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Abstract

Sparse signal models have been the focus of much recent

research, leading to (or improving upon) state-of-the-art re-

sults in signal, image, and video restoration. This article ex-

tends this line of research into a novel framework for local

image discrimination tasks, proposing an energy formula-

tion with both sparse reconstruction and class discrimina-

tion components, jointly optimized during dictionary learn-

ing. This approach improves over the state of the art in tex-

ture segmentation experiments using the Brodatz database,

and it paves the way for a novel scene analysis and recogni-

tion framework based on simultaneously learning discrimi-

native and reconstructive dictionaries. Preliminary results

in this direction using examples from the Pascal VOC06 and

Graz02 datasets are presented as well.

1. Introduction

Sparse representations have recently drawn much inter-

est in signal, image, and video processing. Under the as-

sumption that natural images admit a sparse decomposition

in some redundant basis (or so-called dictionary), several

such models have been proposed, e.g., curvelets, wedgelets,

bandlets and various sorts of wavelets [21]. Recent pub-

lications have shown that learning non-parametric dictio-

naries for image representation instead of using off-the-

shelf ones, can significantly improve image restoration, e.g.,

[6, 30, 31, 38].

Consider a signal x in R
n. We say that x admits a sparse

approximation over a dictionary D in R
n×k, composed of

k elements (atoms), when we can find a linear combina-
tion of a “few” atoms from D that is “close” to the origi-

nal signal x. A number of practical algorithms have been

developed for learning such dictionaries like the K-SVD al-

gorithm [2] and the method of optimal directions (MOD)

[7]. This approach has led to several restoration algorithms,

which equal or exceed the state of the art in tasks such as

image and video denoising, inpainting, demosaicing [6, 19],

and texture synthesis [27]. Alternative models that learn im-
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age representations can be found in [10, 12].

The computer vision community has also been interested

in extracting sparse information from images for recogni-

tion, e.g., by designing local texture models [15, 37], which

have proven to be discriminative enough to be used in image

segmentation [18, 33]. Introducing learning into the feature

extraction task has been part of the motivation for some re-

cent works: e.g., in [29], image features are learned using

convolutional neural networks; while in [13, 39], discrimi-

native strategies for learning visual codebooks for nearest-

neighbor search are presented.

Sparse decompositions have also been used for face

recognition [40, 41], signal classification [8, 9] and texture

classification [14, 27, 34]. Interestingly, while discrimi-

nation is the main goal of these papers, the optimization

(dictionary design) is purely generative, based on a criteria

which does not explicitly include the actual discrimination

task, which is one of the key contributions of our work.

The framework introduced in this paper addresses the

learning of multiple dictionaries which are simultaneously

reconstructive and discriminative, and the use of the recon-

struction errors of these dictionaries on image patches to de-

rive a pixelwise classification. The novelty of the proposed

approach is twofold: First, redundant non-parametric dic-

tionaries are learned, in contrast with the more common use

of predefined features and dictionaries [9, 40, 41]. Second,

the sparse local representations are learned with an explicit

discriminative goal, making the proposed model very dif-

ferent from traditional reconstructive ones [8, 27, 34]. We

illustrate the benefits of this approach in a texture segmen-

tation task on the Brodatz dataset [28] for which it signif-

icantly improves over the state of the art [16, 17, 34], and

also present preliminary results showing that it can be used

to learn discriminative key patches from the Pascal VOC06

[26] database, and perform the weakly supervised form of

feature selection advocated in [25, 36] on images from the

Graz02 dataset [24].

