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ABSTRACT
This paper aims to look at the variation of network structure within a metropolitan area and relate
it to observed travel, measured here as the average travel time to work. The Minor Civil Divisions
(MCD) within the Twin Cities (Minneapolis, St. Paul) metropolitan area are chosen for this analy-
sis. Quantitative measures, compiled from various sources, are used to capture the various aspects
of network structure within each MCD. The variation of these measures within the metropolitan
area is analyzed using spatial analyses. The measures of network structure are then related to ob-
served travel using statistical regression models. The results confirm a relation between network
structure and travel and point to the importance of understanding the underlying street network
structure.
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INTRODUCTION
There are many complex networks that exist in the world, some manmade and some natural. Ex-
amples of complex networks include the world wide web, oil pipelines, power grids, optical fibers,
transport, etc. The interest in studying these networks extends across various disciplines, from
neurobiology to engineering. The anatomy or structure of networks critically influences network
function. For example,understanding the topology of a power grid network provides information
on its robustness and stability while the topology of a social network influences the spread of
information (1).

A complex network at a minimum consists of a set of nodes or vertices; these are joined
together by a set of links or edges. While the basic elements of nodes and links are common among
complex networks, there are fundamental differences that exist between them. In some networks
the precise position of a node or vertex does not have a specific location or meaning. Examples of
such networks include biochemical networks or citation network where the nodes exist only in an
abstract ‘network space’. On the other hand, the nodes in networks such as the world wide web
have a well-defined position or location. Similarly looking at edges, the edges in certain network
(street networks) have a physical presence while the edges in an aviation networks do not. Such
fundamental differences between these networks point to the need for a better understanding of the
underlying topology or structure (2).

The structure of transportation networks was of specific interest to geographers due to its
influence on economic development. In Kansky’s (3) seminal work on this topic, graph theory
based measures of network structure were developed to characterize the underlying structure of
transportation (railways and roadways) networks and relate it to regional economic characteristics.
The research interest in understanding network structure peaked in the 1960s (4, 5, 6). The interest
tapered off in the mid-1970s shifting towards the development and application of travel demand
models (7).

Recent advances in spatial analysis and modeling techniques combined with significant
improvements in computing power have resulted in a revival of interest in understanding complex
networks (1, 2). This current focus on complex networks is more on understanding the spatial or
geographical aspects rather than just characterizing the topological properties of the network. The
traditional focus on topology ignores the pivotal role of geography or space (8). For example, the
nodal degree (number of edges connected to a node) is limited by the available physical space,
specifically on planar networks like urban street networks. This in turn influences the structural
properties of the network. Similarly the connections in a spatial network are a function of euclidean
distance. A complete understanding of networks thus needs to includes spatial aspects such as
location, distance and geography (9).

Transportation networks that connect points in geographic space easily lend themselves
to spatial analysis and the interest in understanding their structural attributes hence appeals to re-
searchers from various backgrounds. For example, physicists have now started looking at the geog-
raphy and spatial aspects of transportation networks to understand and reproduce their qualitative
features (2). Researchers have also used transportation networks to understand the connection pat-
terns in real-word networks, the evolution trends in complex networks and the transferability of
small-world concepts to real-world networks (10, 11, 12).

Understanding the spatial and structural patterns of street network has numerous applica-
tions in urban planning, transportation, geovisualization and location based services (LBS) (13).
The importance of understanding street network structure in the disciplines of architecture, road
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construction and urban management have been highlighted as well (14).
In the travel behavioral field, current efforts have focused on relating network structure to

transportation system performance (15, 16, 17). This paper is an extension of this research interest
in network structure and travel. The variation of network structure across metropolitan areas and
its influence on transportation system performance was confirmed by recent research (18). This
paper looks at the variation of network structure within a metropolitan area. This variation in
network structure is then related to observed travel using spatial and econometric analyses. The
average travel time to work is used as a measure of observed travel. This paper is organized as
follows: the next section provides a detailed explanation of the modeling methodology, namely
the data, model formulation and the estimation of measures of network structure. The spatial and
regression analyses are presented in the following sections. The paper concludes with a discussion
of the results and its implications.

MODELING METHODOLOGY
Data
Minor Civil Divisons
The data for this analysis come from the Minor Civil Divisions (MCD) within the Twin Cities (Min-
neapolis, St. Paul) metropolitan area. MCDs are defined as primary divisions of a county. MCDs
consists of both governmentally functioning entities, that provide services and raise revenues, and
nonfunctioning entities, that exist primarily for administrative purposes. The U.S Census Bureau
recognizes MCDs in twenty eight states and Puerto Rico (19).

