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Abstract. In this paper we present a characterization for the existence of an exponential dichotomy
for a linear evolutionary system on a Banach space. The theory we present here applies to general time
varying linear equations in Banach spaces. As a result it gives a description of the behavior of the nonlinear
dynamics generated by certain nonlinear evolutionary equations in the vicinity of a compact invariant set.
In the case of dissipative systems, our theory applies to the study of the flow in the vicinity of the
global attractor. The theory formulated here holds for linear evolutionary systems which are uniformly
a-contracting and applies to the study of the linearization of nonlinear equations of the following type:
(a) parabolic PDEs, including systems of reaction diffusion equations and the Navier-Stokes equations,
(b) hyperbolic PDEs, including the nonlinear wave equation and the nonlinear Schrédinger equation with
dissipation, (c) retarded differential equations, and (d) certain neutral differential delay equations.
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1. Introduction

The theory of exponential dichotomies has played a central role in the study of ordinary
differential equations and diffeomorphisms for finite dimensional dynamical systems. This
theory, which addresses the issue of strong transversality in dynamical systems, originated
in the pioneering works of Lyapunov (1892) and Poincaré (1890), who studied the local
behavior of a nonlinear dynamical system in the vicinity of a fixed point and a periodic
orbit. In particular, the Lyapunov-Perron method, which was introduced by Lyapunov
and developed extensively by Perron (1928, 1930), is based on a theory of exponential
dichotomies.

In recent years, the theory of exponential dichotomies has proven to be a useful method
for studying the stable, unstable and center manifolds (see Hale (1969) Henry (1981, 1985),
Kelley (1967a, 1967b), Pilyugin (1988), Pliss (1964, 1977), Sell (1978), Stokes (1971), van
Gils and Vanderbauwhede (1987) and Vanderbauwhede (1989)), perturbation theories (see
Coppel (1965, 1967, 1968, 1978), Palmer (1984, 1987), Pliss (1977), and Pliss and Sell
(1991)), linearization theories (see Sell (1984, 1985)), bifurcation theory (see Braaksma
and Broer (1987), Chow and Hale (1982), Chow and Mallet-Paret (1977), Flockerzi (1984),
and Sell (1979)), homoclinic behavior (see Meyer and Sell (1989) and Palmer (1984)), the
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spectral theory of a compact invariant set (see Magalhdes (1987) and Sacker and Sell (1978,
1980)), as well as the theory of inertial manifolds (see Foias, Sell, and Temam (1988) and
Foias, Sell, and Titi (1989)).

During the last few years one finds an ever growing use of exponential dichotomies
to study the dynamical structures of various partial differential equations and differential
delay equations, see for example Foias, Sell, and Temam (1988), Hale (1988), Henry (1981),
and Temam (1988). Because of this one wants to find necessary and sufficient conditions
for the occurrence of exponential dichotomies for linear evolutionary systems on an infinite
dimensional Banach space. The primary purpose of this paper is to present a theory which
addresses these issues.

~ Our main goal is to be able to analyze the structure of a nonlinear semiflow in the
vicinity of some compact, invariant set X. Because of the invariance, this implies that for
every z € X there is a global solution ¢(t), which satisfies ¢(t) € X for all t € R and
¢(0) = z. Even though the associated linearized evolutionary systems over X will generate
solutions for ¢t > 0, this linear system has time-varying coefficients which are defined for
all t € R. In addition to this feature, the linear evolutionary systems studied here will be
assumed to have some compactness or asymptotic smoothing property.

The theory of necessary and sufficient conditions for the existence of exponential di-
chotomies for finite dimensional linear differential systems appears in Sacker and Sell (1974,
1976a). Our goal here can be succinctly stated to be the generalization of the finite di-
mensional theory to infinite dimensional linear evolutionary systems. As we shall see, this
generalization is possible, but it is far from being trivial. The main difficulty one encoun-
ters is that some, but not all solutions of the linear evolutionary system have extensions
defined for ¢t < 0. Also it can happen in some systems that these negative extensions need
not be unique.

The starting point for both the finite and infinite dimensional theories is to assume
that the given linear evolutionary system, and all limits of translates of that system have
the property that the only solution ¢ which is bounded for all ¢t € R is ¢(t) = 0. One of our
main results is the Alternative Theorem which states that, under the assumption of weak
hyperbolicity (which is defined later and which includes the above property), either the
linear evolutionary system admits a global exponential dichotomy, or the flow on the space
of coefficients has a specific gradient-like structure. One step in the proof is to show that
one always has an exponential dichotomy over every minimal set. In the Compatibility
Theorem we show that if there is an integer k¥ > 0 such that the unstable manifold over
every minimal set has dimension k, then the linear evolutionary system admits a global
exponential dichotomy.

In the next section we give the definition of the linear evolutionary systems we study
in this paper and we include several examples. In Section 3 we present the concept of an
exponential dichotomy and we give the precise statement of the theorems to be proved
here. Some illustrative examples are presented in Section 4. In Sections 5 and 6 we discuss
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some of the basic properties of the dynamics of linear evolutionary systems, and the proofs
of the theorems are given in Section 7.

We are grateful to Richard McGehee and Richard Moeckel for some very helpful com-
ments on this paper.

2. Linear Evolutionary Systems

The object of study in this paper is the theory of exponential dichotomies for linear
time-varying evolutionary equations on a Banach space. These equations, which typically
arise when one linearizes a nonlinear evolutionary equation along solutions lying in a given
compact invariant set, give rise to a linear skew-product dynamical system, see Sacker and
Sell (1974, 1976a). We will call these systems linear evolutionary systems. Let us now be
more precise.

Let € = X X O be given where X is a fixed Banach space (the state space) and O is
a compact Hausdorff space. Assume that o(6,t) = 6-t is a (two-sided) flow on O, i.e., the
mapping (0,t) — 8-t is continuous, 6-0 = 6, and one has 6-(s + t) = (6-s)-t for all s,t € R.
A linear evolutionary system m = (®,0) on € is a mapping

n(z,0,t) = (®(6,t)z,0-t) fort >0

with the following three properties:
(1) ®(6,0) = I, the identity operator, for all § € ©;

(2) lim;_,o+ ®(0,t)z = z, and this limit is uniform in 6. This means that for every
z € X and every € > 0 there is a § = é§(x,€) > 0 such that |®(6,t)z — z| < ¢, for
all 8 € © whenever 0 <t <.

(3) ®(6,1) is a bounded linear mapping from X into X that satisfies the cocycle iden-
tity:

(2.1) D(0,s+t)=2(6-¢,5)0(6,1) e, 0<s,t.
(4) For each t > 0 the mapping of € into X given by
(z,6) — ®(0,t)z

1s continuous.

Properties (2) and (3) imply that for each (z,6) € € the solution operator t — ®(6,t)z
is right-continuous for ¢ > 0. Indeed one has

|®(0,t + h)x — ®(6,t)z| = |[®(6-t,h) — I|D(6,t)z|,

which goes to 0 as h — 07.



One can have linear evolutionary systems which are not left-continuous for ¢ > 0.
Here is an example. Let & satisfy ®(6,t) = I for 0 <t < 1 and ®(0,1) = L(6), where
6 — L(8) is a continuous mapping of O into the space of bounded linear operators on X.
For n = 2,3,... we define ®(6,n) by induction:

&(6,n) =36 (n—1),1)8(6,n — 1)
= L0 (n—1))L(8-(n—2))...L(8).

Now set ®(6,n + 7) = ®(0,n) for 0 < 7 < 1. Then 7 = (®,0) is a linear evolutionary
system on €.

The prototypical example of a linear evolutionary system arises in the finite dimen-
sional setting, wherein ®(6,t) is the fundamental operator solution of the linear ordinary
differential equation

(2.2) o' = A(8-t)z

that satisfies ®(6,0) = I, where A(6) is a continuous (n X n) matrix-valued function
defined on ©. As we shall see in Section 4, one can construct similar examples in the
infinite dimensional setting,.

We will use the Kuratowski functional a, which is a measure of noncompactness. Let

X be a Banach space and let A be a bounded set in X. We define

a(A) 4finf {d : A has a finite covering with open sets of diameter < d}.

The Kuratowski functional satisfies the following properties:

(A) a(A) =0 if and only if ClA is compact.

(B) a(AU B) = max [a(A), a(B)].

(C) a(4 + B) < a(4) + a(B).

(D) a(Cl A) = a(A).

(E) a(A) < a(B) whenever A C B.

(F) a(A) < diam A.

(G) Let A; be a family of nonempty closed bounded sets defined for ¢y < ¢t < co with

A; C As whenever s < t. If a(A¢) — 0 as t — oo, then Ny>y¢, A is nonempty and
compact.

(H) If L : X — X is a bounded linear operator, then a(LA) < ||L||a(A).

See Deimling (1985), Hale (1988), Martin (1976), and Sadovskii (1972).
For any subset F C € we define the fiber

FO)E (z€ X :(2,0)€F}, 6€O.
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Thus £(0) = X x {0} is the fiber of € over the point § € ©. If U C O, then we define

F(U) € Uper ().
Also we define &y = {(z,0) € E: 2 =0} and Epr = {(z,0) € € : |z| < M}. If F C €y for
some M,0 < M < oo, we define

(2.3) aoo(F) = sup {a(F(0)): 0 € O}.
The following lemma, which is a variation of statement (G) above, is easily verified.

2.1 LEMMA. Let F; be a family of nonempty closed sets defined for to < t < oo that
satisfy F; C Ep for some M,0 < M < oo, and F; C Fs whenever s < t. If aoo(F;) — 0 as
t — oo, then ﬂt>t0 J: is a nonempty compact set in Epy.

A linear evolutionary system m = (®, o) is said to be uniformly a-contracting if for
every bounded set B = By = {2 € X : || < M} there is a function k with k(¢) — 0 as
t — oo and such that

a(®(6,t)B) < k(t)a(B), € O.