Section 2 presents the classical framework for learning

dictionaries for the sparse representation of overlapping im-

age patches. The discriminative framework is introduced in

Section 3, along with the corresponding optimization pro-

cedure. Section 4 is devoted to experimental results and

applications, and Section 5 concludes this paper.
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2. Dictionary learning for reconstruction

2.1. Learning reconstructive dictionaries

We now briefly describe for completeness the K-SVD [2]

and MOD [7] algorithms for learning dictionaries for natu-

ral images. Since images are usually large, these techniques

are designed to work with overlapping patches instead of

whole images (one patch centered at every pixel). We de-

note by n the number of pixels per patch, and write patches
as vectors x in R

n. Learning an over-complete dictionary

with a fixed number k of atoms, that is adapted toM patches
of size n from natural images, and with a sparsity constraint
(each patch has less than L atoms in its decomposition), is
addressed by solving the following minimization problem:

min
α,D

M
∑

l=1

||xl −Dαl||
2
2 s.t. ||αl||0 ≤ L. (1)

In this equation, xl is an image patch written as a column

vector. D in R
n×k is a dictionary to be learned, each of

its atoms (columns) is a unit vector in the ℓ2 norm. The
problem is to find the optimal dictionary that leads to the

lowest reconstruction error given a fixed sparsity factor L.
The vector αl in R

k is the sparse representation for the l-th
patch using the dictionary D. ||x||0 denotes the “ℓ0-norm”
of the vector x, which is not a formal norm, but a measure

of sparsity counting the number of non-zero elements in a

vector. Then one can introduce

α⋆(x,D) ≡ arg min
α∈Rk

||x−Dα||22, s.t. ||α||0 ≤ L,

R(x,D,α) ≡ ||x−Dα||22,
R⋆(x,D) ≡ ||x−Dα⋆(x,D)||22.

(2)
R⋆(x,D) represents the best representation error of x on
D with a sparsity factor L (number of coefficients in the
representation), in terms of ℓ2-norm. It will be used later in
this paper as a discriminative function.

Both K-SVD and MOD are iterative approaches de-

signed to minimize the energy (1). First, a dictionary D

in R
n×k is initialized, e.g., from random patches of natural

images. Then the main loop is composed of two stages:

• Sparse coding: During this step, D is fixed and one ad-
dresses the NP-hard problem of finding the best decompo-

sition of each patch l:

αl = α⋆(xl,D). (3)

A greedy orthogonal matching pursuit [22] is used, which

has been shown to be very efficient [35], although being

theoretically suboptimal.1

• Dictionary update: Here is the only difference between
K-SVD and MOD. In the case of MOD, the decompositions

αl are fixed and a least-squares problem is solved updating

all the atoms simultaneously:

1Other strategies can be employed like convexification via the replace-

ment of the ℓ0-norm by the ℓ1-norm (basis pursuit approach [5]).

Input: D ∈ R
n×k (dictionary from the previous iter-

ation); M vectors xl ∈ R
n (input data); α ∈ R

k×M

(coefficients from the previous iteration).

Output: D and α.

Loop: For j = 1 . . . k, update d, j-th column ofD,
• Select the set of patches that use d:

ω ← {l ∈ 1, . . . ,M s.t. αl[j] 6= 0}. (5)

• For each patch l ∈ ω, compute the residual of the de-
composition of xl: rl = xl −Dαl.

• Compute a new atom d
′ ∈ R

n and the associated coef-

ficients β ∈ R
|ω| that minimize the residual error on the

selected set ω, using a truncated SVD:

min
||d′||2=1,β∈R|ω|

∑

l∈ω

||rl + αl[j]d− βld
′||22. (6)

• Update D using the new atom d
′, and replace the

scalars αl[j] 6= 0 from Eq. (5) in α using β.

Figure 1. K-SVD step for updatingD and α.

min
D∈Rn×k

M
∑

l=1

R(xl,D,αl). (4)

In the case of K-SVD, the values of the non-zero coeffi-

cients in the αl are not fixed, and are updated at the same

time as the dictionary D. Finding which are the L non-
zero coefficients in a patch decomposition, or in other words

which are the atoms that take part, is a difficult problem that

is addressed during the sparse coding step. On the other

hand, setting the values of these non-zero coefficients, once

they are selected, is an easy task, which is addressed at

the same time as the update of D. To do so, and as de-

tailed in Figure 1, each atom (column) of the dictionary

and the coefficients associated with it (the non-zero coef-

ficients in α) are updated sequentially[2]. In practice, it has

been observed that K-SVD converges with less iterations

than MOD [6], motivating the selection of K-SVD for our

proposed framework, (though MOD could be used instead).

