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Continental interiors have biome boundaries that are
highly sensitive to climate change. The northern

prairie–forest biome border in central North America is
such a case; it is ~2700 km in length, extending from north-
ern Alberta, Canada, southeastward across the Canadian
prairie provinces, and into the western Great Lakes region
of the US (DeFries et al. 2000; Figure 1). Positioned more or
less perpendicular to the border is a steep gradient from a
prairie climate – featuring frequent droughts, summer heat
waves, and a historically high fire frequency – to a forest cli-
mate, with rainfall evenly distributed throughout the year
and cool summers (Changnon et al. 2002).

Although woody expansion into North American grass-
lands has been documented in the past (Samson and Knopf

1994), it is widely expected that, under a scenario of human-
induced global warming, the prairie biome will shift to the
northeast and displace existing forests. The paleoecological
record shows that this pattern of biome change occurred
during previous climate-warming episodes; during the mid-
Holocene warm period 7500 years before present (ybp), for
example, a warmer climate and interactions between cli-
mate and fire frequency allowed grassland to replace boreal
forests (dominated by jack pine [Pinus banksiana], black
spruce [Picea mariana], balsam fir [Abies balsamea], aspen
[Populus tremuloides], and paper birch [Betula papyrifera]) as
well as hardwood forests (dominated by northern red oak
[Quercus rubra], white oak [Quercus alba], sugar maple [Acer
saccharum], American basswood [Tilia americana], and elm
[Ulmus spp]; Camill and Clark 2000; Umbanhowar 2004).
Future projections for a “2 x CO2” climate (ie 560 parts per
million [ppm] atmospheric CO2, or twice the preindustrial
concentration of 280 ppm) suggest a northeastward shift of
biomes and tree ranges of 100–500 km (Lenihan and
Neilson 1995; Walker et al. 2002), resulting in the potential
loss of forests on 200 000 to 1 million km2 of land in central
North America. The upper estimate is more than twice the
size of the state of California.

These projections, however, take into account only the
climatic envelope within which certain tree species and
biomes currently exist. Several other human-induced dri-
vers of change will influence prairie–forest border dynam-
ics, so that the types or magnitudes of future changes may
differ from those in the paleoecological record, probably
leading to no-analog plant communities (ie there is no
past or current community of a similar composition;
Williams and Jackson 2007). These drivers include inva-
sive earthworms, tree diseases and pests, changes in
dynamics of native insect populations, increasing deer
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populations, changing disturbance type and frequency,
increased plant growth due to higher availability of CO2

(CO2 fertilization), and nitrogen deposition. All of these
drivers are capable of causing ecosystem change individu-
ally, but their impacts will occur concurrently with the
direct impacts of climate change. In some systems with mul-
tiple drivers, simultaneous changes in two or more of them
might result in no net change, because various drivers may
counteract one another. However, for the prairie–forest
border of central North America, global warming will inter-
act with these drivers of change by facilitating faster and
greater impacts, which will in turn reinforce the impacts of
warming itself. The objective of this paper is to review
important drivers of change along the prairie–forest border
in central North America and how their interactions with
the warming climate may influence forests.

n Climate change and impacts on forests 

Given the anticipated degree of warming, the most
important direct impact on forests will probably be
drought. For the continued existence of a given forest, all
else being equal, trees must survive the longest summer
dry period that occurs at a multidecadal scale. A warmer,
drier climate would have much greater consequences for
the northern prairie–forest border of central North
America than would a warmer, wetter climate, which
would still support forests, although of different composi-
tion. The best available projections for central North
America for summer (June, July, and August) tempera-
tures by the late 21st century are +3–9˚C (range between
low and high CO2 emission scenarios established by the
Intergovernmental Panel on Climate Change [IPCC];
Wuebbles and Hayhoe 2004; Christensen et al. 2007).
Although long-term forecasts are uncertain, the most
probable scenario for summer precipitation is that it will

remain similar to that from 1970–1999 or decline
10–30% by the end of the 21st century; there is only a
slight chance that it will increase (Wuebbles and Hayhoe
2004; Christensen et al. 2007). A negative change in the
precipitation-to-evaporation ratio and drier summers are
therefore thought to be the most probable scenario. This
is consistent with observations in the region during the
late 20th century, which show increases in temperature
twice that of the global mean temperature rise and greater
temporal variability in precipitation, leading to more
droughts, shorter winters, and longer growing seasons (M
Seeley pers comm). 