The MCD dataset was downloaded from the MetroGIS database in GIS shape file format
(20). The downloaded MCD dataset represents municipal boundaries and includes cities, town-
ships and unorganized territories within the Twin Cities (Minneapolis, St. Paul) metropolitan area.
The Twin Cities (Minneapolis, St. Paul) metropolitan area refers to the seven counties of Anoka,
Carver, Dakota, Hennepin, Ramsey, Scott and Washington and includes the cities of Minneapolis
and Saint Paul. There are 189 MCDs within the Twin Cities (Minneapolis, St. Paul) metropolitan
area.

The area of the MCD (km2) was estimated using ArcGIS for each MCD in the dataset.
This is used as a control variable in the regression models estimated later in this paper.

Street Networks
The street network for this analysis was extracted from the U.S Census TIGER/Line files. The
TIGER/line files are spatial extracts from the U.S Census Bureau’s Master Address File (MAF)/
Topologically Integrated Geographic Encoding and Referencing (TIGER) database (MAF/TIGER).
This database consists of select cartographic and geographic information and provides information
on various features such as roads, railroads, rivers, as wells as legal and statistical geographic areas
(21). The extracted Twin Cities (Minneapolis, St. Paul) network was cleaned to include just the
road features based on the Feature Class Codes (FCC) for the line segments provided in the Census
TIGER/Line files.

For the purposes of this current analysis, the extracted Twin Cities (Minneapolis, St. Paul)
street network was overlaid on the MCD shape file to extract the street network for each MCD.
These extracted street networks within each MCD were cleaned to ensure that the network con-
tained only the relevant links and intersection or junction nodes. These networks were then used to
estimate measures of network structure within each MCD, which are elaborated in a later section
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of this paper.

Census Data
The downloaded MCD dataset was supplemented with the year 2010 travel and socio-demographic
data from the U.S. Census Bureau (22). The variables of interest for each MCD in the Census data
include the average travel time to work and the median household income.

Control Variables
Additional data used in this paper include multimodal accessibility estimates for each MCD, which
are explained below.

Person weighted accessibility:
These accessibility estimates were obtained at the Traffic Analysis Zone (TAZ) level, as

part of a research project at the University of Minnesota (23). The study used accessibility es-
timates as a performance measure in evaluating potential land use and transportation scenarios
for the Twin Cities (Minneapolis, St. Paul) metropolitan area. Cumulative accessibility to popu-
lation, employment, and labor within a specified time threshold, ranging from 10 minutes to 60
minutes, were estimated for each TAZ in the Twin Cities (Minneapolis, St. Paul) metropolitan
area. Additional details on the cumulative accessibility estimation are provided in related research
(23, 24, 25).

In addition to the cumulative accessibility measure, the study also provided a person-
weighted accessibility measure. The person-weighted accessibility for each zone, A, was esti-
mated as the weighted average of accessibility by zone, where the weight, Wi, is the population or
number of workers or jobs in that zone experiencing that level of accessibility (25).

A =

∑n
i=1Ai ∗Wi∑n

i=1Wi

(1)

This person weighted accessibility within a specific time threshold, ranging from 10 min-
utes to 60 minutes, can be aggregated for the entire region or any sub-region. For this analysis the
aggregation was done at the MCD level by identifying the TAZs that fall within each MCD and
using the TAZ’s employment as weights.

The estimated person weighted accessibility to jobs using auto and transit for each MCD is
used in this analysis.

Analysis
Estimation of Network Measures
The following measures of network structure were estimated using the street network structure for
each MCD. The measures of network structure were designed to capture different aspects of the
underlying street network and fall into the following broad categories:

• Hierarchy - refers to the differentiation that exists in street networks.

• Topology - identifies the connectivity and the connection patterns that exists in street
networks.

• Scale - captures the intensity of the street network within a specified area.
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Table 1 summarizes the estimation of the above network measures, compiled from various
sources. It is important to point out that many of the topology measures identified here are graph-
theory based measures of network structure. Details on the estimation of these network measures
is provided in (26).

A correlation test of the estimated network measures showed an extremely high correlation
(almost 1.0) between the α, β and γ measures. Refer to Table 2. An explanation for this degree
of correlation between these three network measures is provided in a recent paper (27). The high
correlation confirms that the three measures, estimated based on the number of links (e) and num-
ber of nodes (v) in the network, are essentially the same. Therefore only the α index will be used
in the analyses presented in the following sections.