Typically 10 or 20 iterations are enough for K-SVD, with
M = 100 000 patches of size n = 64 (8× 8) and k = 256
atoms.

2.2. A reconstructive approach to discrimination

Assume that we have N sets Si of training patches,

i = 1 . . . N , belonging to N different classes. The simplest
strategy for using dictionaries for discrimination consists of

first learning N dictionaries Di, i = 1 . . . N , one for each
class. Approximating each patch using a constant sparsityL
and the N different dictionaries provides N different resid-
ual errors, which can then be used as classification features.

This is essentially the strategy employed in [27, 34]. Thus,

the first naive way of estimating the class i0 for some patch



x is to write (as in [41], but with learned dictionaries):

ı̂0 = arg min
i=1...N

R⋆(x,Di). (7)

Instead of this reconstruction-based approach, we show that

better results can be achieved, in general, by learning dis-

criminative sparse representations, while keeping the same

robustness against noise or occlusions (see also [9]), which

discriminative methods may be sensitive to [40].2

3. Learning discriminative dictionaries

3.1. Discriminative model

The main goal of our paper is to propose a model that

learns discriminative dictionaries and not only reconstruc-

tive ones. We still want to use the residual errorR⋆(x,Di)
as a discriminant, which has already been shown to be rela-

tively efficient in classification [27, 34, 40, 41], but we want

also to increase the discriminative power ofR⋆(x,Di), us-
ing the idea that a dictionary Di associated to a class Si

should be “good” at reconstructing this class, and at the

same time “bad” for the other classes. To this effect, we

introduce a discriminative term in Eq. (1), using classical

softmax discriminative cost functions, for i = 1 . . . N ,

Cλ
i (y1, y2, ..., yN ) ≡ log

(

N
∑

j=1

e−λ(yj−yi)
)

, (8)

which is close to zero when yi is the smallest value among

the yj , and provides an asymptotic linear penalty cost

λ(yi − minj yj) otherwise. These are the multiclass ver-
sions of the logistic function presented on Figure 2, which

is differentiable and enjoys properties similar to the hinge

loss function from the support vector machine (SVM) liter-

ature. Increasing the value of the new parameter λ > 0
provides a higher relative penalty cost for each misclas-

sified patch, at the same time making the cost function

less smooth, in terms of maxima of its second derivatives.

Denoting {Dj}
N
j=1 the set of these N dictionaries and

{R⋆(x,Dj)}
N
j=1 the set of the N different reconstruction

errors provided by the N dictionaries, we want to solve

min
{Dj}N

j=1

∑

i=1...N
l∈Si

Cλ
i

(

{R⋆(xl,Dj)}
N
j=1

)

+λγR⋆(xl,Di), (9)

where the parameter γ ≥ 0 controls the trade-off between
reconstruction and discrimination. With a high value for

γ, our model is close to the classical reconstructive one,
loosing discriminative power. Note that an optional normal-

ization factor 1/|Si| in front of each term can be added to

2Note also that due to the over-completeness of the dictionaries, and

possible correlations between the classes, sparse representations of mem-

bers of one class with dictionaries from a different class can still be very

efficient and produce small values for the residual errorR⋆.

