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1. Introduction

_ This paper is a sequel to our paper [OU] where we investigated questions concerning
solvability and asymptotic behavior of solutions to the mean curvature evolution problem

u, = N1+|Du|*H@) in Qx(0,), (1.1)
u(x,t) = 0 on 9Q x[0, o), (1.2)

u(x,0) = uy(x) in Q, u,e Co(Q), (1.3)

where € is a bounded domain in R", n > 2, with C~ boundary 0Q, H is the mean curvature
operator

Du

\/1+|Du|2

Du = grad u, |Du|* = {Du,Du), and u, = ou/ot.

H(u) := div

In the first part of this paper, we investigate the same equation (1.1) in case of
nonhomogeneous Dirichlet boundary condition and in the second part we study the problem
(1.1)-(1.3) with H (u) replaced by its "anisotropic" version (see the equation 1.22) below).

In the nonhomogeneous case the mean curvature evoluton problem is formulated as
follows.

Suppose there exists a function ¢ € C =(Q) such that

H() = 0 in Q, (1.4)
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that is, the graph of the function ¢ is a minimal surface. Here the graph of ¢ is considered in R™"
in which a Cartesian coordinate system x,,...,x,,x,,; is chosen so that Q lies in the (hyper)plane
X,+1 =0 and the graph of ¢ is given by the set (x, d(x)), x € Q.

We are interested in solvability of the problem

u, = V1+|Du PHu) in Qx[0,), (1.5)
u(x,t) = ¢(x) in 9Q x [0, o), (1.6)

u,0) = o6(x)+u,x) e Q, uye Cy(Q). (1.7)

The equation (1.5) describes a motion of the surface (x, u(x,r)) evolving with normal
speed equal to the mean curvature H(u). The boundary of the surface remains fixed. At the
initial moment u(x,0) is a smooth bounded perturbation of the minimal surface x, , ; = ¢(x),

x e Q.

We show in this paper that (1.5)-(1.7) admits a "solution" u for all time; however, this

solution may develop singularities on d€2 in finite time and, in general, will not satisfy (1.6).
After a sufficiently long time the singularities will disappear and the solution will be smooth in

Q. Furthermore, the solution ux,t) > o(x)ast — oo,

It is known that if the domain Q satisfies the condition of H. Jenkins and J. Serrin (see
[JS] and [S]) then a smooth in Q solution of (1.5)-(1.7) exists for all time. This was shown by G.

Huisken [H]. The novelty in our case is that we do not assume that € satisfies the Jenkins-Serrin
condition.

In order to formulate the results we need the notion of a generalized solution; it is
similar to the one in [LT] and [OU].

A function u(x,t) is called a generalized solution of (1.5)-(1.7) if it satisfies the
following conditions:

u € C(Qx[0,); ue L([0,%); W' (Q) (1.8)

u, = L_(Qx[0,)); (1.9)

Lu := u,~\1+|Dul*> Hw)

Uu;u;
= u—-Au+———u; = 0 in Qx(0,), (1.10)
’ 1+|Dul*" (©,)

where u; 1= du/ox;, u; := 0%u/ox;0x;, A is the Laplace operator, and the convention about



summation over repeated indices is assumed here and throughout the paper;

(Du,v) .
—me sign(u —¢) a.e.on 9Q x(0,0), (1.11)

where v is the exterior unit normal field on 0Q;

u(x,0) = ox). (1.12)

Now we can formulate the first result.
Theorem 1. Problem (1.5)-(1.7) admits a generalized solution.

In order to construct this generalized solution, we consider a family of regularized problems:

L%u® := Lu*—eN1+|Duf> Auf = 0 in Qx(0,00), (1.13)
ut(x,r) = o(x) on 9Q x [0, o), (1.14)
ut(x,0) = o)+ uy(x) in Q. (1.15)

The problems (1.13)-(1.15) are uniformly parabolic for each € > 0 and each of them
admits a unique solution u* from C =(Q x[0,0)). The generalized solution of (1.5)-(1.7) that we

construct is obtained as a limit of a subsequence of {1} converging in C*(Q’ x [0,T]) for any
k>0, any T >0, and any Q" cc Q to some function u satisfying (1.8)-(1.12).