TABLE 1: Estimation of Network Measures
Network Mea-
sures (Unit)

Equation Notes Reference

Entropy,H(X)

−
m∑

i=1

pi log2(pi)

m = Number of subsets in the system X ,
pi = Proportion of elements in the ith subset.
Links are grouped here into subsets based on functional classi-
fication, identified using FCC codes in the Census TIGER/line
files.

(28)

Percentage of
freeways, %F

Lf

Lsm
∗ 100

Lf = Length (km) of the freeways within the minor civil divi-
sion,
Lsm = Length (km) of the street network within the minor civil
division.

Alpha, α

e− v + 1
2v − 5

e = Number of links or edges in the street network within the
minor civil division,
v = Number of nodes or vertices in the street network within the
minor civil division,
e−v+1 = The denominator is also referred to as the cyclomatic
number, u, commonly used in graph theory.

(3)

Beta, β
e

v

(3)

Gamma, γ

e

3v − 6

(3)

Arterial Treeness,
φtree Ltm

Lsm

Ltm = Length (km) of street segments belonging to a branch or
tree network within the minor civil division
Open source software 1 was used to classify each segment in
the street network as belonging to a tree network or a circuit
network.

(5, 28)

Continued on next page

1Developed by Feng Xie, Metropolitan Washington Council of Governments (MWCOG); Code can be down-
loaded from http://nexus.umn.edu/Software/IdentifyingNetworkTopologies.zip

http://nexus.umn.edu/Software/IdentifyingNetworkTopologies.zip
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Table 1 – continued from previous page
Network Mea-
sures (Unit)

Equation Notes Reference

Average Circuity,
Ct Dnm

Dem

Dnm = Sum of the network distance (km) between all OD pairs
in the minor civil division,
Dem = Sum of the euclidean distance (km) between all OD pairs
in the minor civil division.

(29, 30)

Eta, η (km)

Lsm

e

(3)

Theta, θ (km)
Tm

v

Tm = Total traffic within the minor civil division, measured here
as Daily Vehicle Kilometers Traveled (DVKT)

(3)

Street density,
ρlm (1/km)

Lsm

Am

Am = Area (km2) of the minor civil division.
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Spatial Analysis
The objective of this paper was to analyze the variation of network structure within a metropolitan
area and relate this variation to observed travel. The MCDs within the Twin Cities (Minneapolis,
St. Paul) metropolitan area were chosen for this analysis. The first step in this analysis was to
look at the spatial variation of the network structure across the MCDs, as presented in figures 1(a)
through 1(e). To better understand the spatial variation, the circumferential limited access highway,
also called the I-494/I-694 beltway, around the central portion of the Twin Cities (Minneapolis, St.
Paul) metropolitan area and the cities of Minneapolis and St. Paul are identified in each of the
figures.

Consider the variation of the estimated α index, shown in figure 1(a). As pointed out
previously, the α index measures the degree of connectivity within the street network. The α
index varies between 0 and 1 and a higher value of the α index indicates higher connectivity in the
network. From figure 1(a), we can see a clear pattern emerge across the metropolitan area. The α
index is highest in the center of the Twin Cities (Minneapolis, St. Paul) metropolitan area within
the I-494/I-694 beltway and the value progressively decreases as we move out towards the edge.
The street networks in the central part of the metropolitan area (includes the cities of Minneapolis
and St.Paul), have a typical, though imperfect grid-like structure and therefore show a higher α
index. The outer part of the metropolitan area typically has a meandering tree like network which
corresponds to the lower value of the α index.

The spatial variation of the φtree measure is presented in figure 1(b). The variation of φtree
shows that the grid networks in the central part of the metropolitan area have a lower φtree value.
The outer edge of the metropolitan area show higher φtree values. Now look at the corresponding
variation of Ct measure shown in figure 1(c). Like the φtree measure, the lowest Ct value is seen in
the central cities of Minneapolis and St. Paul and the highest Ct value is seen in the MCDs on the
outer edge of the metropolitan area. This variation in φtree and Ct measures confirm that the grid
network, with a lower proportion of tree-like segments, provide more direct routes for travelers,
resulting in lower Ct values. On the other hand, suburban networks with a higher proportion of
tree-like segments, provide less direct routes for travelers, resulting in higher Ct values.