Figure 2. The logistic function (red, continuous), its first derivative

(blue, dashed), and its second derivative (black, dotted).

ensure the same weight to each class. Solving this prob-

lem will explicitly tend to make each dictionary Di not

only good for its own class Si, but also better for Si than

any of the other dictionaries Dj , j 6= i, that are being si-
multaneously learned for the other classes. At first sight,

it might seem that this new optimization problem suffers

from several difficulties. Not only is it non-convex and non-

differentiable because of the ℓ0-norm in the function R
⋆,

but it also seems to lose the simplicity of possible least-

squares-based (Eq. [4]) or SVD-based (Eq. [6]) dictionary

updates. We actually present next a MOD/K-SVD type of

iterative scheme to address this problem, which includes the

automatic tuning of the parameters λ and γ.

3.2. Optimization procedure

We want to apply an iterative scheme similar to those ef-

fectively used for the purely reconstructive dictionary learn-

ing techniques. First, one initializes the dictionaries Di in

R
n×k, for i = 1 . . . N , using a few iterations of K-SVD on
each class separately (reconstructive approach). Then the

main loop at iteration k is composed of:
• Sparse coding: This step remains the same. The dictio-
naries Di are fixed, and one computes the decompositions

αli = α⋆(xl,Di), for each patch l and dictionary i. Note
that while this step was directly involved in the minimiza-

tion of Eq. (1) in the reconstructive approach, its purpose

here is not to minimize Eq. (9), but to compute the α⋆ and

R⋆ that are necessary in the following step.3

• Dictionary update: This step is the one that will make
the dictionaries more discriminative. Following the same

ideas as in K-SVD, we want to compute new dictionaries

Di. This is done by updating each single atom (column) of

each dictionary sequentially, while letting the correspond-

ing α coefficients, associated with an atom during the pre-

vious sparse coding, to change as well. This update step

raises several questions, which are discussed below. The

full procedure is given in Figure 3 at the end of this section.

Choice of the parameters λ and γ. These parameters are
critical to ensure the stability and the efficiency of our pro-

3The possible use of a discriminative component, on top of the tradi-

tional reconstructive one, inside the sparse coding stage itself is the subject

of ongoing parallel efforts.



posed scheme. To automatically choose the value of λ that
gives the best result in term of classification performance,

we have opted to use a varying λ and to replace it by an
ascending series. At iteration p, the dictionary update step
should now use the value λp. Starting from a low value

for λ, it is possible to check every few iterations whether
increasing this value provides a better classification rate.

Experimentally, this simple idea has proven to always give

faster convergence and significantly better results than us-

ing a fixed parameter.

When γ = 0, one addresses a pure discriminative task,
which can be difficult to stabilize in our scheme. Indeed,

one difference between our framework and K-SVD is that

the sparse coding and dictionary update steps do not attempt

to minimize exactly the same thing. While the first one ad-

dresses the reconstructive problem of Eq. (2), the second

one addresses the (mostly) discriminative learning task of

Eq. (9). To cope with this potential source of instability,

adding some weight (through a bigger γ) to the reconstruc-
tive term will draw the minimization problem toward the

reconstructive (and stable) one from Eq. (1). Therefore,

one has to choose γ large enough to ensure the stability of
the scheme, but as small as possible to enforce the discrim-

inative power.4 Practically, using a varying γ by building
a descending series starting with a high value and updating

the same way as for λ, gives stability to the algorithm. To
simplify the notation, we will omit these variations of λ and
γ in the following.

Updating the dictionary in a MOD-like fashion. Let us

first consider how to solve the dictionary update step like in

the MOD algorithm, with varying λ and varying reconstruc-
tion term γ as detailed above. This minimization problem
can be written as

min
{Dj}j

∑

i=1...N
l∈Si

Cλ
i

(

{R(xl,Dj ,αlj)}
N
j=1

)

+ γλR(xl,Di,αli),

(10)
with the αli being fixed and computed during the previous

sparse coding step. The proposed MOD-like approach con-

sists of updating sequentially each dictionary using a trun-

cated Newton iteration: Let us denote by C(D) the cost
function optimized with respect to a dictionary D in Eq.

