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Abstract 

A relatively low-order, linear dynamic model is developed for the longitudinal flight-

dynamics analysis of a flexible, flying-wing research drone, and results are compared to 

previously published results. The model includes the dynamics of both the rigid-body and elastic 

degrees of freedom, and the subject vehicle is designed to flutter within its flight envelope. The 

vehicle of interest is a 12-pound unmanned, flying-wing aircraft with a wingspan of 10 ft. In the 

modeling, the rigid-body degrees of freedom (DOFs) are defined in terms of motion of a vehicle-

fixed coordinate frame, as required for flight-dynamics analysis. As a result, the state variables 

corresponding to the rigid-body DOFs are identical to those used in modeling a rigid vehicle, and 

the additional states are associated with the elastic degrees of freedom. Both body-freedom and 

bending-torsion flutter conditions are indicated by the model, and it is shown that the flutter 

speeds, frequencies, and genesis modes suggested by this low-order model agree very well with 

the analytical predictions and flight-test results reported in the literature. The longitudinal 

dynamics of the vehicle are characterized by a slightly unstable Phugoid mode, a well-damped, 

pitch-dominated, elastic-short-period mode, and the stable or unstable aeroelastic modes. A 

classical, rigid-body, short-period mode does not exist. 
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1. Introduction 

There are several objectives in this research. First and foremost, we seek to develop a 

linear dynamic model for the dynamic analysis of a flexible, flying-wing research drone. This 

model must capture the dynamics of both the rigid-body and elastic degrees of freedom.  Such 

models, sometimes called n-degrees-of-freedom, or NDOF models, are especially important here 

because the vehicle under study was designed to flutter within its flight envelope. Therefore, the 

dynamic models to be developed must appropriately capture key aspects of the vehicles 

dynamics, including the critical flutter conditions. 

We will utilize a modeling methodology that can yield relatively simple dynamic models 

that provide insight into the vehicle’s dynamics, and can be available early in the design-cycle, 

as opposed to later, which is frequently the case. We also require that our models can be easily 

updated, as more accurate data become available. Typically NDOF models are not available until 

quite late in the cycle, due in part to the level of detail used in developing the models. Detailed 

finite-element models (FEMs) require the detailed structural design to be available. And of 

course such information only becomes available late in the design. Plus, such detailed models 

lead to high dynamic order. For example, in the NDOF modeling work reported in Ref. 1, the 

NASTRAN FEM contained 2556 degrees of freedom (DOFs), while the doublet-lattice 

unsteady-aerodynamic model had 2252 aerodynamic DOFs. Finally, strictly numerical models 

are sometimes less than transparent than analytic or semi-analytic models, in terms of developing 

insight into the system. 

We will utilize a modeling approach that fundamentally differs from that frequently taken 

in developing NDOF models (c.f., Refs. 2-3). Sophisticated modeling techniques have been 

developed within the aeroelasticicity/structural-dynamics communities for flutter and loads 
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predictions in aircraft design, and these tools and methodologies have been tailored and 

optimized to accomplish these specific objectives. Traditionally, these models only considered 

the elastic DOFs. But with coupling between the rigid-body and elastic degrees of freedom now 

becoming more prevalent, these traditional flutter-analysis tools are being extended in an attempt 

to also capture the rigid-body DOFs. In contrast, one may view our approach as beginning with a 

rigid-body flight-dynamics model and extending it to include the elastic degrees of freedom. 

Major differences exist between flutter-modeling approaches and models developed for 

flight-dynamics analysis. These differences typically include, for example, the exclusion of the 

surge-translation rigid-body DOF in flutter models, hence eliminating the Phugoid mode. But the 

primary differences between the two modeling approaches involve the coordinate frames used in 

deriving the equations of motion, and the model format. In flutter models all the DOFs, as well 

as aerodynamic forces and moments, are defined in inertial coordinates, or in an inertial 

reference frame, while in flight-dynamics modeling the rigid-body DOFs, forces, and moments 

are always defined in vehicle-fixed, non-inertial coordinates. The latter approach yields time-

invariant vehicle-mass properties and is compatible with typical on-board sensor measurements, 

for example. The use of inertial coordinates in the flutter models thus requires extensive 

modifications and transformations of the results to allow for the merger of these results with the 

flight-dynamics model governing the rigid-body degrees of freedom (Refs. 2 and 3). We avoid 

such transformations by working entirely in the vehicle-fixed, non-inertial reference frame. 

The model formats also differ drastically between the flutter models and flight-dynamics 

models. The former are almost always numerical models or computer codes, while the later is 

frequently a semi-analytical model, in which parameters (e.g., aerodynamic stability derivatives) 
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may be updated easily as they become available. Furthermore, useful state-variable definitions 

help yield insight into the results. 

 The modeling approach to be utilized, depicted in Fig. 1 and taken from Refs. 4 and 5, is 

consistent with conventional aeroelastic theory (c.f., Ref. 6), but develops an integrated NDOF 

model from first principles using a vehicle-fixed, or non-inertial, reference frame from the outset. 

Plus, as will be seen later, the state definitions in this NDOF model are more consistent with 

conventional flight-dynamic models, thus making the dynamics more transparent and the model 

results easier to interpret and validate. The dashed box in Fig. 1 indicates that unsteady 

aerodynamics may or may not be specifically included in the modeling. Finally, to meet the 

second goal of obtaining dynamic models earlier in the design cycle, a simpler FEM model, 

implemented in a MATLAB® script, is used to obtain the vibration solution, a variety of methods 

are used to estimate the rigid-body stability derivatives, and quasi-steady or unsteady strip-

theoretic techniques (Refs. 4-7), also implemented in a MATLAB® script, are applied to estimate 

the aeroelastic stability derivatives (or aerodynamic influence coefficients).  

