5.24), then α2

0 ≥ M and θ ≤ Q ≤ 1 and tK in (8.12) can be bounded below by

tK ≥ 1
2

(
log M − 3 log CK − 2 log

θ−1e2T − 1
2T

)
.
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Appendix A

In this paper we need several well-known estimates for the non-linear term
B(u, u) in the Navier–Stokes equations (2.6). For the convenience of the reader, we
list them below. There are positive constants cj , j = 1, 2, . . . , 5, such that

(A.1) |〈B(u, v), w〉| ≤ c1 min{|u|1/2‖u‖1/2‖v‖‖w‖, ‖u‖‖v‖|w|1/2‖w‖1/2,

‖u‖‖w‖|v|1/2‖v‖1/2},

(A.2) |〈B(u, v), w〉| ≤ c2 min{|u|‖v‖1/2|Av|1/2‖w‖, ‖u‖‖v‖1/2|Av|1/2|w|,

|u|‖w‖1/2|Aw|1/2‖v‖, ‖u‖‖w‖1/2|Aw|1/2|v|, },

(A.3) |〈B(u, v), w〉| ≤ c3 min{|u||Av||w|1/2‖w‖1/2, |u||Aw||v|1/2‖v‖1/2,

|w||Av||u|1/2‖u‖1/2, |v||Aw||u|1/2‖u‖1/2},

(A.4) |〈B(u, v), w〉| ≤ c4 min{‖u‖1/2|Au|1/2‖v‖|w|, |u|‖v‖‖w‖1/2|Aw|1/2,

‖u‖1/2|Au|1/2‖w‖|v|, |u|‖w‖‖v‖1/2|Av|1/2},

(A.5) |〈B(u, v), w〉| ≤ c5 min{|u||A1/2v|1/2|A3/2v|1/2|w|,

|u||A1/2w|1/2|A3/2w|1/2|v|}.

The numbering of the constants is done in order to indicate the estimate in which
the constant cj appears. Thus

(A.6) |B(u, v)| ≤ min{c2‖u‖‖v‖1/2|Av|1/2, c4‖u‖1/2|Av|1/2‖v‖,

c5|u||Av|1/2|A3/2v|}.

Let u(·) be a Leray-Hopf solution on [0,∞) and G = G(u(·)) be defined by (2.17).
It is known that for t0 ∈ G, we have

(A.7) |u(t)| ≤ e−(t−t0)|u(t0)|, t ≥ t0.

In particular, 0 ∈ G and

(A.8) |u(t)| ≤ e−t|u(0)|, t ≥ 0.

For t′ > t ≥ 0, let t0 ∈ [t, t′) ∩ G, then by (2.18)

2
∫ t′

t0

‖u(s)‖ds ≤ |u(t0)|2 ≤ e−2t0 |u(0)|2.

Letting t0 → t, we obtain

(A.9)
∫ t′

t

‖u(s)‖2ds ≤ e−2t

2
|u(0)|2, t′ > t ≥ 0.

Lemma A.1. There is ε0 > 0 such that if ‖u0‖ ≤ ε0 then u0 ∈ R and

(A.10) ‖u(t)‖ ≤ 2e−t‖u0‖, t > 0.
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Proof. Though this is a consequence of the convergence of the asymptotic expansion
of the regular solution when the initial data is small (cf. [6]), we present below an
elementary proof to make our paper self-contained. The calculations are formal but
can be made rigorous using the Galerkin approximations.

Let C0 = min{c2, c4}. It follows from (2.6) and (A.6) that
1
2

d

dt
‖u‖2 + |Au|2 ≤ |〈B(u, u), Au〉| ≤ C0|Au|3/2‖u‖3/2 ≤ 1

2
|Au|2 + 2C4

0‖u‖6.

Let C1 = 1/(2C0
4
√

2) and ‖u0‖ < C1. By the standard small initial data argu-
ment, we have u0 ∈ R and ‖u(t)‖ ≤ e−t/2‖u0‖. Now, using interpolating inequality
‖u‖2 ≤ |u||Au|, we obtain

1
2

d

dt
‖u‖2 + |Au|2 ≤ C0|Au|3/2‖u‖3/2 ≤ C0|Au|2|u|1/2‖u‖1/2,

hence
1
2

d

dt
‖u‖2 + (1− C0|u|1/2‖u‖1/2)|Au|2 ≤ 0.