(10). Performing one Newton iteration to solve∇C(D) = 0
is equivalent to minimizing a second-order Taylor approxi-

mation of C (see [3], p. 484). When computing the Hessian
of C, we have chosen to do a local linear approximation5 of
the softmax functions Ci by neglecting their second deriva-
tives, keeping only the second-order terms that come from

R. This use of an approximated Hessian in a Newton iter-

4Interestingly, we have observed that this strategy has consequences

that are similar to the ideas that bring robustness to the Levenberg-

Marquardt algorithm [23], as noticed later in this paper.
5This kind of approximation is classical in optimization and derives

from the same ideas that motivate the use of Gauss-Newton methods for

nonlinear least-squares.

ation is indeed an instance of a truncated Newton iteration,

which can be performed very efficiently in our case.

As already noticed, the softmax functions Cλ
i are mainly

composed of quasi-linear parts, making the local linear ap-

proximation suitable for most of the patches. This is illus-

trated in Figure 2 for the logistic function (softmax function

with only 2 classes). When patches are correctly classi-

fied, their cost is rapidly close to 0 (right part of the figure).
When they are “misclassified enough,” they lie on a noncon-

stant linear part of the cost function (left part of the figure).

It can be shown that performing our truncated Newton it-

eration to update the p-th dictionary is equivalent to solve

min
D′∈Rn×k

N
∑

i=1

∑

l∈Si

wlR(xl,D
′,αlp) where (11)

wl ≡
∂Cλ

i

∂yp

(

{R⋆(xl,Dj)}
N
j=1

)

+ λγ1p(i), (12)

the variables yp are defined in Eq. (8), and 1p(i) is equal
to 1 if i = p and 0 otherwise. This formally resembles
a weighted least squares problem, but it is different since

some of the weights may be negative. It admits a unique so-

lution if and only if the Hessian matrix A =
∑

l wlαlpα
T
lp

is positive definite. The reconstructive term (γ > 0) plays
an important role here. By adding weight exclusively to

the diagonal of the matrix A, we have experimentally ob-

served that A is almost always positive definite, which is a

key concept behind the classical Levenberg-Marquardt al-

gorithm for nonlinear least-squares [23].

From MOD to K-SVD. Now that we have shown how to

use a MOD-like dictionary update (no change on α during

this step), we present the main ideas behind the use of a

K-SVD-like update. Recall that this sequentially improves

each atom of each dictionary, while allowing for the coeffi-

cients α to change (improve) at the same time. Experimen-

tally, we have observed that this approach converges faster

and gives better results than theMOD-like update in our dis-

criminative framework. The main idea we use is the local

linear approximation of the softmax function, which pro-

vides us with a much easier function to minimize. The de-

tailed algorithm is presented in Figure 3. The first two steps

are identical to the K-SVD for reconstruction (Figure 1);

These address the selection of the patches that use the atom

being updated. The other steps come from the following

modification of Eq. (11) from the MOD-like dictionary up-

date. Updating d, j-th atom of the dictionary i, while allow-
ing its corresponding coefficients to change, can be written

as Eq. (15), which is a simple eigenvalue problem, where

d
′ is the eigenvector associated to the largest eigenvalue of

B =

N
∑

p=1

∑

l∈Sp∩ω

wl(rl + αli[j]d)(rl + αli[j]d)T . (13)



This way, for each atom sequentially, we address the prob-

lem of Eq. (9), under the only assumption that the softmax

functions can be locally linearly approximated.

Input: N dictionaries Di ∈ R
n×k; M vectors xl ∈ R

n

(input data); Si (classification of the input data); α ∈
R

k×MN (coefficients from the previous iteration).

Output: D and α.

Loop: For i = 1 . . . N , for j = 1 . . . k, update d, the j-th
column ofDi:

• Select the set of patches that uses d:

ω ← {l ∈ 1 . . . M |αli[j] 6= 0}. (14)

• For each patch l in ω, compute the residual of the de-
composition of xl: rl = xl −Diαli.