Figure 1, Modeling Methodology 
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2. Vehicle Description 

The vehicle of interest is Lockheed Martin’s Free-Flight Aeroelastic Demonstrator 

(FFAD) aircraft, shown schematically in Fig. 2. One of these vehicles was provided for flight 

research to the Unmanned Air Vehicle (UAV) Lab of the University of Minnesota (UMN), and 

we are collaborating in this research. These vehicles are precursors to the unmanned, multi-

utility X-56A vehicle currently undergoing flight testing at NASA’s Armstrong Flight Research 

Center. The FFAD vehicle was designed to exhibit two symmetric flutter conditions in the 

longitudinal dynamics, involving the first two or three symmetric vibration modes. Traditional 

bending-torsion aeroelastic flutter is also exhibited in the lateral-directional dynamics, but the 

focus here will be on the longitudinal dynamics.  

The FFAD is a low-speed swept-back flying wing with winglets on the wing tips for 

directional stability and an electric motor driving a pusher propeller (not shown in the figure) 

mounted at the top rear of the rigid center body. The entire trailing edge of the wing consists of 

eight control surfaces. The vehicle’s mass properties, provided by the UMN (Ref. 8), are 

summarized in Table 1. The vehicle planform is shown in Fig. 3, and the planform characteristics 

are summarized in Table 2. Note that this is a fairly small, lightweight, unmanned vehicle. 

 

 
Figure 2, Vehicle Configuration 
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Table 1, Vehicle Mass Properties 

Property Value 

Total Weight 1.99 lb 

C.G. Location 23.26 in (from nose) 

Pitch Moment of Inertia 1245.8 lb-in2 

Roll Moment of Inertia 8529.5 lb-in2 

Yaw Moment of Inertia 8118.4 lb-in2 

Product of Inertia (est) -0.30 ln-in2 

 

 
Figure 3, Vehicle Planform 

 
Table 2, Planform Description 

Planform 
Area, S Span, b Aspect 

Ratio, AR 
Taper 

Ratio, λ  M.A.C., c  LE Sweep, ΛLE 

11.67 ft2 10 ft 8.57 4.25 1.313 ft 22 deg 
 
3. Rigid-Body Longitudinal Dynamics 

The rigid-body aerodynamic characteristics of the vehicle were estimated using 

classical/semi-empirical methods as presented in the USAF Stability and Control DATCOM 

(Ref. 9). This analysis was performed using the legacy FORTRAN code Digital DATCOM (Ref. 

10), executed on a 64-bit Mac Pro desktop computer using a public-domain FORTRAN 

compiler. All other numerical analyses were performed in MATLAB®. Future flight tests are 
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planned by the UMN, and as that test data become available the rigid-body aerodynamic data 

may be easily updated.  

The estimated rigid-body stability derivatives are presented in Table 3. Based on this 

data, note that the rigid vehicle is statically stable, with a static margin of 

 SM =
−CMα

CLα

=
0.310
4.074

= 7.6%  

Also note that the  α  derivatives, primarily associated with lag of downwash on a trailing lifting 

surface, are typically negligible on a flying wing. No direct comparison between this data 

Lockheed Martin’s was performed, since rigid-body aerodynamics were not reported in Ref. 1. 

Table 3, Rigid-Body Longitudinal Stability Derivatives 

 
CLα

/rad 
 
CMα

/rad 
 
CLq

/rad 
 
CMq

/rad CLδ1
/rad CMδ1

/rad 

4.074 -0.310 2.657 -3.830 0.774 -0.014* 

CLδ2
/rad CMδ2

/rad CLδ3
/rad CMδ3

/rad CLδ4
/rad CMδ4

/rad 
0.630 -0.246 0.530 -0.410 0.301 -0.353 

 
CDα

/rad
 
CDδ1

/rad CDδ2
/rad CDδ3

/rad CDδ4
/rad 

0.129 0.0012 0.0015 0.0018 0.0012 
                                                                * From UMN UAV Lab 

 
For a flight condition corresponding to level flight at 1000 ft altitude and a velocity of 60 

fps, the transfer functions for the pitch-attitude and plunge-acceleration (at the cg) responses 

from symmetric deflections of surfaces L3 and R3 (defined here as elevator deflections δE) are 

 

θcg (s)
−δ E (s)

= 105 [0.049][6.66]
[−0.01,0.54][0.73,12.43]

  deg/deg

nZ−cg (s)
−δ E (s)

= 109 [0][−0.285][0.3617][5.64]
[−0.01,0.54][0.73,12.43]

ft/sec2 /deg

 1 

(Here a shorthand notation in used. Two terms in square brackets denote the damping and 

frequency of a quadratic polynomial, and a single term in brackets denotes the negative of the 
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root of a first-order polynomial.) The Phugoid mode is slightly unstable, with a frequency of 0.54 

rad/sec, while the short period is stable and well damped, with a natural frequency of 12.4 

rad/sec. Also, the attitude numerator roots are 1 /Tθ1 = 0.049 /sec and 1 /Tθ2 = 6.66 /sec. 

 The eigenvector, or mode shape, for the short-period mode is depicted in Fig. 4, and a 

traditional short-period mode shape is evident (See Ref. 4.). That us, the mode is dominated by 

pitch rate, with angle of attack and pitch attitude making moderate contributions to the modal 

response. These latter two responses, furthermore, lag the pitch rate by a little over 90 deg in 

phase. The contribution of surge velocity u to the short-period response is so small it cannot be 

plotted in the figure. All these characteristics are indicative of a traditional short-period mode. 

The other eigenvector associated with the Phugoid mode is dominated by surge velocity, again as 

typical. Note that rather conventional aircraft attitude dynamics are exhibited. 

 

Figure 4, Short-Period Eigenvector (Mode Shape) 
 

As the flight velocity increases from near 60 fps to approximately 100 fps, the 

longitudinal modal eigenvalues migrate as shown in Fig. 5. The short-period mode remains 

stable and well damped, while the locations of the Phugoid poles change little. 

q, rad/sec α, rad θ, rad 
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Figure 5, Longitudinal Dynamic-Pressure Root Locus (Rigid Vehicle) 

 
4. Structural Vibration Characteristics 
  

As noted in Section 1, a relatively simple FEM developed in MATLAB® at the UMN 

(Ref. 11) was used to characterize the vehicle’s structural-vibration properties. Simple beam 

elements and only 14 nodes were used, resulting in 42 structural DOFs in this model. The nodal 

geometry and structural coordinate frame used in the FEM are shown in Fig. 6. This FEM, along 

with ground-vibration tests (GVT) performed at the UMN (Ref. 12), were used to obtain the 

free-vibration modal frequencies and dampings, mode shapes, and generalized masses used in 

our model development.  