If = is uniformly a-contracting, then it follows that aco(7(F,t)) < k(t)aco(F), where aoo
is defined by (2.3).

REMARKS. 1. Examples of uniformly a-contracting linear evolutionary systems are
given in Hale (1988). A typical situation occurs when ®(6,¢) maps bounded sets into
compact sets for ¢ > T, when T' > 0. Another example occurs when ® = &, + ®,, where
@, maps bounded sets into compact sets for ¢ > T and |®4(6,t)| < Ke ! for t > 0, where
B >0 and K > 1 are independent of 6.

2. The theory we present here extends easily to Banach bundles which are locally
product spaces. A Banach bundle € with fiber X over a base space © with projection p
is denoted by (&, X, O, p), or € for short, and is defined as follows:

(1) X is a fixed Banach space and O is a compact Hausdorff space.

(2) The mapping p: € — O is a continuous mapping.

(3) For each 6 € ©, p~1(8) = &(0) is a Banach space, which is referred to as the fiber
over 6.

(4) For each 6 € O, there is an open neighborhood U of 8 in © and a homeomorphism
7:p Y (U) = X x U such that for each n € U, p~1(n) is mapped onto X x {n}
and 7 : p~!(n) — X x {n} is a linear isomorphism.

(5) The norms |- | = | - |¢ on the fiber p~!(8) vary continuously in 6.

One can use the local coordinate notation (z,8) to denote a typical point in a Banach
bundle €. By this we mean that « is an element in the fiber £(8). This is a shortened way
to refer to property (4) above.



3. Notation: Statement of Main Theorems
3.1 Projectors and Subbundles. Let X denote a given Banach space and let ©
denote a compact Hausdorff space. Set £€ = X x O.

A mapping P: € — € is said to be a projector if P is continuous and has the form
P(z,0) = (P(6)z,0) where P(6) is a bounded linear projection on the fiber £(6). For any
projector P we define the range and null space by

R=RP)={(z,0) € E: P()r =z}, and N=N(P) = {(z,0) € £: P(6)z = 0}.

Since P is continuous, this means that the fibers R(6) and N(6) vary continuously in 6.
This also means that P(8) varies continuously in the operator norm. The following result
is elementary.

3.1 LEMMA. Let P be a projector on €. Then R and N are closed subsets in &, and
one has

R(0) NN(F) = {0}, R(0) +N(8) = £(0)
for all § € ©.

A subset V is said to be a subbundle of € if there is a projector P on € with the
property that R(P) = V. In this case W = N(P) is a complementary subbundle, i.e.,

€ = V+W as a Whitney sum of subbundles. The following lemma is a useful for determining
whether a set V is a subbundle.

3.2 LEMMA. Let 'V C &€ have the following properties:

(1) V is closed,
(2) V(6) is a linear subspace of () for all 6§ € O,
(3) codim V(0) is finite for all § € O,
(4) codim V() is locally constant on ©.
Then V is a subbundle of €.

Proof. First note that one can find a finite collection 6y, ..., 8, € © and an open covering
Ui, ...,Un of O such that
(a) 6; € Ui for 1 < i < m;
(b) codim V() =V(6;) for 6 € U;;
(c) there is a complementary space K(6;) to V(6;) such that K(6;) N'V(8) = @ for all
0eU;forl <:<n. ’

It then follows that X(6;) is a complementary space for V(6) for all 6 € U;. Let &; = K;(a)
be the cone in X given by

Ri={zeX:|v| <alul,veV;),ueX@;)}
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where a > 0. Since the sets U;,1 <1 < n, and a can be made smaller if necessary, there
is no loss in generality in assuming that for 1 < ¢ < n one has

(3.1) V(6) N K; = {0}, for all 0 € U;.

A linear projection P;(#) on X is then defined for 6§ € U; by setting the range R(6) = V(8)
and the null space N(0) = X(0;). Let Q;(8) = I — P;(8) for 6 € U,.

We claim that @); and P; are continuous on U;. To prove this, let 6, € U; and z, € X
be convergent sequences with 8, — 6 € U; and z, — ¢ € X. We need to show that
Qi(6n)zn — Qi(0)z. Let up, = Qi(6n)rn and v, = T, — u,. Because of (3.1) we see
that |Qi(0r)|op is uniformly bounded. Consequently the sequence u, lies in a bounded
set in XK(6;). Since X(6;) is finite dimensional, u, has a convergent subsequence, say
Un, — u € X(0;). Consequently v,, = Tpn, — Un, — (z — u). Since v,, € V(6,,) and V is
closed one has v = z —u € V(). Since the representation z = u + v is unique, the entire
sequence u, must converge to u, i.e.,

QRi(On)rn = un — u = Qi(6)z.

Hence @; is continuous on U;, and P; = I — @); is continuous as well.

Next we let fy, ..., fn be a partition of unity subordinate to Uy, ...,U,. This means that

(a) each f; is a continuous mapping of © into [0, 1];
(b) supp fi C Uj;
(c) Yor, fi(f) =1for all 6 € O.

Define Q(6) for § € © by

Q(6) = Zfi(e)czi(e), 6¢€o,

and set Q(z,0) = (Q(0)z,0). We claim that Q is a projector on £ The continuity of
Q follows from the continuity of the fis and the @;s. The fact that Q(6) is linear on
each fiber £() follows from the fact that each @; is a projection. The final point is to
show that Q*(8) = Q(0) for all § € ©. Let 6 € U; NU;. Then Q;(0)Q;(8) = Q:(0) since
N(Qi(8)) =N(Q;(8)) = V(8). One then obtains

Q= fR)_fiQi) =D Hi(D_ £iRiQ:) =Y £i(D_ fiQ)
i j i j i j
=Y £ Q=) fiQi=Q,
i j i
where the 6 has been suppressed in the notation. [J
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3.2 Linear Evolutionary Equations. Let £ = X X © be given where X is a fixed
Banach space and © is a compact Hausdorff space. Assume that o(6,t) = 6-t is a (two-
sided) flow of reals on ©, and let 7 = (®, o) be a linear evolutionary system on €. For any
set J C RT we will let 7(z,0, J) denote the trajectory arc U;e j{7(z,8,t)}.

3.3 LEMMA. Let m = (®,0) be a linear evolutionary system on X x ©. Then there
exist constants M > 1, w € R such that

|®(6,t)| < Me*t, 6€0, t>0.
Proof. First we claim that there is an h > 0 such that
M % sup {|18(6,1)]: 6 € ©,0 <t < h} < co.

If this were not the case, then there are sequences 6,, € O, t, > 0 such that ¢, — 0 and
|®(6n,tn)| > n. The Uniform Boundedness Theorem then implies that there is an z € X
such that |®(0,,t,)z| is unbounded. But this contradicts the fact that

lim ®(6,t)z =z

t—0+

uniformly for § € ©. Hence M < oo. Since |®(6,0)| = 1 it follows that M > 1. Next

define w & p-1 log M and note that any ¢ > 0 can be expressed as t = nh + 7 for some
integer n > 0 and 0 < 7 < h. The cocycle identity (2.1) then implies that

18(6,)| = |®(8-nh, 7)®(6-(n — 1)h, h)..8(0,h)| < M™ T < MM'P < Me*t. 1

3.4 LEMMA. Let m = (®,0) be a linear evolutionary system on X x ©. Assume that
X is finite dimensional and that ®(6,t) is one-to-one for all § € © andt > 0. Then ®
admits a unique extension for t < 0 such that the following hold:

(a) ®71(6,t) = B(6-¢, 1),

(b) The cocycle identity

(3.2) ®(0,s+1t) =D(6-t,5)0(6,t)

holds for all § € © and s,t € R.

The same conclusion holds when X x O is replaced by a finite dimensional vector bundle
over O.

Proof. Since X is finite dimensional, the linear mapping ® is one-to-one if and only

if it is invertible. For ¢ > 0 define ®(6-t, —t) ef ®~1(6,t). It is now a simple exercise to

verify that the cocycle identity (3.2) holds for all s,t € R. [
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3.3 The Stable and Unstable Sets: Weak Hyperbolicity. A point (z,0) € & is
said to have a negative continuation if there exists a continuous function ¢ : (—oo, 0] —
€ satisfying the following properties:

(1) #(t) = (¢*(t),8-t) where ¢* : (—00,0] — X,

(2) 4(0) = (,9),

(3) ¢(s) € &(6-s) for each s <0,

(4) m(p(s),t) =d(s+1t)forall s<0,and 0 <t < —s.

In this case the function ¢ is said to be a negative continuation of the point (z,8). For
any negative continuation ¢ and any 7 < 0, we define ¢.(t) = ¢(7 +t) for —co <t < —7.
If ¢ is a negative continuation of the point (z,6), then ¢, is a negative continuation of
#(7). A partial negative continuation of the point (z,6) is a mapping ¢ defined on a
finite interval [r,0], where 7 < 0, and such that (1), (2) and (3) hold for s, (s +t) € [r,0].
(Notice that we do not assume uniqueness of a negative continuation.)

Next we define the following sets:

v et {(z,8) € € : (z,0) has a negative continuation ¢},

= {(z,0) € M : some neg. continuation ¢ of (z,0) satisfies |¢*(¢)] — 0 as t — —o0},

p- & {(z,6) € M: some neg. continuation ¢ of (z,8) satisfies sup;<o|¢®(t)| < oo},

B, def {(z,0) € M : (z,6) has a unique bounded negative continuation ¢},

g+ def {(z,0) € € : supy>o|®(6, t)z| < oo},

s {(z,0) € £:|®(6,t)z| — 0 as t — oo}, and finally,

B BtNB.
The set U is the unstable set, § is the stable set, and B is the bounded set.