The next result shows that u(x, £) is smooth in Q, possibly, after a sufficiently long time.

Theorem 2. Let u(x,t) = limu®(x,t) be the generalized solution of (1.5)-(1.7). There

€50

exists t =0 such that

ue C(Qx[r,)), (1.16)

u(x,t)=0(x), (x,t) e 0Qx[r,0). (1.17)
Furthermore,

luGx,1)—o(x) <Ce™, xe Q, 120, (1.18)

where C and p are positive constants depending on initial data and domain €.

The proofs of Theorems 1 and 2 follow the same plans as the proofs of Theorem A and

the first part of Theorem D in [OU]. However, some of the barriers needed here for the C 0
estimates are different from those in [OU] and new efforts are needed to obtain these estimates.
These proofs are given in sections 2 and 3.



Remark. Everywhere in the paper the capitals C, C, ... etc. denote positive constants
depending, at most, on the domain €, initial data, and function ¢.

In the second part of this paper, we show how the techniques in [OU] can be extended to
allow investigation of the "anisotropic" version of the evolution flow under mean curvature. For
closed surfaces, this evolution was considered by Y.-G. Chen, Y. Giga, and S. Goto in [GG] and
[CGG]. In this connection see also the paper by S. Angenent and M. Curtin [AC]. We study
here the evolution of graphs and establish the following result.

Let F(p), p € R, be a positive C~ function satisfying for all p, § € R" the following
structure conditions:

|Fi(p)l < o, (1.19)
pz

Fp)p;, 2 o, m_ Q,, (1.20)

wlE 2 o€’ ol €2

(1.21)

+ < F(p)EE. <
IR v et

where

oF . oF
op’ 7 op:op;’

F. .=

13

AV e
§""<‘§’|p|>|p| for p0.6=5-5,

o, 0., O, O, are positive constants and o, 2 0.

These structure conditions are derived from postulated properties of a function defined
in R™! which represents physically the interfacial energy; for more details see [AC], [GG], and

[CGG]. The special case where F(p) = V1 + p*leads to the mean curvature evolution equation
as it can be seen from the equation (1.22) below.

Consider the initial boundary value problem

_ zi aF@.-- : oo 1.22
u, = N1+|Du| dx,-( P, in Q % (0, o), (1.22)
u(x,t)=0 on 0Q x[0,0), (1.23)

ux,0)=uyx) in Q, uye C;(Q), (1.24)



where d/dx; denotes the total derivative, and Q, as before, is a bounded domain in R® with

smooth boundary.

Again, we define the generalized solution of (1.22)-(1.24) as a function u(x,t) with

properties:

In order to construct a generalized solution, we consider the regularized problem

ue CTQx[0,%)); u € L([0,00:W"(Q));
U, € L (Qx[0,00));

Lu :=u, — N1+|Du|*— »

d ( oF (p)
dx;

j = 0 in Qx(0,);

D
_ﬁ};’_)Pe sign(u) a.e.on 0Q x (0, );
u

u(x,0) = uy(x) in Q.

Lu® := Lut—eN1+|Dufl> Au® = 0 in Qx[0,o0),

u® =0 on 9Q x[0, ),

Il

u® = u, on Qx{0}.

(1.25)
(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
(1.31)

(1.32)

Theorem 3. The problem (1.22)-(1.24) admits a generalized solution which can be
constructed as a limit of solutions of (1.30)-(1.32). For this generalized solution, there exists

some t >0 such that

ue C(Qx[z,) and u=0 on 9Q x[7,).

The proof of Theorem 3 is given in section 4. It follows the same basic steps as the
proofs of Theorems 1 and 2. In comparison to [OU] essentially new arguments are needed only

for construction of C°-barriers. We present these estimates in detail. The local C'-estimates in
x and ¢ are obtained by a slight modification of the arguments in [OU].