Short Period 

Phugoid 

V∞ 
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Figure 6, Finite-Element Coordinate Frame and Node Schematic 

 
The vibration-modal results are summarized in Table 4 for the first three of the seven 

symmetric modes from the FEM, along with some results from Ref. 1. There is good agreement 

in modal frequency for the first bending mode, but the FEM analysis predicted the frequency of 

the second and third modes to be significantly lower and higher, respectively, than thoe obtained 

in the GVTs, as well as those listed in Ref. 1. These frequency differences are still under 

investigation, but in our modeling effort reported here the GVT frequenies of 117.8 rad/sec and 

145.7 rad/sec will be used for the second and third modes, along with the other modal frequency 

and dampings obtained from the UMN GVTs. Modal dampings and generalized masses were not 

reported in Ref. 1, so no comparisons could be made among these parameters. 

Table 4, Structural Vibration Characteristics 

Data and Source Sym 1st Bending Sym 1st Torsion Sym 2nd Bending 
Frequency, UMN FEM 34.9 r/s 94.5 r/s 163.2 r/s 
 Frequency, UMN GVT 34.6 r/s 117.8 r/s 145.6 r/s 
Frequency, LM (Ref. 1) 35.4 r/s 123.4 r/s 147.3 r/s 
Damping, UMN GVT 1.55% 2.06% 2.85% 

Gen. Mass, UMN FEM 0.28950 sl-ft2 0. 00772 sl-ft2 0. 05239 sl-ft2 
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The mode shapes for these first three symmetric modes obtained form the FEM are 

shown in Figs. 7-9, respectively. The plunge-translational displacement (Z) along the wing 

elastic axis and wing torsional (pitch) displacement are both indicated. Chordwise bending is not 

considered. These mode shapes agree qualitatively with those presented in Ref. 1. Note the sign 

convention on modal displacements has been appropriately converted. Vertical displacements are 

now (Z) positive down, and torsional (θ ) are positive leading-edge up. It is clear from Figs. 7 

and 9 that the first and third symmetric modes exhibit simultaneous bending and torsional 

displacements, but are referred to herein as “bending” modes. The second symmetric mode shape 

in Fig. 8 exhibits almost pure torsional displacement.  

 
Figure 7, Mode Shape, First Symmetric Mode 
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Figure 8, Mode Shape, Second Symmetric Mode 

        
Figure 9, Mode Shape, Third Symmetric Mode 

As noted in Ref. 4, for example, one can describe the instantaneous shape of the structure 

in terms of the n free-vibration mode shapes and modal coordinates, if n is sufficiently large. 

That is, the instantaneous elastic deformation dE of the vehicle’s structure at location p on the 

undeformed vehicle can expressed in terms of the n vibration mode shapes evaluated at location 

p, or ν i(p), and the n time-dependent vibration modal coordinates ηi(t) as 
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 dE (p,t) = νi
i=1

n

∑ (p)ηi (t)  2 

When all ηi = 0, therefore, the vehicle is in its undeformed shape.  

The system states associated with these n elastic degrees of freedom are initially chosen 

to be the corresponding free-vibration modal coordinates ηi(t). Furthermore, from Lagrange’s 

equation, these n modal coordinates are governed by n second order equations of the following 

form 

   ηi (t) + 2ζ iω i η(t) +ω i
2ηi = Qi / Mi  3 

where  ζi = vibration modal damping 

  ωi = vibration modal frequency 

  Qi = generalized force acting on the i’th modal coordinate 

  Mi = generalized mass of the i’th vibration mode 

Since one of our research objectives is to develop a relatively low-order dynamic model, we will 

here include only the first three symmetric modes, or here n = 3. We also know from Ref. 1 that 

at least the first two modes are critical to the flutter characteristics. 

 
5. The Aeroelastic Coefficients 
 

The aerodynamic forces and moments on a flight vehicle arise from both rigid-body 

motion and elastic deformation. Or, as discussed in Ref. 4 and consistent with small-disturbance 

theory, if F is the vector of aerodynamic forces and moments, including aeroelastic generalized 

forces, then we may write 

 F = ARxR +AExE + BCu  4 

in which     xRB = state vector representing the rigid-body DOF’s (urig ,wrig or αrig,  θrig,  qrig) 

        xE = state vector consisting of elastic modal coordinates (ηi,  ηi  the free-vibration  
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               modal coordinates) 

        u = vector of control-surface displacements 

        AR, AE, BC = matrices of dimensional stability derivatives – both rigid-body and  

     aeroelastic 

By appropriately partitioning the vector F and the matrices above, let’s define 

 
 
F =

FR
FE
⎡

⎣
⎢

⎤

⎦
⎥, AR 

ARR

ARE

⎡

⎣
⎢

⎤

⎦
⎥, AE 

AER

AEE

⎡

⎣
⎢

⎤

⎦
⎥, BC 

BR

BE

⎡

⎣
⎢

⎤

⎦
⎥  5 

Now note that the elements of the matrices ARR and BR are functions of the rigid-body stability 

derivatives discussed previously, and would already be contained in a flight-dynamics model of 

the rigid vehicle in its undeformed shape, since FR (without the elastic contributions) would be 

incorporated in that model. The remaining dimensional derivatives in the matrices ARE, AER, AEE, 

and BE are to be discussed here. 