REMARK. Our theory does allow for the possibility that the linear operator ®(6,1t)
need not be one-to-one for some t > 0, ie., ®(4,¢) may have a nontrivial null space.
Because of this, it may be possible for a point (z,60) € € to have more that one negative
continuation. It is easily seen that if ®(6,t) is one-to-one for all ¢ > 0 then every negative
continuation, and every partial negative continuation, is unique. Uniqueness of negative
continuations is a common feature in the study of partial differential equations, see for
example Temam (1988).

For (z,0) € B, we shall denote the unique bounded negative continuation, by ®(0,t)z
for ¢t < 0. This then defines an extension of the mapping ®. It is clear that for each 8§ € ©
the fiber B () is a linear subspace of £(8), and ®(6,t)z is linear in z for each t < 0, i.e.,
®(0,t) is a linear mapping from B, (0) to B;(6-t) for ¢ < 0. Furthermore the co-cycle
identity

®(0,s +t)x = ®(6-t,5)P(0,t)z s,teR
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is valid for all (z,6) € B

The linear evolutionary system = (z,8,t) = (®(6,t)z, 6-t) is said to be weakly hyper-
bolic on € = X x © whenever 7 is uniformly a-contracting and the bounded set B is
trivial, i.e., B = &,.

3.4 Exponential Dichotomies: The Shifted Flow. A projector P on € is said to
be invariant if one has

(3.3) P(6-)2(6,t) = ®(6,1)P(6), t>0, 6¢€O.

We shall say that a linear evolutionary system 7 on € has an exponential dichotomy over
an invariant set ©, where © C O, if there is an invariant projector P on € and constants
K > 1,8 > 0 such that dim Range(l — P(f)) < oo and Range(I — P(0)) C B, (6) for
9 € O, and the following inequalities hold:

®(0,t)P(0)|,, < Ke™P* ¢t>0,0 €0,
P

(3.4)
|®(8,t)[I — P(8)]]op < KeP? t<0,6 €0,

where [L(8)|op = sup{|L(#)z|: = € £(F) and |z| < 1}.

One of the important features of exponential dichotomies is in their use in the method
of Lyapunov-Perron. This method, as it is applied to the linear evolutionary system
m = (®,0) generated by (2.2) in the finite dimensional setting, is based on the observation

that if the linear evolutionary system 7 has an exponential dichotomy and if the function
f(¢) satisfies f € L°(R, R"™), then the linear inhomogeneous equation

o' = A(B4)z + f(t)

has a unique solution z € C°(R, R"*) N L*°(R, R") and z is given by the Lyapunov-Perron
formula:

t [e o)

z(t) = / ®(6-s,t — s)P(8-s)f(s)ds — / ®(8-s,t — s)[I — P(6-3)]f(s)ds.
—0o0 t

For the infinite dimensional setting, a similar formula is valid and has been used for such

things as the proof of the existence of inerital manifolds, see Foias, Sell, and Temam (1988)

and Magalhges (1987). See also Lemma 6.2, the Variation of Constants formula.

We observe that if 7 is a linear evolutionary system on &€ = X x © which admits
an exponential dichotomy over ©, then one has B = &, and 7 is weakly hyperbolic.
Indeed, let P be the projector on € that satisfies (3.4). Let (z,6) € B and set y = P(6)z
and z = (I — P(0))z. One then observes that the three trajectories ®(8,t)z, ®(0,t)y and
®(0,t)z admit negative continuations (¢*(t),0 -t), (¢¥(¢),0 - t), and (¢*(¢),6 - t) such that

(¢%(¢),0-t) € B, (¢¥(¢),0-t) e BNS, (®(6,t)z,6-t) e U
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forallt <0. Let t <0 and set 7 = —t and § = -¢. Since w = ®(0,7)9™(t) for w = z,v, 2,
and since the projector P is invariant, one has
y = P(6)z = P(8-)®(8,7)$" () = (8, ) P(B)¢* ().
As aresult, |y| < K|#%(t)|e~AI!l. Since |#(t)| is bounded for ¢t < 0, this implies that y = 0.
Similarly, since z = [I — P(6)]z one has
z=®(0-7,t)®(0,7)z = ®(0-7,t)P(6,7)[I — P(0))z = ®(0-7,t)[I — P(6-7)]®(0,7)=.
Consequently, |z| < KeP*|®(6,7)z| < KM|z|ef? for all t > 0. Therefore, z = 0, and

consequently z = y + z = 0. Next we show that 7 is uniformly a-contracting. For any
bounded set B in X, one has

&(6,t)B C ®(6,t)P(6)B + ®(6,t)[I — P(6))B,

where the last term has compact closure, since [I — P(6)] has finite dimensional range.
Using the properties of the Kuratowski measure a one has

a(®(6.t)B) < a(®(6,t)P(6)B) < |®(8,t)P(8)|opa(B) < Ke Pta(B).
Hence 7 is uniformly a-contracting and weakly hyperbolic.

REMARK. In the finite dimensional case, where the linear evolutionary system = is
reversible in time ¢, one has the identity P(6-t) = ®(6,t)P(6)®~1(4,t). In this case
inequalities (3.4) take on the equivalent form

B(6,)P(0)B1(6,5)|op < Ke P9 t>56€0,
P
|8(8,1)[I — P(6)]®71(6, 5)|op < KeP=*) t<s,6€0.

If # = (®,0) is a linear evolutionary system on € and A € R, we define the shifted
flow 7y = (®,,0), where ®,(0,t) = e~ *'®(6,t). Note that for all A € R, the shifted
flow 7 is a linear evolutionary system on €. If 7 is uniformly a-contracting, then ) is
uniformly a-contracting for each A > 0. Following Sacker and Sell (1978) we define the set
of all A for which 7y admits an exponential dichotomy on € to be the resolvent set of «.
The dynamical spectrum of 7, which we write as £(7), is defined to be the complement,
in R, of the resolvent set. (Also see Magalhées (1987).)

3.5 The Morse Sets. Before describing our main results, it is helpful to introduce
some additional notation. For any integer k¥ > 0 we define

O L' {6 € © : dim U() = codim S(6) = k},
(3.5) A ¥ (90 dimuU®) >k},
def

B = {0 € ©: codim §(0) < k}.
Note that if 7 is weakly hyperbolic, then £(8) = §(8) + U(8) for all § € Ok, and one
has © = Ax N Bi. The Morse set M, is defined to be the maximal compact invariant
subset of ©;. We will show below that each O is closed and negatively invariant, and
consequently, M} is nonempty if and only if O is nonempty.
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3.6 Main Theorems. The first set of theorems we give below lead to an Alternative
Theorem which says that if the linear evolutionary system 7 is weakly hyperbolic, then
either 7 has an exponential dichotomy over ©, or there exists a Morse decomposition on
the base space ©, and 7 has an exponential dichotomy over each of the Morse sets.

THEOREM A. Let m = (®,0) be a weakly hyperbolic linear evolutionary system on €.
Then the following statements hold:
(1) § and U are closed subsets of €.
(2) U=B,.
(3) There exist constants K > 1, > 0 such that for all (z,6) € § one has
|®(8,t)z| < K|z|e= P t>0,
and for all (z,0) € U one has
|®(8,t)z| < Kl|z|ePt  t<0.
(4) For all 8 € O one has dim U(8) < codim §() < oo.

(5) The function dim U(9) is upper semicontinuous in 6, and codim 8(6) is lower semi-
continuous in 6.

THEOREM B. Let m = (®,0) be a weakly hyperbolic linear evolutionary system on &,

and let © denote a closed, invariant subset of © with the property that there is an integer
k with codim 8$(8) = k for all § € ©. Then the following hold for all 8 € ©:

(1) dim U(6) = k.
(2) €(6) = 8(6) +U(6).
(3) Let P(6) : X — X denote the linear projection on X with range R(P(6)) = §(6)

and null space N(P(0)) = U(#). Then P(0) varies continuously in the operator
norm, and P is invariant.

(4) Let K > 1 and § > 0 be given by Theorem A. Then
|8(6,t)P(6)]op < Ke P? t>0

e )

(6, t)[I — P(8)]]op < KeP! t <0.
In other words, m admits an exponential dichotomy over ©.

THEOREM C. Let 7 = (®,0) be a weakly hyperbolic linear evolutionary system on &,
and let © denote a closed, invariant subset of © with the property that there is an integer
k with dim U(8) = k for all § € ©. Then codim $(8) = k for all § € © and the other
conclusions of Theorem B are valid. In particular, # admits an exponential dichotomy over
each nonempty Morse set Mj,.

In the next theorem, we use the concept of chain-recurrence, see Section 7.8, below,
for the definition. What is important to note here is that the flow on every a- and every
w- limit set is chain recurrent, see Conley (1978).
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THEOREM D. Let # = (®,0) be a weakly hyperbolic linear evolutionary system on
&, and let © denote a closed, invariant subset of © with the property that O is chain
recurrent. Then there is an integer k such that codim 8(8) = k for all § € © and 7 admits
an exponential dichotomy over ©.

Since the Morse sets M} defined above are closed invariant subsets of ©, Theorem
B applies to each of these. We will also show that only a finite number of the M}y are
nonempty. The Alternative Theorem, which we state next, distinguishes between two

cases: (a) there is precisely one nonempty O; and (b) there are at least two nonempty
©r. Compare with Sacker and Sell (1974, 1976a).

THEOREM E: THE ALTERNATIVE THEOREM. Let m = (®,0) be a weakly hyperbolic
linear evolutionary system on €. Then there are only finitely many nonempty O, and we
have the following:

(1) If there is precisely one nonempty O, then © = Oy and 7 admits an exponential
dichotomy over ©.

(2) If there are at least two nonempty O, we define
p = min {k : O # 0}, g = max {k: O # 0}.

Then for any k, My # 0 if and only if Oy # . Moreover one has My = ©,. Also =
admits an exponential dichotomy over each M. In addition, every motion o(6,1t)
in © has its a-limit set in some M}y, and w-limit set in some My, where k1 < ks.
Moreover one has ki = ky = k if and only if § € M}, for some k. Finally, M, = O,
is a stable attractor and M), is a stable repeller in the flow o.