2. C'-estimates for solutions of (1.13)-(1.15)

Lemma 2.1. There exist positive constants C and |L depending on Q, u,, and ¢ such that
for all (x,t) e Qx[0,o0)

lu(x,t)—0(x) <Ce™. (2.1)

Proof. The proof is obtained by constructing appropriate barriers and then applying the
usual maximum principle.

It will be convenient to use the following notation:

~E — ue__q),
0;(u" + $)0,(u" + ¢)
a,Da*+D¢) := 7 218, — : , 0;:=0/dx,,
" 0 :=[1+eN1+|DE+D oS3, 1D+ DT
b, (D) = a Di*+D).
By (1.13) we have in Q x [0, )
L*® = i, - b (Du®u;—by(Du", = 0, (2.2)

where i, = 9%1%/0x,0x; and ¢; = 9°¢/ox;0x;.

The equation (2.2) is invariant relative to parallel translations of the origin O of the
coordinate system in the plane x, ., = 0. Therefore, we may assume that O € Q. Denote by By a

ball of radius R centered at O. Assume thatR >1 and Q Cc B, _,.
Consider the functions
m
vi,t) = t—eM(e™ — V),
m

where W(x) = —m(R*—1/2|x|*— 1) and the constants m,, m, and W are positive and to be
chosen so that

L0 +0) = v =by(Dv* )Wy —by(Dv)p,; >0 in Qx[0,) (2.3)
L'v +¢) < 0 in Qx[0,e0), (2.3
vi(x,1) 2 0 in 9Qx[0,e0), (2.4)

vi(x,0) > Juy(x) in Q. (2.5)



Later we show that (2.3), (2.3)’, (2.4), and (2.5) imply (2.1).

The inequality (2.4) is satisfied trivially. It is also clear that there exists m > 0 such that
forallm >m, (1/m)(e™—e¥™) > 1. Setting

mo = max | uy(x)],

we obtain (2.5) with any m > m.

Consider now (2.3). We have

Note next that

- v _ W) _
v, = W', v = —me™e"x;, (v,=09,v)

<
Il

b,(Dv*); =

b(Dvxx; 2

1]

—mge e (mxx; +8,), (v;=0"v/0x,0x;).

—mye Me ¥ mby(Dv*)xx; + by (DVY)),

|x|?

1+|Dv**+|Do|?

b,—i(DV+) 2 n— 1.

From the expression for v;" we get

|DV'| <mye

‘l“e\ll(x)l x|.

Let @ be a constant such that

191 g < .

From (2.6) and (2.8) we obtain

We also have,

b;(DV") x.x;

2

x
> | I2 .
1+miR*+®

(2.6)

(2.7)

(2.8)

(2.9)



1

b,(DV"b,; = a;(Dd); + f(%aij(’tDv++Dq)))dt 0; = a; ety
0

where
"o
E;j,k = ja_—aU(TDV++D¢)dI, D= v;‘
A Di

It is straight-forward to check that

max max|a;,| < 1.
ijk Q '

Since a;(D ¢)$; = 0, we obtain
|b;(Dv"0;l < @DV < myde™e*™|x].

From this inequality and (2.7), (2.9) we get

e/ + H —m(Rz—%mz) I’I’IIX|2 —wom
LEv +0) > -2+ ———————®|x| +n—1 |imeMe".
v'+0) {m ¢ (1+ng2+q>2 I :
Let
R?

—lme_'"
H_4 *

m= max{ ¢*(1+maR” +¢") E},
4(n—-32)

Then L*(v*+¢)>0in Q x[0,0) and (2.3) is satisfied.

Consider now (2.3)’. In this case one shows in the same way as above that

2_1.2 2
L0 +0) < {%—e“m(k 2 ')(—mﬂl——q)lxl +n —lj}moe"”em

1+miR*+¢?
and, consequently, L5(v™+¢) <0 in Q x [0, o).
It is also clear from (2.4) and (2.5) that

v, D +0(x) = o) = u(x,r) on 9Q x[0,e0),
(2.10)

Vi, 0)+0k) 2 () +0(x) = u(x,0) on Q,



v, )+ 0(x) < 0(x) = u(x,r) on 9Q x[0,c),
(2.10)

VI, 0)+0(x) < up(x)+okx) = u(x,0) on Q.
By the maximum principle, it follows from (2.3), (2.10), and (2.3)’, (2.10)’ that in Q %[0, )
lu(x, )= o) < v(x,0).