 Considering only longitudinal forces and moment FX, FZ, and M, and the generalized 

forces acting on the n symmetric vibration-modal coordinates, the four matrices of interest may 

be written as 

 

ARE = q∞Sc

CQ1u
CQ1w

0 CQ1q

   
CQnu

CQnw
0 CQnq

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, AER = diag q∞S, q∞S, q∞Sc( )
CXη1

CX η1
 CXηn

CX ηn

CZη1
CZ η1

 CZηn
CZ ηn

CMη1
CM η1

 CMηn
CM ηn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

 6 

 

AEE = q∞Sc

CQ1η1
CQ1 η1

 CQ1ηn
CQ1 ηn

    
CQnη1

CQn η1
 CQnηn

CQn ηn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, BE = q∞Sc

CQ1u1
 CQ1um

  
CQnu1

 CQnum

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Again as discussed in Ref. 4, various methods exist to estimate the aeroelastic coefficients 

appearing in the above four matrices. But integral expressions are given in that reference for 

estimating these coefficients, and these integrals are expressed in terms of lifting-surface 
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geometry, the aerodynamic properties of the 2-D airfoil sections, and the free-vibration mode 

shapes discussed above. Unsteady-aerodynamic effects will be assumed negligible here. If 

unsteady affects are deemed necessary to more accurately capture the flutter speeds, they may be 

added at a later time. 

Using the integral expressions given in Ref. 4, plus those given in the Appendix, all 

evaluated in MATLAB®, the aeroelastic coefficients are given in Table 5. The effect of elastic 

deformation on the vehicle drag is assumed negligible. Several of the coefficients are inversely 

proportion to the flight velocity, so for these coefficients the values listed in the table is the 

coefficient’s value multiplied by flight velocity. Finally, the four control deflections δ1−δ4 

correspond to symmetric deflections of control surfaces one through four along the wings, 

respectively, as shown in Fig. 2. As with the rigid-body aero stability derivatives, no direct 

comparison between these results and those from LM was performed, since they were not 

reported in Ref. 1. 

Table 5, Aeroelastic Coefficients  

CLη1
 

 
CL η1

V∞ (ft) CMη1
 

 
CM η1

 V∞ (ft) CQ1α
 CQ1q

 V∞ (ft) CQ1δ1
 CQ1δ2

 

3.0018 -0.6221 -0.0138 1.4328 1.0025 1.4359 -0.3899 -0.1402 
CQ1δ3

 CQ1δ4
 CQ1η1

 CQ1η2
 CQ1η3

 
 
CQ1 η1

 V∞ (ft) 
 
CQ1 η2

 V∞ (ft) 
 
CQ1 η3

 V∞ (ft) 

0.1076 0.4524 0.2877 1.3324 -0.3901 -1.8350 0.0070 -0.2397 
CLη2

 
 
CL η2

 V∞ (ft) CMη2
 

 
CM η2

 V∞ (ft) CQ2α
 CQ2q

 V∞ (ft) CQ2δ1
 CQ2δ2

 

2.0552 0.0102 -1.1107 -0.0005 0.3499 0.2501 0.0067 0.0019 
CQ2δ3

 CQ2δ4
 CQ2η1

 CQ2η2
 CQ2η3

 
 
CQ2 η1

 V∞ (ft) 
 
CQ2 η2

 V∞ (ft) 
 
CQ2 η3

 V∞ (ft) 

0.0063 0.0027 0.1398 0.2972 -0.0491   -0.2620 -0.075* 0.0544     
CLη3

 
 
CL η 3

V∞ (ft) CMη3
 

 
CM η3

 V∞ (ft) CQ3α
 CQ3q

 V∞ (ft) CQ3δ1
 CQ3δ2

 

-0.3220 0.1740 0.2326 -0.0466 -0.1903 -0.0990 0.1136 -0.0427 
CQ3δ3

 CQ3δ4
 CQ3η1

 CQ3η2
 CQ3η3

 
 
CQ3 η1

 V∞ (ft) 
 
CQ3 η2

 V∞ (ft) 
 
CQ3 η3

 V∞ (ft) 

-0.2421 0.0093 -0.0337 -0.2531 -0.0855 -0.1593 0.0084 -0.6013 
                  * Adjusted 
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6. The NDOF Model – Model Structure 
 
 As noted previously, the first three symmetric vibration modes will be included in the 

modeling process, and body-freedom flutter and bending-torsion flutter is expected to involve at 

least the first two of these elastic degrees of freedom. The resulting state-variable model takes 

the form given in Eqns. 7 below, with the first four states corresponding to the three rigid-body 

degrees of freedom, while the last six states correspond to the three elastic degrees of freedom. 

Note that the states associated with the rigid-body degrees of freedom are identical to those in the 

rigid-body model presented previously. That is, in the longitudinal axes the first four states are 

surge velocity urig, vehicle angle of attack αrig, vehicle pitch attitude θrig, and vehicle pitch rate 

qrig, which describe the motion of the vehicle-fixed frame or mean axes (see Ref. 4 for 

definitions). Consequently, the state vector is composed of purely rigid-body and elastic states, 

and note the natural partitioning of the system into rigid-body and elastic subsystems. The A-

matrix partitioning indicated below are related, but not identical to those given in Eqn. 5. In the 

rows of the A and B matrices corresponding to the elastic degrees of freedom, the terms denoted 

as   
Zη , Mη ,  and Ξ•  are the dimensional aeroelastic derivatives found from the aeroelastic 

coefficients given in Table 5. 