The projected change toward lower precipitation-to-
evaporation ratios and higher temperatures drives climate-
envelope predictions that major tree species will shift
their ranges northward by up to 500 km in central North
America (Prasad et al. 2008). This is consistent with
northward range shifts observed during episodes of
Holocene warming that were similar in magnitude to
those predicted for the 21st century, although the rate of
change during the 21st century may be an order of magni-
tude faster than that of mid-Holocene warming, possibly
outstripping the ability of tree species to keep pace with
climate change (Davis and Shaw 2001). 

Several simulations of modern and future biome bound-
aries show substantial differences (eg Lenihan and Neilson
1995; Notaro et al. 2007). However, they all suggest that
large-magnitude northward shifts of biome boundaries are
likely to occur at mid-continental, mid-to-high latitude
regions, such as the central North American prairie–forest
border and the interior forests of Siberia.

Foresters have reported dieback of mature tree crowns
and regeneration failures throughout the northern hard-
wood forest region in Minnesota, Wisconsin, and
Michigan in recent years (USDA 2008; Figure 2),
although the underlying mechanisms remain unclear.

Figure 1. Prairie–forest border in central North America (thick black line). Forest cover shown in green, non-forest is white, and
water is black. Modified from DeFries et al. (2000).
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Increasing drought frequency, in
combination with shallow soils, soils
poor in base cations, and secondary
impacts of insects, have led to sugar
maple dieback in the past (Auclair
et al. 1996). Warmer and longer
growing seasons have also con-
tributed to dieback of paper birch
(Jones et al. 1993). 

Warming climates generally do
not follow a smooth upward trajec-
tory. Forests will experience runs of
several unusually warm years, with
temperatures equal to predicted
mean temperatures a few decades in
the future, thus hastening the rate of
forest change (Cohen and Pastor
1991). The paleoecological record
shows that changes in the location of
the prairie–forest border and in tree
species distribution have occurred
within a few decades in response to
periods of drought and resulting stress (Camill and Clark
2000; Foster et al. 2006). 

In summary, multiple lines of evidence – including
recent climate trends, recent observations of forest
response to episodes of warm and dry climate, future pro-
jections of climate, future projections of tree species
ranges, and the best available predictions for future biome
boundaries – indicate that a warmer climate will be less
favorable for the continued existence of forests near the
current prairie–forest border. This conclusion is rein-
forced by the paleoecological record of changes that
occurred during previous periods of warming climate. 

n Indirect impacts of climate change  

Changing disturbance regimes

Stand-killing disturbances, such as fire and wind, can give
tree species adapted to a warmer climate a chance to
replace existing species (Overpeck et al. 1990). Fire has
been an important factor influencing the location of the
prairie–forest border, and decreases in fire frequency due
to land use, fragmentation, and fire suppression (coupled
with several relatively moist decades) have led to the
expansion of woody species into the prairie biome over
the past 50 years (Samson and Knopf 1994). Thus,
changes in fire frequency due to climate warming are
likely to have important impacts throughout the
prairie–forest region. Although climate warming will cre-
ate conditions more conducive to increased fire fre-
quency and severity at any given level of landscape frag-
mentation, other factors may result in divergent fire
regimes close to and distant from the prairie–forest eco-
tone. For instance, land-use patterns in the geographic
zone at the interface between the forest and prairie bio-

mes, coupled with active fire suppression, will result in
lower frequency and greater severity of forest fires. This is
because much of that landscape is agricultural and
unlikely to burn, and the generally high levels of frag-
mentation in the area will reduce fire spread. Although
fragmentation has positive (more human access for igni-
tion) and negative (more fire breaks) effects on fire fre-
quency, the latter will dominate in areas with mixed land
types and land uses, reducing the impacts climate change
might otherwise have on fire incidence and spread. 

In contrast, in densely forested areas with little frag-
mentation – such as conifer forests several tens of kilome-
ters away from the prairie–forest interface, but still within
the area that will experience a substantially warmer and
drier climate – fires may become more frequent and more
severe. This would include large tracts of boreal forest in
Canada and the northern lake states of the US, where fire
frequency is predicted to increase with global warming
(Flannigan et al. 2001). A variety of vegetation types
found to the south of the prairie–forest border, including
prairie, aspen parkland, pine savanna, and oak savanna,
could expand into currently forested areas (Curtis 1959;
Young et al. 2006). These new vegetation types would
also support more frequent fires than would closed-
canopy forests, thus reinforcing their persistence.