Now consider the spatial variation of the η index presented in figure 1(d). As explained
previously, the η index measures the average link or edge length. Figure 1(d) shows that the η
value progressively increases from the central part of the metropolitan area towards the outer edge
of the metropolitan area. The central cities of Minneapolis and St. Paul have the lowest η value.
This shows that the average edge length is lower for grid-like street networks compared to tree-
like street networks. The variation in the η index corresponds to the variation in ρlm, presented in
figure 1(e). The ρlm variable captures the intensity of the street network within a given area and is
highest in the central part of the metropolitan area and progressively decreases towards the outer
edge of the metropolitan area.

The estimated network measures presented in Figures 1(a) through 1(e) show the spatial
variation across MCDs in the metropolitan area. The spatial analysis confirms the difference in
network structure between the grid-like street networks seen in the central portion of the Twin
Cities (Minneapolis, St. Paul) metropolitan area and the tree-like street networks seen in the outer
edges of the metropolitan area. The estimated network measures help quantify the differences in
street network structure across the metropolitan area.

The spatial analysis also point to a relationship between certain network measures. To
expand on this, scatterplots of select network measures were analyzed and are presented in fig-
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ures 2(a) through 2(e). Consider the relationship between the α index and Ct measure presented
in figure 2(b). This scatterplot shows that the circuity in the network decreases with increased
connectivity as measured by the α index. Similarly the treeness in the network decreases with
increased connectivity, as seen in the scatterplots of figure 2(c). Another scatterplot comparison
between the θ index and the H(X) index is presented in figure 2(f). The scatterplot shows a pos-
itive relationship between the two variables in that the traffic load of the network, measured by θ
increases with increasing H(X). Please note that the scatterplots presented here highlight specific
relationships between select network variables and do not cover all variables estimated in Table 1.
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Regression analysis
The analyses in the previous section shows the spatial variation of estimated network measures
within the metropolitan area and also highlight specific relationships between select network mea-
sures. The analysis in this section relates the estimated network measures within the MCD to
observed travel using statistical regression models. The 2010 average travel time to work in min-
utes from the U.S Census Bureau is used as a measure of observed travel for each MCD.

Categorical Analysis
Before getting into the estimation of the statistical model, a simple categorical analysis of the
relation between the estimated network measures and observed travel was conducted. The MCDs
in the metropolitan area were grouped into four categories based on the average travel time to
work, as listed below:

• Category 1 - Average travel time less than 20 minutes

• Category 2 - Average travel time between 21 minutes and 25 minutes

• Category 3 - Average travel time less than 25 minutes and 30 minutes

• Category 4 - Average travel time greater than 30 minutes

The mean value of the network measures, listed in Table 1, was calculated for each of the
above listed time categories. These values are tabulated in Table 3 and show interesting patterns.
For example, consider the mean value of H(X), which measures the differentiation in the street
network. The tabulation shows that the entropy, H(X), is highest for category 1 (travel time
to work is less than 20 minutes) and lowest for category 4 (travel time to work is greater than
30 minutes). As explained in table 1, a higher entropy value indicates the presence of higher
functional classification links in the network such as arterials compared to local streets. The higher
functional classification links are typically faster and result in lesser travel time. Similarly the
treeness variable, φtree, which measures the presence of tree-like segments, is lowest for category
1 and is the highest for category 4. A tree-like network provides minimum connections and hence
longer distances between the fixed origins and destinations and thus results in higher travel time.
These kind of patterns are consistently seen in all network variables with the exception of η index
and circuity, Ct.

Regression models
The categorical tabulations show a relation between measures of street network structure and ob-
served travel. The next step was to quantify this relation using statistical regression models. Based
on the above spatial and scatterplot analyses, a set of core hypotheses were formulated for the
various network measures listed in Table 1. These hypotheses are listed below:

• Hypothesis 1 - Aspects of network structure that increase the connectivity of the street
network within a MCD (operational variables - α) will decrease the average travel time
to work.

• Hypothesis 2 - Aspects of network structure that increase the network travel distance
(operational variables - φtree, Ct) between fixed origins and destinations within a MCD
will increase the average travel time to work.
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TABLE 3: Mean values of estimated network measures by travel time category
Average travel time (minute) to work category

Category 1 Category 2 Category 3 Category 4
Independent vari-
ables (Unit)

Less than 20
mins

Between
21 and 25
minutes

Between
25 and 30
minutes

Greater than
30 minutes

Entropy, H(X) 0.77 0.55 0.52 0.39
Percentage of free-
ways, %F

4.37 2.20 0.73 0.00

Alpha, α 0.17 0.16 0.10 0.10
Arterial Treeness,
φtree

0.21 0.26 0.34 0.42

Average Circuity,
Ct

1.41 1.37 1.48 1.44

Eta, η 0.21 0.25 0.42 0.39
Theta, θ 1735.57 1047.80 920.29 476.29
Street Density, ρlm
(km−1)

7.50 7.15 3.47 3.46

• Hypothesis 3 - Aspects of network structure which increase the differentiation in the
street network (operational variables: H(X), %F) within a MCD will reduce the average
travel time to work. These measures capture the presence of higher hierarchy links such
as interstates, which typically have higher speeds and reduce travel time.