 Submitted to the Journal of Aircraft May 19, 2015  

 17 

 

xT = urig α rig θrig qrig η1 η1 η2 η2 η3 η3⎡
⎣

⎤
⎦

A =

Xu Xα −g Xq 0 0  0 0

Zu / U0 Zα / U0 0 1+ Zq / U0 Zη1
/ U0 Z η1 / U0  Zη3

/ U0 Z η3 / U0

0 0 0 1 0 0  0 0
Mu Mα 0 Mq Mη1

M η1
 Mη3

M η3

0 0 0 0 0 1  0 0
0 Ξ1α 0 Ξ1q Ξ1η1 −ω1

2 Ξ1 η1 − 2ζ1ω1  Ξ1η3 Ξ1 η3
        
0 0 0 0 0 0  0 1
0 Ξ3α

0 Ξ3q
Ξ0η1

Ξ3 η1
 Ξ3η3

−ω 3
2 Ξ3 η3

− 2ζ 3ω 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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A =
ARR ARE

AER AEE

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

              B =

Xδ1
 Xδ 4

Zδ1
/ U0  Zδ 4

/ U0

0  0
Mδ1

 Mδ 4

0  0
Ξ1δ1

 Ξ1δ4

0  0
Ξ2δ1

 Ξ2δ4

0  0
Ξ3δ4

 Ξ3δ4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=
BR

BE

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

7. Flutter Analysis 
 

Now consider Fig. 9, showing the dynamic-pressure root locus for the system A matrix 

just described. The eigenvalue (pole) locations are shown for seven flight velocities between 30 

and 60 kt (51–101 fps). The system modes are labeled according to their modal genesis. That is, 

the mode branches are identified according to their genesis mode of pure rigid-body mode or 

pure free-vibration mode with no aerodynamic forces. But to be clear, all the modes involve 
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coupling through the aerodynamics, and hence are not pure short period, pure bending-torsion 

vibration, etc. 

                            
 
Now consider the branch labeled “Short Period.” As the flight velocity, or dynamic 

pressure, increases, the roots move away from the origin, as in the rigid-body case shown in Fig. 

5. But here they move farther into the left-half plane. The next branch labeled “1st Bending” 

begins at the pole from the first symmetric-bending vibration mode, almost on the imaginary axis 

at 34.6 rad/sec (the vibration frequency), and initially moves further into the left-half plane for 

the lower flight velocities. But as flight velocity continues to increase, this branch loops back 

around to the right and eventually crosses the imaginary axis. This axis crossing corresponds to 

the flutter condition known as body-freedom flutter (BFF), and for this model BFF occurs at a 
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flight velocity of approximately 47 kt (78 fps) and with a flutter frequency of 27.5 rad/sec (4.4 

Hz). Body-freedom flutter is a unique aeroelastic phenomenon that involves interactions between 

the rigid-body and elastic DOFs, or the “short-period” and the “first-bending” modes here. This 

flutter phenomenon was first discovered on forward-swept wing aircraft like the X-29 (Ref. 13). 

Next, with regard to the branch labeled “1st Torsion,” it begins at the pole arising from 

the second symmetric vibration mode, almost on the imaginary axis at 117.8 rad/sec, and also 

begins moving into the left-half plane. But as flight velocity continues to increase, it also curves 

back to the right and crosses the imaginary axis, indicating another flutter mode involving the 

first-bending and first-torsion modes. This flutter condition, as modeled, occurs at a flight 

velocity of approximately 57 kt (65.5 fps), and with a flutter frequency of 80 rad/sec (12.7 Hz). 

Finally, consider the branch labeled “2nd Bending. This branch begins near the imaginary 

axis at 145.6 rad/sec, this mode’s vibration frequency, and as the flight velocity increases, these 

roots simply move further into the left half plane. The Phugoid roots remain near the origin at all 

flight velocities. 

Some variations on the above model were also considered, which involve truncating or 

residualizing the second and/or third elastic degrees of freedom. Residualization yields a 

reduced-order model that retains the static-elastic effects of the residualized degrees of freedom 

on the aerodynamics, while truncation eliminates both the dynamics and the static-elastic 

aerodynamic effects of the truncated degrees of freedom.  

First, neither truncation nor residualization of the third elastic degree of freedom alone 

had a major effect on the flutter results. The main result was slight modifications of the 

dampings of the retained aeroelastic DOFs, while slightly affecting the flutter speeds. The 
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conclusion here is that this third elastic degree of freedom has a small but measurable effect on 

the flutter characteristics. 

However, truncation or residualization of both the second and third elastic degrees of 

freedom leads to quite different results. Considering the dynamic-pressure, or q, root loci in Fig. 

10, the q root locus for the original 10th order model is again shown in blue, but the imaginary 

axis has a maximum value of only 50 rad/sec, not showing the first-torsion or second-bending 

branches, to enlarge the low-frequency region of the complex plane. The q locus for the 

truncated model is also shown in red for 40-45-50 kt, while the locus for the residualized model 

is shown in green for the same velocities. As can be noted, the q locus for the truncated model is 

quite different from the other two, and is very similar to that for the rigid vehicle (Fig. 5), except 

for the additional aeroelastic mode here. Neither the “Short-Period” nor the “1st Bending” roots 

move as much with flight velocity, and no flutter instability is indicated over this range of 

velocity. So the “Short-Period” and “1st-bending” modes appear to interact much less in the 

absence of the “1st Torsion” mode. 

In contrast, the q root locus for the residualized model (plotted in green) is quite similar 

to that for the full-order model (except for the absence of the branches labeled “1st Torsion” and 

“2nd Bending). There again exists considerable interaction between the “Short-Period” and “1st 

Bending” modes, and this model also suggests BFF occurs at a flight velocity of approximately 

47 kt (79 fps) with a flutter frequency of 27.5 rad/sec. These results are almost identical to those 

obtained from the 10th-order model for the BFF condition, and these combined results also 

indicate that the static-elastic effects of the first-torsion mode, included in the residualized 

model, are important to the existence of BFF here.  
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Figure 10, Comparison of the q Loci 

When comparing all these results with LM’s analytical results reported in Ref. 1, we find 

quite good agreement in terms of the presence of the two flutter conditions, and with regards to 

the flutter speeds, flutter frequencies, and genesis modes of the flutter conditions. Plus, the flight-

test results reported in Ref. 1 confirmed a critical flutter speed of approximately 46 kts, or 77.7 

fps, which again agrees quite well with the BFF condition indicated by both our full-order and 

residualized models. In addition, as with the LM modeling our full-order model indicates a 57 kt 

flutter speed along with a 12.7 Hz flutter frequency, for the bending-torsion flutter mode. All 

these results are summarized in Table 6 below. 
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Table 6, Comparison Of Flutter Speeds and Frequencies 