The next result is a useful test for a global exponential dichotomy for 7. As we shall
see, it is a direct consequence of the Alternative Theorem.

THEOREM F: THE COMPATIBILITY THEOREM. Let 7 = (®,0) be a weakly hyperbolic
linear evolutionary system on €. If either codim §(0) assumes the same value on all minimal
sets in ©, or dim U(#) assumes the same value on all minimal sets in ©, then © admits an
exponential dichotomy over O.

REMARK. Since O is not assumed to be connected, one can apply the last theorem to
each component of ©. In this way, one can construct global dichotomies having unstable
manifolds with different dimensions.

4. Examples of Linear Evolutionary Systems

As mentioned above, the linear evolutionary systems oftentimes arise where ® is the
solution operator for a linear system of the form

d
(4.1) 711:- + Au = B(t)u,
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on a Banach space X, where (—A) is the infinitesimal generator of a linear Cp— semigroup
on X and B(t) is a suitable linear operator with domain D(A) C D(B(t)). For example, if
©(t),t € R, is a globally defined solution of a nonlinear evolutionary equation

(4.2) Ccll—? + Au = F(u),

with range in a given compact set X in X, and F is Frechét differentiable, then B(t) =
DF (¢(t)) is a bounded linear operator for all t € R. In this case (4.1) generates a linear
evolutionary system, where the base space O is the closure (in the compact-open topology)
of the collection of all translates B,, 7 € R, and B.(t) = B(7 +t), see for example, Henry
(1981) and Pazy (1983).

A special case of wide-spread interest occurs when the nonlinear evolutionary equation
has an attractor A, which can be either a local or a global attractor. The linearization of
(4.2) over A then leads to a linear evolutionary system over ©, where © is the collection
of all globally defined solutions ¢ of (4.2) with ¢(t) € U for all ¢ € R. The flow on O is the

translational flow (¢, 7) — ¢, where ¢, (t) = p(7 + t).

4.1 Navier-Stokes Equations. To be more specific, let us consider the linearized
Navier-Stokes equations along a compact, invariant set. Recall that the Navier-Stokes
equations on a suitable bounded region €2 in R"®,n = 2,3, can be reduced to an abstract
nonlinear evolutionary equation

du

(4.3) —

+ vAu + B(u,u) = f, u(0) = uo

on the Hilbert space H, where H is the closure in L?(, R") of those vector fields u €
C5°(€2, R™) that satisfy V-u = 0, cf. Constantin and Foias (1988), Ladyzhenskaya (1972),
and Temam (1977, 1983, 1988). The norm |-| on H is the standard L?-norm. The operator
A in (4.3) is a positive, self-adjoint linear operator on H with compact inverse, and A
has domain V2 & D(A) being H N H?(Q, R™). As a result, (—A) generates an analytic

semigroup e~4!, see Henry (1981) or Pazy (1983). In addition the domain V! % D(A?)
of A7 is contained in H}(Q, R").

The nonlinear term B = B(u,v) is a bilinear mapping, see the references cited above. In
the autonomous case the forcing term f is assumed to lie in H. More generally, in the time-
varying case, f is chosen so that its hull H(f) is a compact subset of C°(R, H)NL*°(R, H),
see Raugel and Sell (1990).

The long-time dynamics of (4.3) in the 2-dimensional setting, with f autonomous, is
described in references cited above. For the time-varying case, which is of special interest
here, the theory of the long-time dynamics, in both the 2-dimensional setting and for
certain thin 3-dimensional domains, is presented the Raugel and Sell (1989, 1990). What
is important for our purposes is that in these settings, equation (4.3) has a attractor %, and
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that 2 is a compact subset of D(A) x Q(f), where Q(f) is the w-limit set of the forcing
function f. Since % is invariant, it follows that for every § = (u,g) in A the translate
6r = (ur,gr) is in ™A for every 7 € R, where u,(t,z) = u(r +t, z) and g,(t,z) = g(7 +t,z).
Furthermore, there is a constant K, such that for every (u,g) € 2 one has |[Au| < K,.
The attractor 2, or any compact invariant subset of 2, will play the role of © in what
follows.

The linearized Navier-Stokes equation takes on the form

dv

(4.4) =

+ vAv 4+ B(u(t),v) + B(v,u(t)) = 0, v(0) = v

where 6 = (u,g) € ©. Equation (4.4) generates a linear evolutionary system 7 over
O as follows: For each 6§ = (u,g) € © and vy € V!, one constructs a strong solution

v(t) = ®(6,t)v, of (4.4). This solution satisfies
v(+) € C°([0,00), V') N L5.((0, 00), V2).

The following result can be easily derived from the theory presented in Constantin and
Foias (1988) or Temam (1977, 1983). It shows that the mapping

(v07 9) - (01', @(07 T)UO)

generates a linear evolutionary system on V! x ©, and that for each 7 > 0, the linear
operator ®(6,7) is compact. In particular, the linear evolutionary system is uniformly
a-contracting.

4.1 LEMMA. Let (4.3) represent the Navier-Stokes equations on a suitable bounded
region Q in R*. Assume that f € C°([0,00), H) N L*=((0,00), H) is chosen so that its
positive hull HY(f) is a compact subset. Let ug be an element in the global attractor 2
for (4.3), and let u(t) = u(uo,t), t > 0, be the corresponding strong solution of (4.3). Then

one has

u(-) € €°([0, 00), V1) N L=((0, 00), V) N L2, (0, 00), V2)

and uy(-) € L*(0,T), H) for every T > 0. Also for every vg € V!, there is a unique strong
solution v(t) = ®(ug,t)ve of (4.4) satisfying

v(-) € C°([0,00), V') N Lf5((0,00),V?)
and vy(-) € L? ((0,00), H). Furthermore, for each t > 0, the mapping
(vo,uo) — ®(uo,1)ve

is a continuous mapping of V! x 2 into V.

By using the theory presented in Raugel and Sell (1990), one can extend the above
result to the Navier-Stokes equations on thin 3D domains.
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4.2 Other Partial Differential Equations. Similar constructions of linear evolu-
tionary systems are possible in the study of other partial differential equations. We will not
go into the details here. Instead the reader should consult the following references: For the
reaction-diffusion equations, see Henry (1981) and the references contained therein. For
hyperbolic partial differential equations, including the nonlinear wave equation and the
nonlinear Schrodinger equation with dissipation, see Babin and Vishik (1987), Ghidaglia
and Temam (1987, 1988), Hale (1988), Hale and Raugel (1988, 1990), Haraux (1984, 1988),
Keller (1983), Massat (1983), and Temam (1988).

4.3 Differential-Delay Equations. Linearizations of differential-delay equations,
including retarded differential equations and certain neutral differential equations, can be
found in Hale (1977, 1988). The issues of the uniform a-contracting property are treated
in the same references.

5. Dynamics of Linear Evolutionary Equations

In this section we present some of the dynamical properties of uniformly a-contracting
linear evolutionary systems which are used below. Throughout this section 7 = (®, o) will
denote a uniformly a-contracting linear evolutionary system on € = X x O, where X is
a Banach space and O is a compact Hausdorff space. We do not assume here that = is
weakly hyperbolic.

A set F C € is said to be invariant if for all ¢ > 0 one has 7(J,t) = F. Since # maps F
onto F at each time ¢, this means that every (z,6) € F has a negative continuation ¢ with
the property that ¢(s) € J for all s < 0. In other words, if F is invariant, then F C M,
where M is defined in Section 3.3. An immediate consequence is the following result:

5.1 LEMMA. Let F be an invariant set for 7. If F C Epr for some M,0 < M < oo,
then & C B.

For any set F C £ we define:
positive trajectory : 71(F) = n(F,RT),
positive hull : H*(3F) = Cly*(9),
w-limit set : QF) = ﬂ H*(n(F,7)).

720

For (z,0) € M and any negative continuation ¢ of (z,6), we define:

negative trajectory : v (z,0,¢) = ¢(R™),
negative hull : H™ (z,0,¢) =Cly (2,6, 9),
a-limit set : Az, 6,¢) = ﬂ H™(¢(7),¢r),
<0
tra.jectory : 7(1"’ 9, ¢) = ')’_(-'13, 97 ¢) U 7+('T’ 9)7
hull : H(z,0,¢) = Cl ~(z,80,9).
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For 6 € © we shall let y*(6), H*(6), etc. denote the same objects in ©.

There are some elementary properties of hulls and limit sets which we note in the
following lemmas. First for any M, T € RT define

Ly € {(2,8) € € |8(6,t)z| < M for 0 < t},

£r € {(2,0) € €:|9(6,t)x| < M for 0 <t < T},
g € N 7LD, suE ) T
T>0 N>0
The first four properties listed below are elementary:
(A) LT, and L) are nonempty closed sets in &,;.
(B) W(L%"’T,T) and 7(Lpr, T) are nonempty closed sets in & y.
(C) n(LEFT,T) € n(LN+5,S) and n(Lps, T) C 7(Lps, S) whenever S < T.
(D) 3'?’,[ C 3"1‘?4 whenever 0 < S < N.
(B) (33, T) = FY~T whenever 0 < T < N.
In order to prove (E) we note that it follows from (C) that
T = () =L,5) = (] 5LN,9)
$>0 S>T
for any T > 0, and
(7 ( ﬂ LVFS §) T) = ﬂ r(n(LNT5,9),T).
5>0 $>0

Consequently when 0 < T < N one has
(T, T) = [ #(x(£3t5,8), T) = () n(L35,S +T)

S$>0 S>0
= () =Ly T3S+ T) = ) n(Lh TS, 8) = 55T
$>0 S>T

In the next lemma we show that certain subsets of & = X x © necessarily lie in the

bounded set B.