Wind storms are also important factors in forest develop-
ment. Severe thunderstorms, known as derechos, are capa-
ble of producing forest-leveling winds across millions of
hectares (Rich et al. 2007). The highest frequency of these
storms occurs within the “derecho triangle”, which – with
vertices in western Pennsylvania, north-central Texas, and
central Minnesota – includes the traditional “tornado
alley” of central North America, as well as the prairie
biome to the southwest. Derechos require warm and humid
summer days, meteorological conditions that are expected

Figure 2. Forest dieback on the north shore of Lake Superior, Minnesota. This type of
drought-induced dieback has become common in boreal birch–spruce–fir forests and
northern hardwood forests of the prairie–forest border region in recent years.
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to occur more often in this region with climate warming
(Trapp et al. 2007). Currently, the frequency of derechos in
the prairie biome is 5–20 times that in the interior of the
forest biome (Coniglio and Stensrud 2004), and a north-
eastward shift in climatic conditions could bring large
increases in derecho frequency to the forest biome.

These windstorms are capable of transforming the
species composition of vast swaths of forest (>200 km in
length) within a day, because certain tree species have a
higher risk of blowing down than others (Rich et al. 2007;
Figure 3). These storms also present an opportunity for
understory species adapted to a warmer climate to
increase their dominance through regeneration. In addi-
tion, the alteration in fuel structure created by blown-
down trees greatly increases the chances of severe fires
(Figure 3), even in hardwood and hemlock forests that
did not formerly experience such events. These very
severe fires could convert the forest to early successional
aspen and birch (Frelich and Reich 1999), or give species
adapted to a warmer climate a chance to invade.

Insects and diseases

Many exotic insects and diseases that affect trees have
arrived at, or are approaching, the prairie–forest border.
Survival of insects and disease organisms is generally
greater when winters are less severe, and their popula-
tions can increase faster with higher survival and longer
breeding seasons, leading to greater rates of spread (Logan
et al. 2003). Dutch elm disease (Ophiostoma ulmi and
Ophiostoma novo-ulmi), hemlock wooly adelgid (Adelges
tsugae), and emerald ash borer (Agrilus planipennis) are
either present at, or moving toward, the prairie–forest
border and threaten seven species of native trees. The
adelgid is limited by the cold winters of the current cli-
mate (Evans and Gregoire 2007), but it could survive
winters in the area under the IPCC low emissions climate
scenarios. Asian long-horned beetle (Anoplophora

glabripennis), although so far confined to urban areas, has
the potential to greatly diminish the genera Populus (four
species present) and Acer (four species present, including
the ecologically and commercially important sugar
maple, A saccharum). Sudden oak death (caused by the
fungus Phytopthora ramorum) has the potential to reduce
abundance of two oak species; currently, Phytopthora is
not thought to be capable of surviving near the
prairie–forest border, because of the cold climate (Smith
and Coulston 2002), but that could change in the future.  

Native insect pests (including species from elsewhere in
North America) are also expected to play a major role in for-
est change in a warming climate. Insect populations that
may have been in dynamic equilibrium with forests while
the climate was relatively cool can experience outbreaks
when longer growing seasons and milder winters facilitate
reproduction and survival. For example, mountain pine bee-
tles (Dendroctonus ponderosae), native to British Columbia,
Canada, have killed 12 million ha of lodgepole pine (Pinus
contorta) forest in that province in recent years; the large
extent of the outbreak is partly attributable to a warmer,
more favorable climate for the insects, especially in winter
(Taylor et al. 2007). With warmer winters, the mountain
pine beetle has the potential to cause major mortality in jack
pine-dominated forests along the southern margin of the
boreal forest across the continent (Logan 2007).