Model/Test BFF Flutter 
Speed 

BFF Flutter 
Frequency 

BT Flutter 
Speed 

BT Flutter 
Frequency 

LM Analytical 43 kt 4.2 Hz 57 kt 10.5 Hz 
LM Flight Test 46 kt 4.5 Hz NA NA 

Full-Order Model 47 kt 4.4 Hz 57 kt 12.7 Hz 
Residualized Model 47 kt 4.4 HZ NA NA 

Truncated Model No Flutter No Flutter NA NA 
 

As a final comparison with the Lockheed Martin results, consider Fig. 11. A velocity-

frequency-damping (VFG) plot is shown, taken from Ref. 1, which indicates the frequencies and 

dampings of the system modes, plotted versus flight velocity. This plot shows LM’s analytical 

results for both the symmetric (longitudinal) and anti-symmetric (lateral-directional) modes, but 

we are only concerned with the symmetric modes and the longitudinal axis. The results from our 

full-order model are also indicated in this plot by the dots in colors matching the corresponding 

curves shown in the VFG plot, at several selected flight velocities. These model-based results 

agree quite well in terms of the flutter speeds, and in terms of both frequency and damping of the 

three longitudinal modes – “Short Period,”  “1st Bending,” and “1st Torsion.” And the predicted 

BFF flutter speeds of about 47 kt agrees even better with the flight-test results, which indicated a 

flutter speed of 46 kt, slightly higher than suggested by LM’s analytical results. 

Any differences between the results from our models and those from Lockheed Martin 

could be attributed to many factors. Of course, the modeling methodologies probably differ, as 

discussed at the outset, and unsteady-aerodynamic effects have been ignored here. But the data 

upon which the models are based also likely differ, and most of this data could not be directly 

compared. For example, we are not able to compare our rigid-body aerodynamics or the mode 

shapes and generalized masses of the vibration modes with LM’s. Plus, there are some 
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differences between the free-vibration frequencies used in the modeling. But in spite of this fact, 

and of the simplicity of the model presented here, the agreement with LM’s results is quite good. 

 

 
Figure 11, VFG Flutter-Plot Comparison 

 
8. Flight Dynamics Analysis 
 

The transfer functions for the pitch attitude and plunge acceleration (measured at the 

vehicle’s cg on the center-body centerline) from elevator ( δ3 ) are given below for the full-order 

model. The flight condition is 3000 ft altitude and 60 fps velocity. These two dynamic responses 

include the effects of dynamic elastic deformations at that point on the structure corresponding to 

the cg location of the undeformed vehicle. When comparing these transfer functions with those 

for the rigid vehicle given in Eqns. 1, note that the system is now 10th order, instead of fourth, 
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have been affected. In particular, 1/Tθ1 = 0.054  /sec and 1/Tθ2 = 7.04 /sec. Since 1/Tθ2  is 

roughly proportional to the lift effectiveness Zα, we see that the lift effectiveness has been 

increased due to the wing twisting. This will be discussed further later in this section.  The 

presence of the aeroelastic modes is indicated by the three sets of higher-frequency dipoles (pole-

zero pairs) in each of these transfer functions. The two “highest-frequency” zeros in the 

acceleration transfer function are effectively at infinity in the complex plane. 

 
θcg (s)
−δ 3(s)

= 65.24 [0.0536][7.044][0.22,41.2][0.05,101.7][0.05,165.3]
[−0.01,0.61][0.59,18.1][0.15,30.9][0.07,103.7][0.08,146.0]  

deg/deg
 
 

 8 
nZ−cg (s)
−δ 3(s)

= −0.2276 [0][ − 0.0279][29.58][−25.58][0.24,42.3][0.07,104.1][−282.6][246]
[−0.01,0.61][0.59,18.1][0.15,30.9][0.07,103.7][0.08,146.0]   

ft/sec2/deg
 

 
The second mode, with a natural frequency of around 18 rad/sec, corresponds to the 

short-period mode of the rigid vehicle. However, it is no longer a classical short-period mode. 

This mode’s eigenvector (or mode shape), after a state transformation that non-dimensionalizes 

the surge velocity u (= u/U0), and converts the elastic states to elastic pitch deformation 

measured at the vehicle centerline θE1, θE2, and θE3 is depicted in Fig. 12. Note that unlike the 

conventional short-period mode shape for the rigid vehicle in Fig. 4, the second largest 

contributor to this modal response is the pitch-rate displacement associated with the first 

aeroelastic degree of freedom    
θE1 . For the rigid vehicle, this component is of course absent in 

the short-period modal response, and the second largest contributors are rigid-body angle of 

attack αrig and pitch attitude θrig. So as in a true short-period mode, there is virtually no surge 

velocity urig present in the mode shape, the mode is dominated by the rigid-body pitch-rate 

response of the vehicle qrig, and the phase relationships between pitch rate, pitch attitude, and 
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angle of attack are as in the conventional short-period mode. But this mode is a coupled rigid-

body and elastic mode.  

 
Figure 12, “Elastic Short-Period” Mode Eigenvector (Mode Shape) 

 The next-highest-frequency mode reflected in the transfer functions is the lightly damped 

first aeroelastic mode (AE Mode 1), with an undamped natural frequency of approximately 31 

rad/sec. This mode’s eigenvector (or mode shape) is depicted in Fig. 13. This mode is also a 

coupled rigid-body/elastic mode, but is dominated by the elastic pitch-rate deformation at the 

vehicle’s center body associated with the first elastic (bending-torsion) degree of freedom,    
θE1 . 