Using |u| ≤ ‖u‖ ≤ |Au| and ‖u(t)‖ ≤ ‖u0‖ ≤ C1, we derive

‖u(t)‖2 ≤ e−2
R t
0 (1−C0|u(τ)|1/2‖u(τ)‖1/2)dτ‖u0‖2 ≤ e2C0

R∞
0 ‖u(τ)‖2dτe−2t‖u0‖2

≤ e2C0
R∞
0 e−τ/2‖u0‖dτe−2t‖u0‖2 ≤ e4C0‖u0‖e−2t‖u0‖2.

Thus (A.10) holds for

(A.11) ε0 = min
{

C1,
log 2
2C0

}
> 0.

�

We give an estimate of t0 for which u(t0) ∈ R in terms of |u0| and ε0 defined in
(A.11).

Lemma A.2. Let u(·) ∈ Σ, then there is t0 ∈ [0, log+(|u(0)|/ε0) + 1) such that
u(t0) ∈ R and

(A.12) ‖u(t)‖ ≤ 2e|u(0)|e−t, t ≥ t0.

(Above log+ α = log(max{1, α}), for α ∈ R.)

Proof. Let u0 = u(0). Take t∗ = log+(|u0|/ε0). By (A.9),

(A.13) 2
∫ t∗+1

t∗

‖u(s)‖2ds ≤ e−2t∗ |u0|2.

This implies that the Lebesgue measure of {s : ‖u(s)‖2 ≤ e−2t∗ |u0|2} is greater or
equal to 1/2. Hence there is t0 ∈ (t∗, t∗ + 1) such that ‖u(t0)‖ ≤ e−t∗ |u0| ≤ ε0.
Applying Lemma A.1 to u(t0) gives

‖u(t)‖ ≤ 2e−(t−t0)‖u(t0)‖ ≤ 2e−tet∗+1e−t∗ |u0| = 2e−t+1|u0|, t ≥ t0,

thus proving (A.12). �

Concerning the perturbation problem for the Navier–Stokes equations when the
initial data u0 is in a neighborhood of a fixed u∗0 ∈ R, we have the following result
which is similar to but much simpler than that in [21]. For our purpose, we focus
on the case u∗0 belonging to the set B1 consisting of u ∈ R1H \ {0} such that
B(u, u) = 0.
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Lemma A.3. Let u∗0 ∈ B1, there is ε = ε(|u∗0|) such that if ‖v0‖ ≤ ε then u0 =
u∗0 + v0 ∈ R and

(A.14) |S(t)u0 − e−tu∗0| ≤ |v0|ec5|u∗0 |e−t, t > 0.

Proof. Let u∗(t) = S(t)u∗0 = e−tu∗0 and v(t) = S(t)u0 − u∗(t). The equation for
v(t) is

(A.15)
dv

dt
+ Av + B(v, v) + B(u∗, v) + B(v, u∗) = 0.

Using (A.6) and the fact that u∗ ∈ R1H, we have

1
2

d|v|2

dt
+ ‖v‖2 ≤ |〈B(v, u∗), v〉| ≤ c5|v|2|u∗| ≤ c5|v|2|u∗0|e−t.

Hence
|v(t)|2 ≤ |v0|2e−2te2c5|u∗0 |

R t
0 e−τ dτ ≤ |v0|2e2c5|u∗0 |e−2t,

thus yielding (A.14). We also have

1
2

d‖v‖2

dt
+ |Av|2 ≤ C0|Av|3/2‖v‖3/2 + c4|Av|‖v‖|u∗|+ c5|Av||v||u∗|

≤ C0|Av|3/2‖v‖3/2 + c4|Av|3/2|v|1/2|u∗|+ c5|Av||v||u∗|

≤ 1
2
|Av|2 + C2‖v‖6 + C3|v|2|u∗|2(1 + |u∗|2)

≤ 1
2
|Av|2 + C2‖v‖6 + C3|v0|2e2c5|u∗0 ||u∗0|2(1 + |u∗0|2)e−2t,

where C2, C3 > 0. Take ε > 0 satisfying

(A.16) C2ε
4 + C3ε

2e2c5|u∗0 ||u∗0|2(1 + |u∗0|2) <
1
4
.

The argument becomes standard now and we omit the details. �
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