Exotic earthworms

European earthworms, principally the nightcrawler
(Lumbricus terrestris), leaf worm (Lumbricus rubellus), and
angleworms (Aporrectodea spp), are invading forests along
the entire prairie–forest border, including boreal forests
from Alberta to northern Minnesota, and hardwood
forests from Minnesota to Indiana (Frelich et al. 2006;
Cameron et al. 2007). The northern part of the
prairie–forest border, from northern Wisconsin through
Alberta, has no native earthworms. Earthworm invasions

Figure 3. Major disturbance events will be more common with global warming and transform the composition of large tracts of forest.
(a) Unlogged, 200-year-old boreal forest with upper canopy destroyed by the derecho of 4 July 1999, Boundary Waters Canoe Area
Wilderness, Minnesota. (b) The same forest as in (a), one year after the exceptionally severe Cavity Lake Fire of 2006, illustrating
the combined impact of severe wind and fire disturbance.
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have been linked to dieback and reproductive failure in
mature northern hardwood trees, and loss of native
plant species richness through a cascade of ecological
effects (Holdsworth et al. 2007). These include raising
soil bulk density, decreasing availability of nitrogen (N)
and phosphorus by 20–40%, and removing the organic
horizon (ie the leaf litter or duff), leaving the forest
floor without the insulating and moisture-holding
capacities of the previously thick litter layer (Hale et al.
2005; Figure 4). The tree species most impacted is
sugar maple. 

Deer overabundance

White-tailed deer (Odocoileus virginianus) have been an
important factor negatively impacting survival and
recruitment of trees in central and eastern North
America (Coté et al. 2004; Figure 4). Deer browse woody
plants during the winter, when herbs are unavailable, and
prefer seedlings of certain species of trees: northern white
cedar (Thuja occidentalis), yellow birch (Betula alleghanien-
sis), northern red oak, eastern hemlock (Tsuga canaden-
sis), and, in some areas, white pine (Pinus strobus).
Reproduction of these species has been nearly eliminated
in large tracts of forest within 500 km of the prairie–forest
border (Cornett et al. 2000; Rooney et al. 2000). Deer
populations in the boreal forest along the northwestern
segment of the prairie–forest border are currently low, but
are expected to increase as winters become milder, since
winter mortality has been a historically limiting factor
(Fieberg et al. 2008). Increasing acreage of aspen forest
and fragmentation as logging proceeds into the boreal for-
est also favor expansion of deer populations (Alverson et
al. 1988). 

CO2 fertilization and nitrogen deposition

Projected increases in atmospheric CO2 concentrations
and in N deposition may counteract some impacts of cli-
mate change by enhancing forest productivity and
drought resistance. Enhanced productivity due to CO2

fertilization and reduced water stress may occur in forests
of the prairie–forest border region (Reich et al. 2006).
The latter is more relevant to a consideration of possible
climate-change interactions in this region. The ubiqui-
tous water savings under elevated CO2 are achieved via
reduced stomatal conductance (Ainsworth and Long
2005) and can result in heightened seedling establish-
ment (Davis et al. 2007). However, this should be offset
to some extent by modest increases in leaf area index
(projected green leaf area per unit ground area) under ele-
vated CO2 (Ainsworth and Long 2005; Reich et al. 2006),
such that soil moisture patterns will be only modestly
enhanced in most situations. Elevated CO2 levels will
constrain the rise in evapotranspiration under warmer
(and especially warmer and drier) conditions to some
extent, and will therefore partially counteract the effects
of warming on plant and soil moisture relations. Given
evidence from the free-air CO2 enrichment literature, it
is likely that these effects will be modest (Ainsworth and
Long 2005; Reich et al. 2006).

Much of the northern hardwood and southern boreal
forest near the prairie–forest border receives low-to-inter-
mediate levels of N deposition (Keene et al. 2002). Given
that these systems are known to be N-limited in terms of
productivity (Reich et al. 1997, 2001), the continuing N
additions will result in a modest average increase in pro-
ductivity (Magill et al. 2004). Deciduous hardwoods
should gain some advantage in comparison with prairie
species under heightened N deposition levels, because
the relative competitiveness of deciduous trees versus
grasses increases with increasing N supply (Köchy and
Wilson 2001). Furthermore, feedback effects of deciduous
trees on N cycling will lead to conditions that are more
conducive to trees than grasses (Reich et al. 2001;
Dijkstra et al. 2006), possibly amplifying any influence of
N deposition on tree–grass competitive interactions.  