Letting C =my/m - e™, we obtain (2.1). The lemma is proved.

Lemma 2.2. Let d(x) = dist(x,0Q), x € Q. There exist positive constants C, and T
depending on Q, the constant C in (2.1), and ® = ¢|| .., Such that

c*@Q)
UG, ) —0(x)] < Cdx)e™, (x,1) e QX[T,o0). (2.11)

Proof. Let Qs={x € Q | d(x) <3} where & is so small thatd € C~(Q;). Put

fd(x)) = (1/k) (1 — e **®), where k is a positive constant to be chosen later, and g (t) = [(T — ),
where ( ), denotes the nonnegative part. Consider the functions

w(x,t) = vix, 1)+ o6(x),
v(x,1) = Clfdx))+g@)le™.

We want to show that by choosing appropriately T, C,, k, and & we can arrange so that w
is an upper barrier for u®(x,¢) in Qs % [T — 1,00). For that we need to verify the following
inequalities for some T > 1:

v(x,1) 2 0 in 0Q X [T —1,00), (2.12)
wx,t) = u(x,t) for d(x)=8 and t>T -1, (2.13)
wx,T-1) > u(x,T-1) in Q (2.14)
Lw > 0 in Q;x (T —1,00). (2.15)

The inequality (2.12) is obviously true in dQ x [0, ). Further, if
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C,0¢*® > C, (2.16)
where C is as in (2.1), then because of (2.1) and since f(8) = 8e™® we have

vx,t) 2 Ce™ = u(x,t)—¢(x) for d(x)=98 and ¢ >0.
This implies (2.13).

Next we note that by (2.1)

v, T-1) 2 Ce? ™V > Ce™ ™V > 4 (x,T-1)—d(x) in Q
provided

C,=C, (2.17)

and this implies (2.14).

Thus, if (2.16), (2.17), and (2.15) can be satisfied, then w is indeed an upper barrier.
Then by the maximum principle

ut(x,1) < wix,t) in Qyx [T —1,00). (2.18)
Since g(¢) =0 for ¢ > T, and because one can choose a constant C, so that

C,fd(x)) < C,d(x) in Q,
we obtain

us(x,1) < C,dx)e™ +o(x) in Qx[T,o0).

The bound from below is obtained by constructing similarly a lower barrier. Thus, we
obtain (2.11).

Consider now (2.15). We have
v, = Ce™fd, v, =Ce™(f"dd +fd],

where d; = 9d/dx;, d; = 9d/0x,0x; and similarly v;, v;. Using the same notation a
proof of Lemma 2.1, we get

;» by asin the

2 2.0, + 0,0,
b;,(Dv)v; = fv’|:q _{Dv+9).Dd) }+f’[qu———v'¢’+¢‘¢’ d }, (2.19)

1+[D(v+9)* 1+|D+¢)* "
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where g =1 +£\/1 +|D (v +¢)|% Here, we used the facts that | Dd| = 1 and dd;d; =0.
In the same way as in the proof of Lemma 2.1 we get
|b,;(Dv)o,| < D|Dv| < @C,fe™. (2.20)
Now using (2.19), (2.20) and noting that f”” < 0, we obtain
L'w 2 Ce™{-u(f+)+g,+[1+ID +)|’T x
[ =T +IDE +0)*) (gl Ad] +D)+|2v,0; + 0,0,)d;| 1}

Recall that d(x) € C*(Q;) for any § < §, : = infyg(1/%,(x)) where K,(x) is the maximum
of the absolute value of the normal curvature of dQ at x € 0Q (see [S], p. 421). Put

p = ldll gy
On the other hand, | Dv| < C,e™. Thus, if
Ce™ V<1 (2.21)
then
L'w > Ce™{-u(1+8)—2+Q2+dD [k —M]d™},
where
M=Q2+®*)[(3+D%)p+ D] +pd2+D) (

and it is assumed thate < 1.