5.2 LEMMA. Let 0 < M,N,S,T, and let B be a nonempty set satisfying B C L.
Then the following statements are valid:

(F) Y, and Ty are nonempty compact sets in & ;.
(G) Q(B) and (L) are nonempty compact sets in €pr with Q(B) C Q(Lpyg).

(H) For every (z,6) € FY; there is a negative continuation ¢ of (z,8) with ¢(s) € F,
for all s < 0.

(I) Fm is an invariant set for m and Fpy C B.
(J) Q(B) and Q(Lyp) are invariant sets for m and Q(B) C Q(Ly) C B.
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Proof. The fact that F%, is nonempty and compact follows from (B), (C) and Lemma
2.1 since

oo(n(LVFT T)) < 2MK(T)

for some function k with k(¢t) — 0 as t — oo. By (D) JFps is a nonempty compact set as
well. Similarly one has

too(HY(n(B,T)) < aoo( | (B, T+ S)) < aoo(m(B,T)) < 2Mk(T),
5>0

which implies that Q(B) and Q(Lps) are nonempty compact sets. The inclusion of Q(B)
in Q(Lpr) follows directly from the definitions and the fact that B C L.

Using the fact that w(ﬁ'ﬁ*’""’l ,1) = S"ﬁ"'" for any integer n > 0, one sees that for any
(z,0) € FY, there is a sequence of partial negative continuations ¢, : [-n,0] — € that
satisfy (i) ¢n(0) = (z,0), (i) ¢n(s) € FY; for —n < s <0, and (iii) ¢pn41 is an extension of
én- It then follows that ¢ = lim,_,., ¢, exists and satisfies statement (H).

Statement (I) is proved by noting that from (D) one has

()Tt = [ 7(Fw.t) and  Fu=()F=[)n
N>t N>t N>0 N>t

Combining this with (G) one then obtains

m(Fm,t) = m( ﬂ ‘rff\v/fvt) = ﬂ W(ﬁ'%,t) = ﬂ gflx—t =Fuy.
N>t N>t N>t

In order to show that Q(B) is an invariant set , we need to verify that =(Q(B),t) =
Q(B) for allt > 0. Now §(B) can be characterized as the collection of all points (z,8) € €
such that there are sequences (z,,6,) € v"(B) and ¢, — oo such that

8,6, t,—»60 and z,% ®(6,,tn)z, — .

Let us fix t > 0, and set %, def ®(8,,t, +t)z, and 6, def 0, - (tn +t). Since (:in,én) €
H*(n(B,t,)) and since aoo(HT(B,t,)) — 0 as n — oo, it follows from Lemma 2.1 that
the sequence (:i:n,én) has a convergent subsequence, which we shall relabel as (:f:n,én).
Hence there is a (£,8) € Q(B) such that (£,,0,) — (#,6) as n — co. From the cocycle
condition (2.1), one finds that

& =lim&, = lim ®(0,, 1)z, = (6, t)z,

where the last step follows from the continuity property (4) in the definition of a linear
evolutionary system. Similarly one finds that § = 6-t. This shows that 7(2(B),t) C (B)
for t > 0.
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Next restrict n so that t, —t > 0, and set Z,, def ®(0,,,t, —t)z, and 6, def On - (tn —1).

Since (&n,0,) € Ht(n(B,t, —t)) and since aoo(HT(B,t, —t)) — 0 as n — oo, it follows
from Lemma 2.1 that the sequence (&,,6 6 ») has a convergent subsequence, which we shall
relabel as (#,,0,). Hence there is a (,0) € Q(B) such that (Z,,6,) — (, 6) as n — oo.
From the cocycle condition (2.1), one finds that #, = ®(6,,,t)z, and 8, = 6, -t. Therefore,
as above one has

z =lim&, = lim ®(0,,t)%, = ®(6,1),

and 6 = 6 - t. Consequently, Q(B) C 7(Q(B),t) for t > 0, i.e., Q(B) is invariant. Similary
one shows that Q(Ly) is invariant. The fact that Q(B) C Q(Ly) C B follows from
statement (G) and Lemma 5.1. [

5.3 LEMMA. The following statements are valid:

(A) If y*(z,0) C &y for some M < oo, then Q(z,6) is a nonempty compact invariant
subset of € satisfying {)(z,6) C B.

(B) Let (z,6) € M with a negative continuation ¢. If ¢(s) € Epr for all s < 0 and for
some M < oo, then H™ (2,6, ¢) and A(z,0,$) are nonempty compact subsets of €.
Furthermore, A(z,6, ¢) is invariant and A(z,0, $) C B.

Proof. Part (A) follows directly from Lemma 5.2 with B = (z,6). For part (B) note
that for any n > 0 and ¢ > 0 one has

W(H_(¢(—Tl - t)’ ¢—n—t)at) = H—(¢(_n)’ ¢—n)

By the uniform a-contracting property this implies that aso(H ™ (¢(—n),d—n)) = 0, i.e.,
H~(é#(—n), —r) is compact and nonempty for every n > 0. Furthermore, H~ (¢(—n), ¢_»)
is monotone (nonincreasing) in n. Hence A(z,6,¢), which is (), 5, H (¢(—n),¢—r), is
nonempty and compact. By restricting 7 to the compact set H~(4(0), 4), it follows from
the usual arguments for alpha limit sets that A(z,0, ¢) is invariant. Finally A(z,6,¢) C B
follows from Lemma 5.1. [J

In the next lemma we give sufficient conditions for there to exist a point (z,6) with
z # 0 and such that (z,6) € B~ or, more specifically, that (z,6) € B.

5.4 LEMMA. Assume that there exist sequences zy, 8, sk,tr such that 0 < s; < t4,
s — o0, and for some M,0 < M < oo and €,0 < € < 1 one has |®(0k,t)zx| < M for
0 <t <ty and |®(0k,sk)zk| > eM. Then there is an (z,6) € Ep with eM < |z|, and there
is a negative continuation ¢ of (z, ) satisfying ¢(t) € Epr for all t <0, i.e., (z,6) € B™.

If, in addition, one has t; — sy — oo, then |®(6,t)z| < M for all t > 0; in other words,
(z,0) € B.

Proof. The assumption that |®(6y,si)zr| > eM implies that the set
ANT E LN T TV {(2,0) : eM < |z| < M)
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is nonempty and closed for 0 < N < (tx — sg). As a result of (C) ANT is monotone (non-
increasing) in T. Since aoo(AN'T) — 0as T — oo, it follows that (V5o AT is a nonempty
(compact) subset of 33,. From Lemma 5.2(H) it follows that for each (z,6) € Npso ANT
there is a negative continuation ¢ with ¢(s) € &y for all s < 0. Thus (z,6) € B~.

If (tx — sk) — oo, then (y5; >0 ANT is a nonempty compact set in
FmN{(z,0):eM < |z| < M}.
By Lemma 5.2(I) each (2,6) € (y>1 Nr>o ANT lies in B.

6. Induced Flow on Normal Subbundle

Let m = (®,0) be a linear evolutionary system on &€ = X x ©. Throughout this section
we will not assume 7 to be uniformly a—contracting. Instead we will make the following

SPECIAL HYPOTHESIS. 'V is a closed positively invariant subset of & where each fibre
V(6) is a linear subspace of £(0) and there exists an integer k > 0 such that

(1) codim V(6) =k, for all 6 € ©, and
(2) whenever ®(6,t)z = 0 one has (z,0) € V.

It then follows from Lemma 3.2 that V is a subbundle of € and that there exists a
projector L on € and a complementary subbundle W with range R(L(6)) = W(6) and
null space N(L(6)) = V(0) for all § € ©. The complementary subbundle W is, in general,
not invariant for 7. Nevertheless, © does induce a flow # on W as follows: Define & by
&(0,t)z = L(6-t)®(8,t)z, where (z,0) € W. The induced flow W is defined by

#(z,0,t) = ($(8,t)z,6t)  (z,0) €W, t>0.
The proof that & satisfies the co-cycle identity,
(6.1) $(0,t + s) = $(8-t,5)9(9,1),

for s,t > 0, follows from (2.1), the cocycle identity for ®, and the fact that V is invariant
under 7. Indeed, the invariance of V implies that

[I = L(6-1)]®(6,t)[I — L(8)] = ®(6,)[I — L()),
which in turn yields
(6.2) L(6-t)®(6,t) = L(8-t)®(6,t)L(A), H€O,t>0.
By using (6.2) with the cocycle identity for ®, it is easily verified that & satisfies (6.1).
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Next note that the mapping
&(6,1) : W(6) > W(6-1)

is one-to-one for all ¢t > 0 since N(®(6,t)) C V(8) and V(8) N W(6) = 0. Since dim W(8) =
dim W(6-t) = k for all € © and t > 0, it follows as in Lemma 3.4 that &(6,%) has a
continuous inverse, which we denote by ®(8-t, —t). This means that # = (@, o) is a (two-
sided) linear skew-product flow on W and that the cocycle identity (6.1) on W is valid for
allt,s € R.

For the induced flow # on 'W we shall let ’B‘ﬂ@, 3, and U denote, respectively, the
positively bounded, the bounded, the stable, and the unstable sets in 'W.

Let (z,6) € € and define w = L(f)z and v = ¢ — L(f)z. Then
(2,6) = (v +,0)

is the unique decomposition of (z,8) into the sum of two vectors (v,0) € V and (w, 8) €
'W. Now the trajectories ®(6,t)v and ®(6,¢)w admit similar decompositions. Since V is
invariant under 7 one has (®(6,t)v, 6-t) € V whenever (v, ) € V. This means that one can
write

®(0,t)v = A(0,t)v,

where A(6,1) is a bounded linear transformation from V(6) to V(6-t). Moreover one has
®(0,t)w = B(6,t)w + D(0, t)w,

where B(6,t) : W(0) — V(6-t) and D(6,t) : W(8) — W(6-t) are bounded linear transfor-

mations.

v . .
Let us now write ¢ = ( > Then the last paragraph can be summarized by using
w

matrix notation and writing
_ v\ [ A(8,t)v+ B(6,t)w
we 00 (*) - (01

- (G 2en) (n):

We now obtain the following properties for the linear operators A, B and D.