• Compute the same weights wl as in Equation (12), for

all p = 1 . . . N , for all l in Sp ∩ ω.
• Compute a new atom d

′ ∈ R
n and the associated coef-

ficients β ∈ R
|ω| that minimize the residual error on the

selected set ω, using Eq. (13)

min
||d′||2=1

β∈R
|ω|

∑

p=1...N
l∈Sp∩ω

wl||rl + αli[j]d− βld
′||22. (15)

• Update Di and α using the new atom d
′, and replace

the scalars αli[j] 6= 0 from Eq. (14) in α using β.

Figure 3. Dictionary update step for the proposed discriminative

K-SVD, provided the parameters λ and γ.

3.3. Data issues

Before presenting experiments, we discuss here some

data related issues. Depending on the particular application

of the proposed framework, different prefiltering operations

can be applied to the input data. We mention first the pos-

sibility to apply a Gaussian mask to the input patches (by

multiplying element-wise the patches by the mask), in or-

der to give more weight to the center of the patches, since

the framework is designed for local discrimination. We

mention also the possibility to pre-process the data using

a Laplacian filter, which has proven to give more discrimi-

natory power. Since a Laplacian filter can be represented by

a difference of Gaussians, this step is consistent with previ-

ous works on local descriptors. Both proposed pre-filtering

can be simultaneously used depending on the chosen appli-

cation.

The presented framework is flexible in the sense that it

is very easy to take into account different types of vecto-

rial information. For instance, using color patches for the

K-SVD has been addressed in [19] by concatenating R,G,B

information from a patch into single vectors. This can be di-

rectly applied here. One could also opt to only include the

mean color of a patch, if we consider that the geometrical

structure is more meaningful for discrimination. It is there-

fore possible to work with vectors representing grayscale

patches and just 3 average R,G,B values. This permits to
take into account the color information without multiplying

by 3 the dimensionality of the patches. Depending on the
data, other types of information could be added this way.

4. Experimental results and applications

4.1. Texture segmentation of the Brodatz dataset

Texture segmentation and classification is a natural ap-

plication of our framework, since it can be formulated as a

local feature extraction and patch classification process. We

have chosen to evaluate our method on the Brodatz dataset,

introduced in [28], which provides a set of “patchwork”

images composed of textures from different classes, and a

training sample for each class. The suite of the 12 images is
presented in [17].

In our experiments, following the same methodology as

[34], each of the patches of the training images were used

as a training set. We use patches of size n = 144 (12× 12),
dictionaries of size k = 128 and a sparsity factor L = 4.
A Gaussian mask of standard deviation 4 (element-wise
multiplication) and a Laplacian filter were applied on each

patch as a prefiltering. Then 30 iterations of our discrimi-
native framework are performed. After this training stage,

each one of the 12 × 12 patches from the test images are
classified using the learned dictionaries (by comparing the

corresponding representation errorR⋆ for each dictionary).

Smoothing follows to obtain the segmentation. We present

two alternatives, either using a simple Gaussian filtering

with a standard deviation of 12, or applying a graph-cut
alpha-expansion algorithm, [4, 11], based on a classical

Potts model with an 8-neighborhood system. The cost asso-
ciated to a patch x and a class Si is 0 if x has been classified
as part of Si, and 1 otherwise. A constant regularization
cost between two adjacent patches of 1.75 has proven to be
appropriate. Table 1 reports the results.

From these experiments, we observe that our method sig-

nificantly outperforms those reported in [16, 17, 28, 34],

regardless of the selected regularization method, and per-

forms best for all but two of the images. Moreover, while

the purely reconstructive framework already provides good

results, we observe that the discriminative one noticeably

improves the classification rate except for examples 5 and

12. In these two particular cases, it has proven to be an

artefact from the image smoothing. The classification rate

before and after smoothing are indeed not fully correlated.