Set
k=M+Q+®D)[2+u(1+8)le, 8 = min(dy2,1/k,1), C, = C5'e*,

and choose T so that (2.21) is satisfied.

Then (2.16), (2.17) are satisfied and
€ 80 - .
L'w 2 Czuze > 0 in Qgx [T —1,00).

The lemma is proved.
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3. Proofs of Theorems 1 and 2

Before we can proceed with the proofs of Theorems 1 and 2, we need to record some
preliminary estimates which allow applications of the estimates in x and t from [OU].

Proposition 3.1. Let

M, = max{maxg | ¢ +u, |, max,, ¢}
and u*(x,t) a solution of (1.13)-(1.15). Then

sup |u(x, 1) < M,, 3.1)
Q x[0,0)

sup |uix,0)| (x,1) < M, (3.2)
Qx[0,e0)

where M is a constant depending on the C*-norms of u, and ¢, and

f(u)uﬂ +&/Du’|Ydx < C, forall t>0. (3.3)
Q

Proof. The inequality (3.1) is a consequence of the maximum principle applied to
(1.13) - (1.15). The inequality (3.2) also follows from the maximum principle applied to the

differentiated in t equation (1.13); one needs to observe here that u, =0 on 0Q x [0, ) and

ut = \1+|D(0+uo) [H (O + ) + €Ay + )] in Qx{0}.

In order to verify (3.3), note first that by (1.13)

f NN e g =0 (3.4)
D\ N1+|Du> '

for any M € Hy(Q) and ¢ >0, where 1; = on/ox;. Take | = u®— ¢ and substitute in (3.4). Then,

taking into account (3.1) and (3.2), and after some straight forward manipulations, we obtain
(3.3). The proposition is proved.

Once the inequalities (3.1)-(3.3) are established we can apply Theorem C in [OU] and
conclude that for any subdomain Q" cc Q and any T > 0 there exists a constant

C =C(dist(Q,0Q),T) such that
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sgpIDuE(x,t)l < C, for te [0,T]. (3.5)

This estimate, (3.2) and standard results on uniformly parabolic equations imply that there is a
subsequence of {1} converging in C*(Q’ x [0,T]), for any k > 0, to some function

u € C7(Q2 x[0,)). The function u satisfies (1.5), (1.7), and it follows from (3.1) - (3.3) that
u,e L(Qx[0,%0)and u € W"Y(Q) for all ¢ 0. It is shown, as in [OU], section 4.13 (cf. [LT],
section 3.2), that u satisfies (1.11).

Proof of Theorem 2. It follows from (1.14) and (2.11) by standard arguments that
| D@ (x,t)—0(x))| < Cse™ in 0Q X [T, o).

By Theorem C’ in [OU], this inequality and (3.1)-(3.3) imply that there exists some ¢ > T such
that

|Du(x,t)] < C; on QX[f,00), (3.6)

where Cq = C¢(t,Cs). Then the solutions {#°} and all their derivatives admit uniform bounds in
Qx[7,T] independent on € for any T’ >t (see [LSU], ch. IV). Therefore, the generalized
solution u(x,t) of (1.5)-(1.7)isin C Qx[r,T’]) and by general results on uniformly parabolic
PDE’s, itisin C ”(ﬁ x [,20)). Consequently, (1.16) and (1.17) are satisfied. The inequality
(1.18) follows now from (2.1) after passing to the limit in € for ¢ > ¢ and, if necessary, replacing
C by a larger constant. Theorem 2 is proved.

4. Proof of Theorem 3

The proof of this theorem follows the same steps as the proofs of Theorems 1 and 2.

For each € > 0 the equation (1.30) is uniformly parabolic and, therefore, the problem
(1.30)-(1.32) admits a solution u* of class C~(Q % [0, 0)). It follows from the maximum
principle that #° is a unique solution.

We begin by establishing C°-estimates for all time.