6.1 LEMMA. Assume that the Special Hypothesis is satisfied. Then the linear operators
A and D satisfy the cocycle identity
A(6-t,5)A(6,t) = A(6,t + s)

(63) D(8+,)D(8,t) = D(6,t + s)
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for all § € © and t,s > 0, and B(6,0) = 0 for all 6 € ©. Furthermore one has (i) the
operator D(0,t) is invertible, (ii) the inverse satisfies D~1(8,t) = D(6-t,—t), and (iii) the
D equation in (6.3) holds for all t,s € R. Finally there exist constants K > 1 and w € R
such that

|A(0,1)]0p < Ke*t, |B(8,1)|op < Ke“?, |D(6,t)|op < Ke“t,
for all € ©® andt > 0.

Proof. The cocycle identities for A and D follow immediately from (2.1), the cocycle
property for ®. The invertibility properties for D follow as in Lemma 3.4 since W() is
finite dimensional with N(®(6,t))N'W(#) = {0}. Finally the exponential estimates for A, B
and D follow from the corresponding estimate for ® and the facts that the projector L is
bounded and

A(6,t) = ®(6,t)(I — L(9)),  B(6,t) = (I — L(6:¢))®(8,)L(8),
D(6,t) = L(6-)3(8,t)L(8). O

For ¢ > 0 define v; and w,; by the formulas

(6.4) (th) _ 5(6,1) (Z;) _ (A(e’tl);)(;:tl);zie,t)w)'

Thus v; and w; denote the time evolution of the v and w coordinates under the flow .

Note that the point ( vt ) lies in the fiber (6-t) and that v, € V(6-t) and wy € W(6-t). The

Wt
0. .
projector L can be expressed as L(6) (:}) = (w) in these coordinates. Consequently,

we see that the induced flow 7 on W is given by
#(w,8,t) = (D(6, t)w, 6-t),
that is, ®(,t) = D(6,t). Finally the mapping
(v,6,t) = (A(8,t)v,0-1)

is simply the restriction of the original flow 7 to the invariant subbundle V.

We will need the following variation of constants formula for the triangular system
described above.

6.2 VARIATION OF CONSTANTS LEMMA. Assume that the Special Hypothesis is sat-
isfied. Let r € R, h > 0,0 < 7 < h and let m and n be integers with m > 0 and n > —m.
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:}8 ) which exists for s € [r — mh,r + nh + 7] one has

L

Then for any trajectory (

(6.5)
Vrgnhtr =A@ (r—mh),(n+m)h + T)vr_mp

+ i1 A - (r + ), (n = A+ 7)B(6-[r + (j — )R], h)wry i1y
+B(8 - (r 4+ nh), T)Wrsnh,
Wrgnh4r =D(8-(r—mh),(n +m)h + T)Wr_ma.

Proof. The main issue here is the formula for v,. If n = 1 —m, then (6.5) follows from
(6.4). We will now use induction to study the case for larger n. First consider the case

of 7 = 0, and assume that (6.5) is valid for n. (Note that B(6,0) = 0 for all § € ©.) By
using the cocycle identity (6.3) and (6.5) one obtains

A(0-(r + nh),h)vrqnr = A0 - (r —mh),(n+ 1+ m)h)vr—mn
n+1
+ D AWE(r+ih),(n+ 1= R)BE[ + (= DA], B)wrs -y

j=1—-m

Consequently from (6.4) one has

Ur4(n+1)h = A(G(T‘ + nh), h)vr—i-nh + B(e(r + nh), h)wr+nh
=A@ (r —mh),(n+ 1+ m)h)v,_mn
n+1
£ 3 A+ iR), (n+ 1= RBO- [ + (G~ DAL Ry oy

j=1-m

+ B(e'[T + (Tl + 1)h], O)wr+(n+1)h.

The formula for v,4,p4, for 7 > 0 is obtained by applying ®(8 - (r + nh),7) to ( Ur+nh )
Wr4nh
and using the cocycle identity (6.3) with (6.4). [

We next derive some useful identities.

6.3 LEMMA. Let 0 € R, h > 0, and let n be an integer such that ¢ = nh + 7, where
0 <rT. Let s > 0. Then one has

(6.6) A(0-0,5)B(6 -nh,7)+ B(8:0,5)D(0-nh,7) = B(6-nh,7+ 3).
Furthermore, if h < 7 + s, then

A(6-0,3)B(0-nh,7)+ B(0-0,5)D(0-nh,T)
(6.7) =A(0-(n+1)h,\)B(0-nh,h)+ B(6-(n+1)h,A)D(8 - nh,h),

23



where 7+ s = h + A.
Proof. We will use the cocycle identity for ® and (6.4) to prove this. For any v €

V(8 - nh) and w € W(8 - nh), we define (”‘ ) and (”3 ) by

w1 w3

(t’:l) = &(0-nh,7) (Z) (;’;) :@(9-nh,7’+s)<:)).

By using (6.4) with the fact that

() =500 (1)

one obtains (6.6). In the case that h < 7 + s, we define

(Z)’i) = &(8 - nh, h) (Z)) .

Then (6.7) follows from (6.4) and the fact that

(:;) =38 0,s) (;’;}) :@(9-(n+1)h,A)(;22). 0

REMARK. The variation of constants formula can be written in usual integral form
provided B(6,t) is differentiable in ¢ at ¢ = 0. Define

ef O
b(6) < 5. B(6,1) |0 -

Then (6.5) can be written as
¢
vy = A(0,t)v + / A(6-s,t — s)b(6-s)D(0, s)wds,
0

see Sacker and Sell (1976b) for details.

The induced flow on the normal bundle W is reversible since its state space is finite
dimensional and the Special Hypothesis holds. This means that for every initial condition
(z,8) € W the trajectory ®(6,t)z has a negative continuation. The next lemma gives a
sufficient condition under which this negative continuation in ‘W gives rise to a related
negative continuation for the original flow on €. The next result gives information about
solutions bounded on either R, or R~ = (—o00,0].
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6.4 LEMMA. In addition to the Special Hypothesis assume that there exist constants
K, > 1 and 8 > 0 such that

(6.8) |A(8,t)]op < K1e™?,  6€0, t>0.

Next assume that there is a trajectory wy = D(6,t)wq that is bounded for all t € R (or
t € R™) and set

|w] oo def sup {|lwy|:t€ R (ort € R™)}.
Then there exists a constant K5, which depends only on K, w, K1, and 3, and there exists

a unique vy € V(0) such that the following hold:

(1) The point (vo ) has a negative continuation (vt
Wo wy

) with the property that
(6.9) lve] < Ka|w|oo, forallt € R (ort € R™),

ie., (”0) €B (or € B).

Uo
(2) The function vy in Part (1) is uniquely determined and satisfies the identity

(6.10)  vphyr = Z A(8-3h,(n — j)h + 7)B(6-(5 — 1)k, h)w(j—1)p + B(0 - nh, T)wnn
j=—o0

wheret =nh+71,n€ Z,0 <7 < h, and h > 0. (In particular, v; does not depend
on h.)

0} . .
(3) (:j)(;) = (0) if and only if wy = 0.

(4) The mapping T(8) : wy — (Z)O ) is a one-to-one bounded linear mapping of B(6)
0
into B(6) (or of B~(6) into B~(6)).

Proof. Let us first prove the uniqueness of the point vy € V() such that statement
(1) is valid. If there exist two such points, say v; and vs, then (?) would have a

. . v
bounded negative continuation 0t>, where vg = v; — v2. Then for any ¢t < 0 one has

vo = A(6-t, —t)vy, which implies that

lvo| < Kre™ Pl sup  |uyl.
—o00<t<0

Hence vy = 0. (This also proves statement (3).)
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Next we fix o > 0 and define v} by the right-hand side of (6.10), where t = nh + 7,
n € Z,and 0 < 7 < h. First note that the summation in (6.10) is well-defined because
from (6.8) one has

n 0
S A8, (n = )k + T)lopl B - (= Db, W)llwgionyal < Ki|Boollwlowe ™ 3 Pt

j=—o0 j=—o0
K1 1B|oo
T oph Wleos

where

|Bloo = sup |B(f,s)].
0€0,0<s<h

In fact, this implies that (6.9) holds for v}, where Ky = |B|oo 4+ Ki1|B|oo(1 — e P?)~1,

vk vh
In order to prove that ( t ) is a negative continuation of ( 0 ), we restrict to
Wi wo

t = 0 < 0 and we must show that

(6.11) (Z:) —3(0-0,s) (;’)‘:)

for all s > 0. Because of (2.1), the cocycle identity for ®, one has
®(0-0,5)=P(0-(0c+¢h),75)®(0: (0 + (£ —1)h),h)...8(0-0,h),

where s = th + 75, 0 < 74 < h. Therefore, it suffices to verify (6.11) for 0 < s < h. Note
that 0 <71 4 s < 2h.

Since w, is a trajectory, it follows that
Wors = D(6 -0, 8)w,.

Thus it remains to show that v* +s = Yo+s, Where

Yots def A(8-0,s)v" + B(6- 0, 5)w,.