The next largest contributor to this modal response is the rigid-body pitch rate (or the pitch rate 

of the mean axis of the vehicle) qrig. And the next largest contributor after that is elastic pitch rate 

of the center body associated with the second elastic degree of freedom    
θE 2 . There are also small 

contributions from the rigid-body angle of attack and pitch attitude, but they are so small that 

they are difficult to display in the figure, and there is again virtually no surge velocity urig present 

in this modal response. So as with the elastic-short-period mode in Fig. 12, this first aeroelastic 

mode exhibits rigid-elastic coupling, leading to the body-freedom-flutter condition at higher 

flight velocity. 
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Figure 13, Coupled First and Second Aeroelastic Mode Eigenvectors (Mode Shapes) 
 
The next-highest-frequency mode here is the second aeroelastic mode (AE Mode 2), with 

an undamped natural frequency of approximately 104 rad/sec. This mode’s eigenvector (or mode 

shape) is also depicted in Fig. 13. Recall the genesis of this mode was a purely torsional 

vibration mode. This mode is now also a coupled rigid-body/elastic mode, but is dominated by 

the elastic pitch-rate deformation of the vehicle’s center body associated with the second elastic 

degree of freedom    
θE 2 . The next largest contributors to this modal response are the rigid-body 

pitch rate qrig and the elastic pitch rate of the center body associated with the first elastic degree 

of freedom    
θE1 . The remaining contributors are so small that they are difficult to display in the 

figure, and there is virtually no surge velocity urig present in this modal response either. It is 

interesting to note that in this modal response the pitch-rate deformation of the first two elastic 

degrees of freedom    
θE1  and θE 2  are almost perfectly in phase, while the rigid-body pitch rate qrig 

is out of phase with these two responses. Again this second aeroelastic mode exhibits rigid-

elastic coupling, and it is this coupling that also contributes to the existence of the body-freedom-

flutter condition at higher flight velocity.  

The last mode is the third aeroelastic mode (mode shape not plotted) with an undamped 

frequency of 146 rad/sec, and it is almost entirely dominated by elastic pitch-rate deformation 
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associated with the third elastic degree of freedom, or    
θE3 . There are only slight contributions 

due to    
θE1  and θE 2 , as well as qrig. So this is almost a pure aeroelastic mode. 

Bode plots of the pitch rate and plunge acceleration from (negative) elevator, measured at 

the point on the structure corresponding to the cg location of the undeformed vehicle are shown 

in Figs. 14 and 15, respectively. The unstable Phugoid mode is evident in both responses, but the 

magnitude and phase contributions from the well-damped short-period-like mode near 18 rad/sec 

merges with those from the first aeroelastic mode near 31 rad/sec. The two dipoles associated 

with the lightly-damped aeroelastic modes near 104 and 146 rad/sec are also evident in Fig. 14. 

 
Figure 14, Bode Plot – Pitch Rate (qcg) From Negative Elevator (deg/deg) 
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Figure 15, Bode Plot – Plunge Acceleration ( nz cg ) From Negative Elevator (fps/deg) 

 As a final topic, we will derive and discuss another reduced-order model of the elastic 

vehicle. This model is obtained by residualizing all three elastic degrees of freedom, yielding a 

model for the dynamics of the rigid-body degrees of freedom only, but including the effects of 

static displacements of the elastic degrees of freedom by adjusting the aerodynamic stability 

derivatives. This model represents the “rigid-body” dynamics of the vehicle in its in-flight shape 

under load, as opposed to the model in Section 3 that reflects the dynamics of the vehicle in its 

undeformed or rigid shape. The differences between the stability derivatives in these two models 

represent measures of the flexibility of the structure. 

 The adjusted aerodynamic stability derivatives for the residualized model are obtained as 

follows (Ref. 4). Consistent with Eqns. 7, consider the linearized equations of motion for the 

longitudinal dynamics written in the following form: 

M
ag

ni
tu

de
 (d

B)

-40

-20

0

20

40

60

10-1 100 101 102 103

Ph
as

e 
(d

eg
)

-180

-90

0

90

180

Bode Diagram

Frequency  (rad/s)



 Submitted to the Journal of Aircraft May 19, 2015  

 29 

 

    

x R = A0 Rx R + ARRx R + ARη AR η
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⎤
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x E +BRu
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0 0
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⎢
⎢

⎤

⎦
⎥
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x E +BEu

  9 

where the rigid-body and elastic states, control inputs, etc. are given as 
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  10 

The elements of the remaining matrices are dimensional stability derivatives such as Mα in the 

aerodynamic model for the forces, moments, and generalized forces.  

 Setting the elastic-rates to zero, and solving for the static-elastic displacements we have  

 
   
ηo = − A0η + AEη( )−1

AERx R +BEu( )   11 

And after substituting this constraint back into the EOM’s we have the residualized reduced-

order model (ROM) given by 

 

    

x R = A0 Rx R + ARR − ARη A0η + AEη( )−1
AER

⎛
⎝

⎞
⎠ x R + BR − ARη A0η + AEη( )−1

BE
⎛
⎝

⎞
⎠ u

= AROM x R +BROM u
  12 

The dimensional aerodynamic derivatives adjusted for static-elastic deflections are then the 

elements of 

 
   

ARR − ARη A0η + AEη( )−1
AER

⎛
⎝

⎞
⎠  and BR − ARη A0η + AEη( )−1

BE
⎛
⎝

⎞
⎠   13 
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The adjusted non-dimensional aerodynamic coefficients for our vehicle are then listed in Table 7. 