It seems probable that the effects of higher CO2 con-
centrations will partially offset the impacts of future
droughts, and that N-deposition effects will partially off-
set the impacts of earthworm invasion on nutrient avail-
ability. However, these two factors will not reduce the

Figure 4. Forest change caused by earthworm invasion and deer grazing. (a) Intact forest of sugar maple, basswood, and red oak.
(b) Forest with high deer population and earthworm invasion. Note the absence of tree seedlings, herbs, and duff on the forest floor.
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negative impacts that storms, fires, exotic insects and dis-
eases, and deer grazing have on forests.   

n Cumulative impacts of multiple drivers

Cumulative negative impacts of all drivers of change on
trees in the prairie–forest border region may be quite large
(Figure 5). Storms, fires, invasive insects, and unsuitable
climate will remove mature forests from the landscape,
while other factors, such as deer and European earth-
worms, will prevent tree reproduction. The loss of mature
trees will also contribute to lack of reproduction through
reduction in propagule availability. The net result for
forests within a few hundred kilometers of the prairie–for-
est border is that tree mortality will increase and regener-
ation may not be able to keep pace. 

Most genera and species of trees present along the
prairie–forest border are sensitive to at least one potential
negative impact. Fir, spruce, and larch will not find a
warmer climate suitable. Both invasive and native insects
and diseases have the potential to remove or greatly

reduce several genera, such as
maple, ash, pine, aspen, oak, hem-
lock, and elm, from large swaths of
forest close to the prairie–forest bor-
der. Deer populations will prevent
reproduction of several species that
would otherwise be resistant to the
impacts of a warmer climate,
including white pine, northern red
oak, yellow birch, and northern
white cedar. Even tree species that
experience a positive impact from
one driver may respond negatively
to other factors. Hemlock provides
a good example. Earthworms create
a bare mineral soil seedbed, which
is better for hemlock than thick lit-
ter. However, some researchers
have predicted the extinction of
hemlock due to the hemlock wooly
adelgid; deer grazing has also been
shown to have a widespread nega-
tive impact on hemlock regenera-
tion (Rooney et al. 2000), and
increased drought and fire fre-
quency will negatively affect this
species. 

n Conclusions

Climate warming is predicted to
lead to savannification of the forest
near the northern prairie–forest
border. The cumulative impacts of
droughts, storms, fires, insects and
diseases, invasive species, and deer

grazing may be partially offset by CO2 fertilization and N
deposition. However, the net impact of all these drivers is
expected to reinforce negative impacts of global warming,
thereby hastening the decline of forests (Figure 5). 

The relatively cool temperatures and frequent precipi-
tation of the historic climate of the past several centuries,
coupled with periodic crown fires for jack pine, have
allowed boreal forest tree species, such as jack pine and
black spruce, to exist from bogs to rocky hilltops, and
northern hardwoods to spread across a soil gradient from
clays to loamy sands. In a warmer climate, more differen-
tiation among vegetation types is expected across soil
types and slope positions (Pastor and Post 1988). Mesic
forests are expected to narrow their niche, “abandoning”
drier sites, and if the density of forested sites becomes low
enough, people may perceive that the location of the
prairie–forest border has shifted. Important decisions
regarding forest management will need to be made as the
climate warms: do we prioritize the maintenance of as
much of our recent forest heritage as is possible? Do we let
nature takes its (human-aided) course? Or do we proac-

Figure 5. Interactions between global warming and other drivers of change affecting the
prairie–forest border of central North America, and their impact on trees. Blue ovals
represent drivers with potential negative impacts on trees that are likely to be enhanced by
a warmer climate. Yellow circles represent basic resources that may be changed by a
warmer climate or by its interactions with other drivers. Green ovals represent drivers that
may counteract negative impacts on trees to some extent. Red rectangles show the results
of drivers on trees and their reproduction.
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tively use adaptive management strategies to accelerate the
shift toward new vegetation, better suited to the conditions
of the late 21st century? The answers to these questions are
not simple and effective management will probably
include a combination of all three approaches, guided by
input from a wide array of stakeholders, including citizens,
the timber industry, and public and private land manage-
ment agencies. 

Tracts of forests close to the prairie–forest border – des-
tined to become grassland or savanna as the climate warms,
and currently designated as wilderness – may represent a
restoration opportunity for native grasslands and savannas,
most of which have been converted to agriculture during the
previous century. Remnant grasslands and savannas must be
preserved, to serve as a seed source for future expansion into
forested areas, thus allowing forests to make a “graceful”
transition to prairie and/or savanna. These future grasslands
may be no-analog communities, but a no-analog community
of native species is probably more desirable than a no-analog
community composed of non-native species.
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