From the definition of v* one has
Yoss= D A(6-0,5)A0:5h,(n— j)h+7)B(8 - (j — 1)k, hYw(;_1yh + Twan
j=—o0

where

Twpp = A(9 o s)B(G - nh, T)wnh + B(9 .o, 3)D(9 -nh, T)wnh.
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If 7+ s < h, we use (6.6) to replace T'w,p, with B(6-nh, T+ s)wnh, and thereby verify that
Yots = U, in this case. On the other hand, if h < 7 4 s < 2h, we use (6.7) to obtain

Yo+s = Z A(9 : ]ha (TL - ])h +o+ S)B(a ' (] - 1)h’ h)w(j—l)h

_J_r [A(8 - (n+ 1)k, \)B(6 - nh,h) 4+ B(8 - (n + 1)h, \)D(8 - nh, h)|was
n+1
= .Z A6 - jhy(n—j)h+0 +38)B(8-(j — 1)k, h)w(;_1)n

+ B(0 - (n+ 1)k, \)w(nt1)h,

which again agrees with v!_ . (Note that v «f vl is independent of h.)

h
. . . v
We have now shown that (vt ) is a negative continuation for ( 0 ), and that (6.9)
Wi Wo

is valid for any A > 0. In order to show the uniqueness of the negative continuation, we fix

h > 0, and let “t ) denote any negative continuation that satisfies (6.9). (For example,
Wt

vy may be chosen to satisfy (6.10) for a different value of h.) The Variation of Constants

Formula (6.5) (with r = 0 and s = nh + 74, where 0 < 7, < h and n > —m, implies that

vy = A(6 - (—mh), mh + $)v_mp

+ Y A(6-(jh),(n = j)h+7)B(6 - [(j — Dh], h)w(i—1yn + B(8 - (nh), 74 )wan.

Jj=1-m
Now one has

|A(8 - (—=mh),mh + $)v_mu| < K1e7PET™D) gup |v,|,
<0

which goes to 0 am m — co. Hence

ve =Y A(6:(jh),(n = j)h +7)B(8-[(j — 1)k, R)w(j_1yn + B(8 - (nh), 7,)wan,

j=—o0

which agrees with v".

Finally statement (4) is an immediate consequence of statements (1), (2) and (3). [J

6.5 LEMMA. In addition to the Special Hypothesis, assume that there exist constants
Ky > 1 and B8 > 0 such that

|A(8,t)]op < K1e™P,  6€0, t>o.
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Next assume that there is a trajectory wy = D(0,t)w, that is bounded for all t > 0. Define

vs by <vt) = @(H,t)( 0 ) Then there is a constant K3 such that |v¢| < K3 for all
W Wy

t>0

Proof. From Lemma 6.2 with A = 1 one has

KK;e¥
B

jon] <) K1e P K e w]o <

1=1

|wlooa

where |w|o = sup{|w¢|:t > 0}. For t = n + 7, where 0 < 7 < 1, one has

= : KKe¥
log| < ZI{le_ﬁ("-'+T)I{e“’|w|oo < 1

=1

lwloo- 0

7. Proof of Main Theorems

Throughout this section we will assume that m# = (®,0) is a weakly hyperbolic linear
evolutionary system. In particular one has SNU C B = &, the zero section.

7.1 Preliminary Lemmas. We will first derive a number of preliminary properties
of the stable and unstable sets.

7.1 LEMMA. Let M < oo be given and assume that (zy,0;) € Ep with (zy,6;) —
(z,0). Let tx € R. Then the following statements hold:
(A) If ty — oo and n(xk, 0k, [0,tk]) C Em, then (z,0) € 8.
(B) If txy — —oo and there exists a partial negative continuation ¢y : [tx,0] — & of
(zk,0k) with (¢x(s),0k) € Ep for all k and all ty < s <0, then (z,6) € U.
(C) If both (A) and (B) hold, then = = 0.

Proof. (A) It is clear that y(z,0) C €y. By Lemma 5.3 the w-limit set Q(z,6) is
nonempty, compact and (z,0) C B C &;. Consequently, |®(0,t)z| — 0 as t — oo, i.e.,
(z,0) €8.

(B) From Lemma 5.4 we conclude that there is a negative continuation ¢ for (z,6) and
¢ satisfies ¢(t) € Epr for t < 0. By Lemma 5.3 the a-limit set is nonempty, compact and
A(z,6,¢) C B=E&;. Consequently |¢*(t)] - 0 ast — —oo, i.e., (z,0) € U.

(C) If both (A) and (B) hold, then (z,6) e SNU C B = &;. Hence z = 0. []

The following corollary is an immediate application of the last result.
7.2 LEMMA. The following statements are valid:
(A) One has Bt =8 and B~ = U.

(B) For each (z,0) € U, there is a unique bounded negative continuation ¢. Further-
more ¢ satisfies |¢(s)| — 0 as s — —oo, i.e., one has B~ = B, =U.
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Proof. (A) Clearly one has § C Bt and U C B~. If (z,6) € BT, then by Lemma 5.3
the w-limit set §(z, ) is a nonempty, compact invariant subset of £ and Q(z,0) C B = &,.
Hence one has |®(8,t)z| — 0 as t — oo, i.e., (z,0) € §. The argument that B~ = U is
similar.

(B) Let ¢, and ¢, denote two bounded negative continuations of (z,8) and set z; =
#%(s),1 = 1,2, for some s < 0. Since z1,z2 € U(#-s) one has z; — 25 € U(f-s). However,
Ty — oo € §(6-3) since ®(6-s,—s)(z; — x2) = 0. Therefore z; — z2 = 0, which implies
uniqueness. The fact that |¢(s)] — 0 as s —» —oo follows from (A). [

Note, therefore, that the extension ®(6,t)z is defined for all (z,60) € U and ¢t < 0.

7.3 LEMMA. Each of the following two configurations is impossible:

(A) There exist sequences (zr,0r) € &, ¢ — 0, 0 < 7 < t; such that |zi| < e,
|(I'(9k,tk)$k| S €k and I(I)(ek,Tk)CL'kl > 1.

(B) There exists a > 0 and sequences (z,0;) € & By — 00, 0 < 7 < tx such that
|zk| < a, |®(bk,tx)zk| < a and |®(0k, Tk )zK| > By.

Proof. The argument for either statement is the same. Assume the Lemma is false.
We then replace zj with przr, where pi is a positive scalar, and change 71 to the point
ox € [0,tx] where ®(6y,t)x assumes its maximum value on [0, t], so that

(1) |<I)(0k,t)xk| <1 t € [0,tx],
(2) |2(6k,0k)zk| = 1,
(3) |®(bk,t)zk| < bk for t = 0,tr, and 6 — 0.

By continuity one has (¢ — o) — oo and o — oo. It then follows from Lemma 5.4 that
there is an (z, ) € € with || =1 and (z, ) € B, a contradiction. []

Define the following two sets:

At ¥ {(2,6) € BT : |8(6,1)z| < 1 for all t > 0}
A~ Y {(2,0) € By : |®(8,1)z| < 1 for all ¢ < 0).

Note that by Lemmas 7.2 and 7.3 one has At C §, while A= C B~ =B =U.

7.4 LEMMA. The following statements are valid:

(A) For 0 < 7 <t one has n(A*,t) Cc m(At,7) Cc At C 8.
(B) For each t > 0 the set m(AT,t) is closed.

(C) A~ is compact, and A~ C U.

Proof. (A) is obvious. (B) follows from the continuity of 7. The proof of the com-
pactness of A~ is similar to the argument used in Lemma 5.3 to show that H(z,6, ¢) is
compact. We will omit the details. []
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7.5 LEMMA. Let A be given with 0 < A < 1. Then there cannot exist sequences
(zk,0:) € AT and t;y — oo such that |®(0k,tx)zk| > A

Proof. By Lemma 7.4 one has
(fi‘k,ék) def m(Tk, Ok, tk) = (®(Ok,tk)zk,Ok-tk) € 7!'(.A+,tk) c At.

Since aoo(T(AT,1)) < k(t)aeo(AT) < 2k(t) for some function k with k(t) — 0 as t — oo,
there is a convergent subsequence, say

(ix,0:) — (z,0) e AT C 8.

Furthermore one has |z| > A > 0. Since —ty — —oo0, it follows from Lemma 7.1(B) that
(z,6) € U. Since SNU C B = & one has |z| = 0, a contradiction. [

7.6 LEMMA. Let (z,6) € A* be chosen so that (uz,8) ¢ AT whenever > 1. Then
there exists a T = 7(z,6) > 0 such that |®(8,7)z| = 1.

Proof. First we note that for any (z,6) € S there is a 7 > 0 such that |®(6,7)z| = b,
where b & sup {|®(0,t)z| : t > 0}. By linearity one has sup {|®(6,t)uz|:t > 0} = |ulb.
Now if (z, 8) satisfies the hypotheses of this Lemma, then for 4 > 1 one has pb > 1. Hence

b > 1. However, (z,0) € At implies that b < 1. Hence, with 7 given as above, one has
|®(0,7)z| =1. 0

7.7 LEMMA. Let A be given where 0 < A < 1. Then there cannot exist sequences
(zk,0r) € A, ty — —oo such that |®(0k,tx)zi| > A.

Proof. By Lemma 7.4 A~ is compact and A~ C U. Since

def

(2,01) = (®(Ok, tr)Tk, Ortr) € A,

we can assume, without loss of generality, that (&, 6) is convergent with limit (z,6) €
A~ C U. Also one has |z| > A > 0 and (&, 0k, [0, —tx]) C A~ for all k. Since —t; — oo
it follows from Lemma 7.1(A) that (z,6) € S. Since SNU C B = & one has |z| = 0, a
contradiction. []

7.8 LEMMA. Let (z,6) € A~ be chosen so that (uz,0) ¢ A~ whenever p > 1. Then
there exists a T = 7(z,6) < 0 such that |®(0,7)z| = 1.

Proof. Let b %' sup {|®(6,s)z|: s < 0}. First note that b < 1 since (z,6) € A~. Next
one cannot have b < 1 or else this would violate the condition that (uz,6) ¢ A~ whenever
@ > 1. Since A~ C U one has |®(6,s)z| — 0 as s — —oo. Consequently, there isa 7 <0
such that |®(0,7)z|=b=1. (]
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7.2 Stable Set: Stability and Exponential Decay. Our next objective is to show
that the decay rate for trajectories beginning in the stable set is exponential. The first
step is to derive a form of uniform stability for the stable set.