Table 7, Static-Elastic Adjusted Aerodynamic Coefficients 

 
CLα

/rad 
 
CMα

/rad 
 
CLq

/rad 
 
CMq

/rad CLδ1
/rad CMδ1

/rad 

5.13 -26.58 4.821 -152.47 0.396 -0.090 

CLδ2
/rad CMδ2

/rad CLδ3
/rad CMδ3

/rad CLδ4
/rad CMδ4

/rad 
0.447 -8.613 0.559 -15.12 0.588 -13.27 

 
CDα

/rad
 
CDδ1

/rad CDδ2
/rad CDδ3

/rad CDδ4
/rad 

0.110 0.0010 0.0013 0.0015 0.0010 
 

When one compares the aero derivatives in Table 7 with those for the rigid vehicle in 

Table 3, several large differences may be noted. And these differences of course, are due to the 

static deformation of the structure. Consider, for example, the effect of angle of attack on the lift 

and pitching moment, or 
  
CLα

 and CMα
. As the angle of attack increases, the bending moment on 

the wing increases, which tends to bend the flexible wing. But from the mode shape of the 

lowest-frequency first symmetric mode in Fig. 7, as the wing bends up it also twists leading-edge 

up. And this further increases the angle of attack of the wing. The effect is to drastically increase 

the effect of vehicle angle of attack on lift and pitching moment. Similar analyses help explain 

the changes in effectiveness of the control surfaces, for example. Surface deflections not only 

increase the wing lift due to changes in camber, but also twist it. Fortunately, however, no static 

control reversals are indicated in the data. That is, all positive control deflections increase vehicle 

lift and induce a negative pitching moment. But it should be clear from these results that this 

vehicle is very flexible with quick attitude response. And the effects of flexibility make the pitch 

response even faster. 

The pitch-rate and plunge acceleration transfer functions from this reduced-order model, 

corresponding to Eqns. 1 and 8, are 
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θcg (s)
−δ3(s)

= 1047 [0.0404][8.431]
[−0.01,0.61][0.65,16.9]

 deg/deg 

 14 

 
  

nZ −cg (s)
−δ3(s)

= 1.20 [0][−0.0279][28.73][−27.02]
[−0.01,0.61][0.65,16.9]

 fps/deg 

Clearly these transfer functions differ significantly from those given in Eqns. 1 for the rigid 

vehicle. The short-period damping and frequency differ due to the changes in effective 

  
CMα

 and CMq
, and   1/ Tθ 2  is increased due to the increase in 

 
CLα

. 

 A final comparison between the three models we’ve developed is given in Fig. 16, which 

includes the pitch-rate step responses from negative elevator deflection plotted in deg/sec/deg. 

The response shown in blue is from the model of the rigid vehicle, or Eqns. 1, the response in red 

is the response from the residualized reduced-order model being discussed here, and the response 

shown in orange is from the full-order mode, or Eqns. 8. These responses differ significantly, 

indicating the degree of flexibility in this vehicle. Comparing the first two responses reveals the 

effects of the static-elastic deflections of the structure, while comparing the last two responses 

reveals the effects of the dynamic response of the structure. 
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Figure 16, Pitch-Rate Step Response From Del3 (deg/sec/deg) 

 
9. Conclusions 
 

A relatively low order linear, semi-analytical model was developed for the longitudinal 

dynamics of a flexible flying-wing research drone aircraft. The rigid-body degrees of freedom 

were defined in terms of the motion of the vehicle-fixed coordinate frame (mean axes), as 

required for flight-dynamics analysis, and the analytical modeling utilized the vibration solution 

for the vehicle structure obtained from a simple finite-element model. The rigid-body 

aerodynamic coefficients were obtained from classical, semi-empirical techniques, and the 

aeroelastic stability derivatives (influence coefficients) were derived from quasi-steady strip 

theory and virtual work. All numerical analyses, except for estimating the rigid-body 

aerodynamics, were performed in MATLAB®. The state variables used in the models include the 

same as those used in modeling a rigid vehicle, plus additional states associated with the elastic 
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degrees of freedom. This model structure helped to provide insight and transparency in the 

modeling and in the interpretation of results.  

It was shown that in spite of the model’s relative simplicity, the body-freedom and 

bending-torsion flutter speeds, frequencies, and genesis modes suggested by this model agreed 

quite well with the analytical predictions and flight test-results reported by Lockheed Martin. It 

was also demonstrated that the second symmetric vibration mode appears to be an important 

contributor to body-freedom flutter. As modeled, the longitudinal dynamics of the vehicle are 

characterized by a slightly unstable Phugoid mode, a well-damped, pitch-dominated, elastic-

short-period mode, and three aeroelastic modes that may be unstable. The elastic-short-period 

and aeroelastic modes involve significant coupling between the rigid-body and elastic degrees of 

freedom, as indicated by their mode shapes. Hence, a classical, rigid-body, short-period mode 

does not exist. Furthermore, it is clear from the results that this vehicle is very flexible with 

quick attitude response. And the effects of flexibility make the pitch response even faster. 
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11. Appendix 
 
 Integral expressions for the aeroelastic coefficients given in Table 5 are listed in Eqns. 

7.94 and 7.95 in Ref. 4. But those expressions were developed under the assumption that the 

wing’s elastic axis was coincident with the airfoil’s aerodynamic center. Although this 

assumption simplifies the resulting equations, it is frequently not valid, as in our case here. So 

the streamwise distance along the chord between the elastic axis and the aerodynamic center, 

denoted as  eW , is not zero. In this case, the relevant integral expressions analogous to Eqns. 7.94 

and 7.95 in Ref. 4 are given below. All the terms in these expressions are defined in the 

Reference, but note that the plunge and twist components of the free-vibration mode shapes are 

here denoted as   νZ  and "νZ , respectively. 

 

   

CQiα

= −
2

SW cW

clα
( y) νZiW

( y)− eW ( y) $νZiW

( y)( )c( y)dy
0

bW /2

∫

CQiq

=
2

V∞SW cW

clα
( y) νZiW

( y)− eW ( y) $νZiW

( y)( ) xACW
( y)− XRef( )c( y)dy

0

bW /2

∫

CQiδ j

= −
2

SW cW

clδ j
( y)νZiW

( y)− cmδ j
( y)c( y)+ eW ( y)clδ j

( y)( ) $νZiW

( y)( )c( y)dy
ηi , j

ηo , j

∫

CQiη j

= −
2

SW cW

clα
( y) $νZ jW

( y)νZiW

( y)− eW ( y) $νZ jW

( y) $νZiW

( y)( )c( y)dy
0

bW /2

∫

CQi η j

= −
2

V∞SW cW

clα
( y) νZ jW

( y)νZiW

( y)− eW ( y)νZ jW

( y) $νZiW

( y)( )c( y)dy
0

bW /2

∫
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