Smoothing will better remove isolated misclassified patches

and sometimes the misclassified patches from the recon-

structive approach are more isolated than with the discrimi-

native one. Note that our model under-performs at image 2,
where the size of the patches we had chosen has proven to

be particularly not adapted, which is a motivation for devel-

oping a multiscale framework. Some qualitative results are

presented in Figure 4.



♯ [28] [17] [34] [16] R1 R2 D1 D2

1 7.2 6.7 5.5 3.37 2.22 1.69 1.89 1.61

2 18.9 14.3 7.3 16.05 24.66 36.5 16.38 16.42

3 20.6 10.2 13.2 13.03 10.20 5.49 9.11 4.15

4 16.8 9.1 5.6 6.62 6.66 4.60 3.79 3.67

5 17.2 8.0 10.5 8.15 5.26 4.32 5.10 4.58

6 34.7 15.3 17.1 18.66 16.88 15.50 12.91 9.04

7 41.7 20.7 17.2 21.67 19.32 21.89 11.44 8.80

8 32.3 18.1 18.9 21.96 13.27 11.80 14.77 2.24

9 27.8 21.4 21.4 9.61 18.85 21.88 10.12 2.04

10 0.7 0.4 NA 0.36 0.35 0.17 0.20 0.17

11 0.2 0.8 NA 1.33 0.58 0.73 0.41 0.60

12 2.5 5.3 NA 1.14 1.36 0.37 1.97 0.78

Av. 18.4 10.9 NA 10.16 9.97 10.41 7.34 4.50

Table 1. Error rates for the segmentation/classification task for

the Brodatz dataset. The proposed framework is compared with

a number of reported state-of-the-art results [16, 17, 34] and the

best results reported in [28]. R1 and R2 denote the reconstructive

approach, while D1 and D2 stand for the discriminative one. A

Gaussian regularization has been used for R1 and D1, a graph-

cut-based one for R2 and D2. The best results for each image are

in bold.

Figure 4. Subset of the Brodatz dataset with various number of

classes: From top to bottom, images 4, 7, 9 and 12. The ground-

truth segmentation is displayed in the middle and the resulting seg-

mentation on the right side with a graph-cut regularization. Note

that the segmentation is in general very precise but fails at sepa-

rating two classes on image 7.

4.2. Learning discriminant images patches

To assess the promise of our local appearance model, we

verify its ability to learn discriminative patches for object

categories from a very general database with a high variabil-

ity. To that effect, we have chosen some classes from the

Pascal VOC06 database [26] and conducted the following

qualitative experiment: Given one object class A (e.g., bi-
cycle, sheep, car, cow), we build two sets of patches S1 and

S2. The first one is composed of 200 000 12 × 12 patches,

extracted from bounding boxes that contain one object of

class A. The second one was composed of 200 000 12× 12
background patches from an image that contains one object

of class A. This way, classification at the patch level is dif-
ficult since the overlap between S1 and S2 is important: (i)

many small patches from an object look like some patches

from the background and vice-versa; (ii) some patches from

an object’s bounding boxes do not necessarily fully overlap

with the object.

Analyzing globally the patches as a whole, or using a

multiscale framework like in [1, 36], to capture global ap-

pearance of objects, are among the possibilities that could

make this problem more tractable, but these are beyond the

scope of this paper. Instead, we want to show here that

our purely local model can deal with this overlap between

classes and learn the local parts of objects from class A
that are discriminative, when observed at the patch level.

The experiment we did consists of learning two discrimina-

tive dictionaries, D1 for S1 and D2 for S2, with k = 128,
L = 4 and 15 iterations of our algorithm, and then to pursue
the discriminative learning during 15 additional iterations,
but at each new iteration, pruning the set S1 by keeping

the 90% “best classified patches.” This way, one hopes to
remove the overlap between S1 and S2 and to enforce the

learning on the key-patches of the objects. Examples with

various classes of the Pascal dataset are presented in Fig-

ure 5. All the images we used in our test procedure are

from the official validation set and are not used during the

training. The test images are rescaled so that the maximum

between the height and the width of the image is less than

256 pixels. The same prefiltering as for the texture seg-
mentation is applied and the average color of each patch is

taken into account. The learned key-patches focus on parts

of the object that stand as locally discriminative compared

to the background. These eventually could be used as inputs

to other algorithms of the “bags-of-words” type. Figure 6

shows examples of the learned dictionaries obtained with

the discriminative and the reconstructive approaches.