(a) We may assume that the origin of the coordinate system is inside €. Let By be a ball of
radius R centered at O and containing € strictly inside.

Let
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v(x,1) = m(ZRz—%xz)e"“,

where m = sup| uy(x)|R %, and | a positive constant to be determined. Using (1.21), we obtain
Q

L%

n
— v + V1 +m? x| % ( 3 F,,j me™ +enN1+m? x| % me™
=1

[—2uR? + oy (1 + m x| )™ me™

v

> [2uR?+ o (1 + m?RY ™ me™.

Let i =3"R20,(1 + m*R?) ™. Then L% >0in Qx[0,0) and, clearly, + Lu®=0 < Ly
in Q % [0,0). Obviously, | uy(x)| <v(x,0)in Qand £ u*=0<v on 9Q x[0,). By the
maximum principle

lutx,t)] < v(x,t) in Qx[0,). (4.1)
(b) Next we improve the estimate (4.1) for large t.

LetQs = {xe Q| d(x) < 8} where d(x) = dist(x,0Q) and & > 0 is such that
d e C=(Qs). Put fd(x)) = (1/k)(1 —e™®), x € Q;, where k = const > 0 is to be chosen later.

Consider the function
w(x,1) = c[f(dx))+g@)]le™

where g(¢) =[(T —1),), L asin (4.1), and ¢ >0 a constant to be chosen. Put also d; = dd/ox;
and d; = 9%/0x,0x; and note that | Dd| = 1.

We have
L'w = — uw+cge™ —\N1+|Dw|?
x [Fij(f”didj +f'd‘~j) +e(f”"+f'Ad)lce™ (g, :=0glor).

Since f < 0, we have, using (1.21),
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F,(Dw) (0w/ox;) (Ow/ox;
_ fr/eZw lj( W)( :‘Vz /-f,)( w XJ)

—f"F (Dw)d.d,

[l
(1+|Dw|H)**

v

Using the inequality on the right hand side of (1.21) we get

C,a,

N1+ |Dw|?

where C, is a constant depending on dimension n and C*-norm of d(x) in Q;. Recall that

|F,(Dw)d,| <

d(x) e C*(Q;) for any 0 < §, where 9§, is the same as at the end of the proof of Lemma 2.2.

Noting that g, = —2 and f* > 0, we obtain

_ Sl
1 +c*fe™

—e\1+c2e ™ A+ fAd)]ce™.

We now want to show that one can choose T 2 1, ¢, k, 9, and g, so that

L'w > [-u(f+g)-2- fCo,—

L*w 2 0 forall €<g, in Qzx(T —1,c0),
wx,T—1) = 2me™ ™Y,

w(x,t) = 2me™ in {x e Q|d(x)=8} x[T —1,).

4.2)

(4.3)
(4.4)

4.5)

In order to establish (4.3)-(4.5), we proceed as follows. First, restrict ¢ and T 21 by the

requirement

ce™V <1,

Obviously, ce™ < 1forallt > T—1. Also, g(t) <1forallt > T —1. Next, we note that

fd(x)) € 8, whenx € Q;, 8 <8, Now we obtain from (4.2)
L'w 2 [Q%ko,—C,o)e™ =2 —p(1 +8,) -

—e\/i(“sgfmdl)]ce'”‘ in Qux[T—1,00).

(4.6)
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In this inequality the constant C, depends on the C*-norm of w in Q;. Assuming that 8 < §y2,
we may suppose that C; is determined by the bound on the C*-norm of w in Q; 2

Choose k and 9 so that

%o, —Co e =2 —p(1+8,) > 0 and 8=min{1/k, §y2}.
Next let

¢ =max{2m, 2med'},
and define T as the smallest 7 > 1 satisfying (4.6). Then

wx,T—1) = c[f+gle™ V2 ce™ ™V > 2me™ ",
and (4.4) is satisfied. Further,

W) |y = C(F+8)e™ lypy=s 2 cde e

>2me™ fort > T-1,

and (4.5) is also satisfied. On the other hand, w(x,?) [ = 0 = u®(x,?). This, (4.3)-(4.5), and
the maximum principle imply that for € < g,