• Hypothesis 4 - An increase in the MCD’s person-weighted accessibility to jobs within a
time threshold (30 minutes here) by auto or transit (A30, O30) lowers the need for longer
travel and reduces the average travel time to work.

It is important to note that while the above set of the hypotheses includes a broad set
of network measures, the estimated models include only select network measures. Each of the
independent network variables were included sequentially in the models based on the estimated
correlation between the network variables and the statistical significance of each of the variables.

The estimated models predict the average travel time to work as a function of the inde-
pendent network variables. Various formulations of the proposed model were analyzed and the
results of three select models are presented here. The multimodal (auto, transit) person weighted
accessibility to jobs within a 30 minute time threshold (A30, T30), the median household income
and the size of the minor civil division were used as control variables in all three models. The first
model is a linear regression model with the dependent variable and all independent variables in
linear form. The second model is a log model similar to the linear regression model but with the
dependent variable and all independent variables in natural log form. The third model is a factor
analysis model.

The results presented from the linear and log regression models in Table 6 show the influ-
ence of select network structure variables, after accounting for the control variables. The entropy
variable, H(X), has a significant negative influence on the average travel time. This result is
consistent with our hypothesis that an increase in network hierarchy will decrease the travel time.
Similarly an increase in the average circuity, Ct, in the network increases the average travel time
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TABLE 4: Rotated Factor Loadings
Independent Variables Factor 1 -

Topology
Factor

Factor 2 -
Hierarchy
Factor

Factor 3 -
Scale Factor

Factor 4 -
Accessibil-
ity Factor

Entropy, H(X) 0.699
Percentage of freeways, %F 0.801 0.352
Alpha, α -0.846 0.402
Arterial Treeness, φtree 0.839
Average Circuity, Ct 0.731
Eta, η -0.910
Theta, θ 0.826
Street Density, ρlm -0.457 0.785
Person weighted accessibility to
jobs by auto, A30

0.899

Person weighted accessibility to
jobs by transit, T30

0.899

Only loadings with absolute values greater than 0.3 presented
Loadings represent correlations between independent variables and identified factors
Factor 1 consists primarily of the α, φtree and Ct variables. Referred to as the topology factor
Factor 2 consists of the H(X), %F and θ variables. Referred to as the hierarchy factor
Factor 3 consists of the η and ρlm variables. Referred to as the scale factor

to work. These findings are consistent in both the linear and log regression models. The other
variables of network structure were included in these models but did not show up as statistically
significant or were not included due to their correlation with other independent variables.

Now coming to the factor analysis model - factor analysis is a statistical technique that
is used to uncover relationships among numerous variables. This technique is used to reduce a
large number of correlated independent variables into smaller dimensions, called factors (31). In
this analysis, the factor analysis technique was used to reduce the independent network structure
variables into three relevant factors, namely, topology factor, hierarchy factor and scale factor.

In addition to the network factors, the person weighted accessibility to jobs by auto and
transit (A30, T30) were reduced to a single relevant accessibility factor. The rotated factor loadings
of the network variables and accessibility variables are provided in Table 4. The three network
factors and the accessibility factor were then used as independent variables in the model along
with the median household income and the size of the minor civil division to predict the average
travel time to work.

The pattern of influence of the factors are based on the underlying variables that make up
the factor. For example, the accessibility factor primarily consists of two variables, namely, A30

and T30. Based on the hypotheses listed above, both these variables have a negative influence on
the travel time to work. Hence the accessibility factor would have a negative influence on travel
time as well and this is confirmed by the results presented in Table 6. The topology factor has
the expected positive influence on the average travel time to work but is however not significant.
The hierarchy factor has the expected significant negative influence while the scale factor has a
significant positive influence.
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The models presented in Table 6 confirm that the network variables influence the travel
time to work, after accounting for non-network control variables. The use of different model
formulations was to see if the influence of the network variables changes with the model structure.
The results show a consistent pattern of influence across the models.