4.3. Weakly­supervised feature selection

Using the same methodology as in [25, 36], we evalu-

ate quantitatively our pixelwise classification on the “bike”

category from the Graz02 dataset [24], in a weakly super-

vised fashion (without using any ground truth information

or bounding box during the training), with the same pa-

rameters, pre-processing and algorithm as in the previous

subsection (which prunes iteratively the training set after it-

eration 15), except that we use a patch size of n = 15× 15
and process the images at half resolution to capture more

context around each pixel. We use the first 300 images of
the classes “bike” and “background” and use odd images

for training, keeping the even images for testing. To pro-

duce a confidence value per pixel we have chosen to mea-

sure the reconstruction errors of the tested patches with dif-

ferent sparsity factors L = 1, . . . , 15 and use these values



Figure 5. Learning of key-patches from the Pascal VOC06 dataset.

Column 1 presents the test image. Columns 2,3,4 present the raw

pixelwise classification results obtained respectively at iterations

20,25 and 30 of the procedure, during the pruning of the dataset.

Interestingly, the vertical and horizontal edges of the bicycles are

not considered as locally discriminative in an urban environment.

as feature vectors in a logistic linear classifier. A Gaussian

regularization similar to that used in our texture segmen-

tation experiments is applied and has proven to improve

noticeably the classification performance. Corresponding

precision-recall curves are presented on Figure 7 and com-

pared with [25, 36]. As one can see, our algorithm produces

the best results. Nevertheless, a more exhaustive study with

different classes and datasets with a more precise ground

truth would be needed to draw general conclusions about

the relative performance of these three methods.

5. Conclusion and future directions

We have introduced a novel framework for using learned

sparse image representations in local classification tasks.

(a) Reconstructive, bicycle (b) Reconstructive, background

(c) Discriminative, bicycle (d) Discriminative, background

Figure 6. Parts of the dictionaries, learned on the class ‘bicycle’

from the Pascal VOC06 dataset. The left part has been learned on

bounding boxes containing a bicycle, the right part on background

regions. The resulting dictionaries from the two approaches, re-

constructive and discriminative, are presented. Visually, the dic-

tionaries produced by the discriminative approach are less similar

to each other than with the reconstructive one.
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Figure 7. Precision-recall curve obtained by our framework for the

bikes, without pruning of the training dataset (green, continuous),

and after 5 pruning iterations (red, continuous), compared with

the one from [25] (blue, dashed) and [36] (black, dotted).

Using a local sparsity prior on images, our algorithm learns

the local appearance of object categories in a discrimina-

tive framework. This is achieved via an efficient optimiza-

tion of an energy function, leading to the learning of over-

complete and non-parametric dictionaries that are explic-

itly optimized to be both representative and discriminative.

We have shown that the proposed approach leads to state-

of-the-art segmentation results on the Brodatz dataset, with

significant improvements over previously published meth-

ods for most examples. Applied to more general image

datasets, mainly of natural images, it permits to learn some

key-patches of objects and to perform local discrimina-

tion/segmentation.

We are also currently pursuing a discriminative multi-

scale analysis. This could be embedded into a graph-cut-

based segmentation framework, which should take into ac-

count both the local classification and the more global im-

age characteristics, as in [32]. In general, we would like to

build a model that enjoys both global and local image anal-



ysis capabilities, using for example the coefficients of the

decompositions and/or the reconstruction error as local dis-

criminants, combined with more global learned geometric

constraints between the patches, as currently being investi-

gated in the scene analysis community.
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