[uf(x, )l < wix,t) in Q5 x[T —1,0).
For the rest of this section it is assumed without further reminding that € < g,
Since g(¢) = Ofort > T we conclude that

luf(x,2)] < Cud(x)e™ in Qyx[T,o0),

where C, = ce™. Combining the last inequality with (4.1) and adjusting the constant C, if
necessary we conclude that

lut(x,1)] < Cud(x)e™ in Qx[T,o0). 4.7)
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(c) A standard argument shows now that

ou®

= < Ce™ in 0Q X [T, ),

where v is the exterior unit normal vector field on 0Q. Since u®(x,#) = on d€, we conclude that

|Du‘(x,t)] < C,e™ in 0Q x [T, o). (4.8)

(d) We have the following analogue of Proposition 3.1. Let M= supg| uy| . Then

sup |u‘(x,t) < M, 4.9)
Qx[0,0)
sup |u(x,1) <M, (4.10)
Qx[0,00)

where M is a constant depending on the C*-norm of u,. Also,

J(IDuEI +elDuqdx < ¢, forall t>0, 4.11)
Q
where ¢, = co(My, M, 0).

The inequalities (4.9)-(4.11) are established similarly to (3.1)-(3.3) except that when
proving (4.11) one needs to take into account (1.19).

As in [LU] and [OU], section 4.4, we will use the tangential operator & defined on C Q)
as

0g = Vg —(Vg,N)N,
where g € C'(Q), Vg =(g,, 8, - .. , 84, 0), 8 =9g/0x;, N = (-Du®, 1)/v, and v="\1+|Du"".
Evidently,

18g12 > |Dg|*(1-|Duf’N?) = |Dg|*N?, (4.12)
and using (1.21) we get
o,v|8g|® < Fyg8 < a,v'|Dgl” (4.13)

Rewrite the equation (1.30) as

€

]
dx,‘

where F{ =F;+¢p; and p = Du®. Here and below in this section we omit the argument Du® at F

u—v = 0 in Qx[0,0), 4.14)
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and its derivatives.

Applying the operator (p,/v)d/dx, to (4.14) we obtain

FE
W“Jd i (4.15)

d_ e

where v, = 0v/dt, v; = ov/dx; and
d Dk dFie a Di € € €
As|—|— = — |\ Fou_u,.
|:dxj' ( \% )] dx,, aps v ljunujk

Since
I (&Jggk > v7|E? forall £e R,
op, \ v

and, because of (1.21), A = 0.

Multiply (4.15) by nv™', 1 € Hy(Q), and integrate over Q. After integration by parts on

the left, and estimating the right hand side, using (4.14), (4.12), and the inequality p*v*< 1, we
obtain

v dv
f(;’ﬂ +F§vm,~ +An)dx <M ﬂ—v—llnldx forall >0, (4.16)
Q Q
where M is the constant from the inequality (4.10).

This inequality replaces the inequality (4.22) in [OU]. Formally both look the same, but

the function F here replaces the function V1+ p?in [OU] (also denoted by F in [OU]). Using
(4.16) and (3.1)-(3.3) one derives exact analogues of Theorems C and C” in [OU] for the function
F satisfying conditions (1.19)-(1.21). The arguments used in [OU] to prove Theorems C and C’
carry over to our case with only minor modifications; one only needs to use the structure
conditions (1.19)-(1.21), inequalities (4.9)-(4.11), and (4.13) instead of the corresponding
properties of the function N1+ p?and its derivatives. The details are lengthy but straight
forward and we will not repeat them here.

Once analogues of Theorems C and C’ in [OU] are established we have an estimate of

[Du®(x,t)| in Q" x[0,T] for any Q" cc Q and T > 0, and, on the account of (4.8), we have an

estimate of | Du®(x, )| in Q % [z, ) for some 7 > 0. These estimates are similar to (3.5) and (3.6)

in section 3 and the proof of Theorem 3 is completed in the same way as the proofs of Theorems
2 and 3.
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