While only select variables were included in the regression models, the results show a
relation between certain aspects of network structure and travel. The regression results along
with the other analyses (spatial, scatterplot, categorical) point to the importance of considering
underlying network structure in understanding travel. The findings in this paper are consistent
with a broader research effort (26) that looked at the influence of network structure on individual,
household and metropolitan travel.

On another note, the inclusion of the person weighted accessibility to jobs by auto and
transit (A30, T30) has the most significant influence on model performance, as measured by higher
R2. The importance of using accessibility as an approach to understand the transportation system
performance and the interaction of land use and transportation has been highlighted in recent re-
search (18, 32, 33). The analysis presented here confirms similar importance of the accessibility
measure in transportation system performance (12).

How can these results be applied? At a simple level, consider the log regression model
presented in Table 6. The structure of the log model is such that the regression coefficient serve
as elasticity estimates. The estimates measure the percent change in the dependent variable, due
to an one percent change in the independent variable. A 1% increase in the entropy, H(X), of the
street network reduces the average travel time to work by 0.044%. Similarly a 1% increase in the
average circuity, Ct, results in a 0.149% increase in the average travel time to work. Looking at
accessibility - a 1% increase in the person weighted accessibility to jobs by auto, A30, results in a
0.147% decrease in the average travel time to work. These elasticity estimates in itself are small
in magnitude. However what the results point to is that a combination of these network measures
along with other conventional measures of urban form and the built environment can be used to
bring about desired changes in travel.

Now consider the street networks of four select MCDs from the Twin Cities (Minneapolis,
St. Paul) region, presented in figure 2. In a paper on network circuity, Levinson and El-Geneidy
(30) divided the Twin Cities region into four distinct rings. The first ring (ring 1) refers to the
urban core that includes the cities of Minneapolis and St. Paul. Ring 2 refers to area outside the
urban area but within the I-494/I-694 beltway. Ring 3 refers to the area just outside the I-494/I-694
beltway while Ring 4 refers to the outlying areas of the region. Using the same approach, the city
of Minneapolis is part of the urban core (Ring 1) of the region. The city of Golden Valley lies
within Ring 2. The City of Woodbury lies within Ring 3 while the City of Forest Lake belongs to
Ring 4. Each of these MCDs have a different connection pattern. Each connection pattern results
in a different network structure that in turn results in varying system performance. Table 5 confirms
the same.

CONCLUSIONS
The objective of this paper was to analyze the spatial variation of street network structure across
MCDs within the Twin Cities (Minneapolis, St. Paul) metropolitan area and relate it to observed
travel. Measures to quantify the street network structure were compiled from existing sources. The
spatial variation of network structure across the metropolitan area was analyzed using GIS. Further
expanding the spatial analysis, the relationship between specific network measures were analyzed
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using scatterplots. Finally the relationship between the network measures and observed travel was
analyzed using categorical analysis and statistical regression models.

The analyses confirm that there is an inherent variation in the street network structure within
a metropolitan area. More specifically the underlying structure of the traditional grid-like networks
seen in the central cities of the metropolitan area differs from the structure of the tree-like street
networks seen towards the outer edge of the metropolitan area. Further the analyses confirms
that these differences in underlying street network structure translates into differences in observed
travel. The influence of the network measures remain significant, even after controlling for inde-
pendent non-network variables.

This analysis quantifies network design and its influence on travel. This understanding of
network design is valuable, especially in developing countries where new transportation system
are rapidly being built. The transportation sector is the biggest consumer of energy and one of
the biggest sources of greenhouse gas (GHG) emissions. Further transportation network decisions
are largely irreversible. Therefore it is critical that network architecture be well understood and
considered in the design of urban form and sustainable environments.

TABLE 5: Estimated street network measures and performance for select MCDs
Ring 1 Ring 2 Ring 3 Ring 4
Minneapolis Golden Valley Woodbury Forest Lake

Nodes, v 7582 1003 1852 722
Links, e 13,264 1463 2303 927
Entropy, H(X) 0.53 0.75 0.43 0.92
Percentage of free-
ways, %F

2.82 5.78 3.0 3.4

Alpha, α 0.37 0.23 0.12 0.14
Arterial Treeness,
φtree

0.03 0.10 0.20 0.31

Average Circuity, Ct 1.16 1.33 1.34 1.47
Eta, η 0.14 0.17 0.19 0.27
Theta, θ 1463.46 1779.39 1103.87 1100
Street Density, ρlm
(km−1)

12 9 5 3

Average travel time to
work

22.1 19.1 25.4 29.7
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