7.9 LEMMA (UNIFORM STABILITY). Thereexistsav,0 < v <1, such that if (z,0) € §
and |z| < v, then (z,0) € AT, i.e., |®(6,t)z| <1 forallt > 0.

Proof. If this were false, then there would exist a sequence (zk,6;) € S such that
lzx| — 0 and (zx,6;) ¢ AT. Define A\ by ;! e sup {|®(0k,t)zk| : t > 0}. Then
0 < Ax < 1 and, by linearity, (Axzk,0k) € A*. However, (uArzk,6x) ¢ AT whenever p > 1.
By Lemma 7.6, there exists 7 > 0 such that |®(0k, 7x)Arzk| = 1. Now [Agzk| < |zk| — 0.
Since (Axzx, k) € A~ C 8, there exists t; > 74 such that |®(0x,tx)Akzi| < k7. However

this violates Lemma 7.3(A).

7.10 LEMMA (EXPONENTIAL DECAY). There exists a 7 > 0 such that for any (z,6) €
8 one has |®(8,t)z| < 3|z| for all t > 7.

Proof. If this were false, then there exist sequences t; — oo and (z,8x) € S such that
|®(0k,tk)zk| > 1 |zk|. Because of the linearity of & and Lemma 7.9, one can assume that
|zx| = v, and (z, 8k) € AT. Then |D(0,tx)zr| > '%V, which contradicts Lemma 7.5. []

The next result begins to address some the the specific features noted in Theorem A.

7.11 LEMMA. The following statements are valid:

(A) The stable set § is closed.
(B) There exist constants I > 1, 8 > 0 such that for all (z,0) € § one has

|®(0,t)z] < K|z|e™ P!, t>0.
Proof. (A) Let (zg,0;) be a sequence in § with (z,0x) — (z,0). If z = 0 then
(z,0) € 8. On the other hand, if z # 0, then define u by 2u|z| = v, where v is given by

Lemma 7.9. For k sufficiently large, it follows from Lemma 7.9 that (uzy,6;) € AT. Since
At is closed (Lemma 7.4(B)), one has

(uzxi,0r) — (pz,0) € AT C 8.

Consequently (z,8) € §, since p # 0.
(B) Let 7 > 0 be given by Lemma 7.10. Define # and K by A7 = log2 and

K = ¢eP" sup {|®(6,t)z| : (z,0) €8,|z| =1and 0 <t < r}.
Note that # > 0 and K > 1. We will next present an induction argument to establish

(7.1) 18(60,t)z| < Kl|z|e PUTDT ¢ e [jr,(j + 1]
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uniformly for (z,6) € Sand j =0,1,2,... From the definitions of K and # and the linearity
of ¢, we see that (7.1) is true for j = 0. Assuming that (7.1) is true for j = k, we will

verify it for j = k+ 1. Let 6 € © and = € §(#) be chosen arbitrarily. Let 6; 4l p. J7 and
z; ef ®(6,;j7). One then has (zj,6;) € 8, and (from Lemma 7.10) |®(6,s)z| < |x| for
7 < s < 27. Now the co-cycle identity implies that ®(6;,s)z; = ®(6,j7 + s)z. By setting
t =kt + s, where (k+ 1) <t < (k+2)7, i.e, for 7 < s < 27, we have

19(6,1)2] < 5126, kr)e] < 5 Klale P07 = Ka]emsh+2),

which is precisely (7.1) for j = k+1. Finally, given any ¢ > 0 pick j so that j7 <t < (j+1)7.
Then from (7.1) one has

|8(6,t)z| < Kl|z|e PUTDT < K|z|e™#,
which completes the argument. []

7.3 Unstable Set: Stability and Exponential Decay. Our next objective is to
examine analogous properties for the unstable set U. Since the flow in the infinite dimen-
sional setting is not reversible, we cannot proceed as in the finite dimensional case where
one simply replaces t with —t and uses the argument of the last section. Nevertheless there
are some inevitable similarities.

Recall that each (z,6) € U = By has a unique bounded negative continuation ®(6, t)z,
t <0. Also if (z,0) € A~ then |®(6,t)z| <1, for t < 0.

7.12 LEMMA (UNIFORM STABILITY). There exists a v, 0 < v <1 such that if (z,0) €
U and |z| < v, then |®(8,t)z| < 1 for all t < 0; in particular one has (z,60) € A™.

Proof. If this were false, then there exists a sequence (z, 0;) € U, with |zx| — 0, and
be > 1 where by & sup {|®(0k, s)zk|: s <0}. Since |zx| — 0 there is a sequence of times
tr < 0 that satisfy |®(0k,tx)zx| = 1. Since |®(bk,s)zr| — 0 as s — —oo, there is a sequence
Sk S tk < 0 such that |(I)(9ka3k)33k| S k_l. Now set ;i'k = @(Ok,sk)xk, ék = 9k-sk. One
then has |#x| < k71, |zk| = |®(Bk, —sk)Ek| — 0 and |®(br, tx — sk)&k| = [B(8k, tr)zk| = 1,
which violates Lemma 7.3(A). O

7.13 LEMMA (EXPONENTIAL DECAY). There is a 7 < 0 such that for any (z,0) € U
one has |®(6,s)z| < |z| for all s < 7.

Proof. If false, then there are sequences sy — —oo and (2, 0r) € U with |®(6y, s)zk| >
%|wk| By linearity one can assume that |z4| = v, where v is given by Lemma 7.12. In this
case, Lemma 7.12 implies that (zx,0r) € A™ and |®(6k,sk)zr| > v, which contradicts
Lemma 7.7. ]

Again we return to some of the features cited in Theorem A.
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7.14 LEMMA. The following statements are valid:

(A) The unstable set U is closed.
(B) There exist constants K > 1,8 > 0 such that for all (z,0) € U one has

(7.2) (6, s)z| < K|z|e* s <0.
(C) For any M > 0 the ball bundle UN €y is compact.

Proof. (A) Let (z,6r) € U with (z4,6;) — (z,0). If £ = 0 then (z,0) € U. On
the other hand, if z # 0 define g by 2u|z| = v where v is given by Lemma 7.12. For
k sufficiently large, it then follows from Lemma 7.12 that (puz,0;) € A~. Since A~ is
compact (Lemma 7.4) one has

(hzk,bk) — (pz,0) € A~ C U

Thus (z,6) € U, since v # 0.
(B) Let 7 < 0 be given by Lemma 7.13. Define 8 by —37 = log2 and set

K ¥ e Prsup {|®(6,t)z| : (z,0) €U, |z| < 1,7 <t <0},

One then has # > 0 and K > 1. Note that if (z,68) € U then |®(6,t)z| < K|z|e’” = 1 K|z|
for 7 <t <0. Let (z,0) € U. We claim that if ¢t € [(j + 1)7,77], then one has

(7.3) (6, 1)z| < K|z|ePUtDT

uniformly for (z,6) € U. Indeed by the linearity of the flow in z and by the definition of
K and f we see that (7.3) is valid for j = 0. Now assume that (7.3) is valid for j = k. We
will then verify it for j = k 4 1. Let 6 € © and z € U(F) be fixed and set z; def ®(0,57)

and 6, 4" §.j7. One then has (z;,6;) € U and (from Lemma 7.13) |®(6;,s)y| < 1|y| for
y € U(6;) and 27 < s < 7. The cocycle identity implies that ®(8;,s)z; = ®(6,j1 + s)z.
Let t = k7 + s, where 27 < s < 7. One then has

1
|2(6, t)z| = |2(0k, 5)B(6, k7)z| < 5|@(8, k7)z]
< %K|m|eﬂ(k+l)r = K|z|ef*+D7

which establishes (7.3) for j = k + 1. Finally given any ¢ < 0, pick j so that (j + 1)1 <
t < j7. From (7.3) one has

|®8(6,t)z| < K|z|ePUHDT < K|z|ef,

which completes the proof of (7.2).

(C) From (7.2) we see that m(U N Epr,—t) C Expr for all ¢ > 0. Hence UN €y C
m(Exm,t) for all t > 0. Since ac(UN En) < aoo(m(Exm,t)) < 2KMk(t) for some
function k with k(t) — 0 as t — oo, it follows that a(UNExs) = 0. Since UN Eyy is closed,
it 1s compact. []
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7.4 Semicontinuity of Dimension Functions. Since UNE; is compact and the unit
ball in a Banach space is compact if and only in the Banach space in finite dimensional

one has:
7.15 LEMMA. For every 6 € ©, dim U(0) is finite.

Throughout this subsection we shall fix § € © and let X(6#) denote an arbitrary closed
linear subspace of the fiber £(8) with X(6) N §(6) = {0}. Furthermore, we let

K(6)r & (8, 7)K(0),  for T >0.

7.16 LEMMA. Let 8 € © and X(6) be a finite dimensional subspace of £() that satisfies
8(6)NXK() = {0}. Then thereis at > 0, which depends on both 6 and the subspace X(6),
such that for all x € X(6) one has

|®(6,t)z| > 2|z| t>T.

Proof. If this is false, then there exist z,, € X(6) and 7, > 0 with |z,| = 1,7, — oo

and such that |®(6,7,)z,| < 2. Let M, 4l ax {|®(6,t)z,|: 0 <t <7,}. From Lemma

7.3(B) one has sup, M, = M < co. By using a subsequence, if necessary, we may assume
that z, — z in K(6). Since 7(z,,6,[0,7,]) remains in €7 for all n and 7, — oo, it follows
from Lemma 7.1(A) that (z,6) € §. Finally the facts that |z| = 1 and z € X(8) contradict
the disjointness condition X(8) N §(8) = {0}. Since ®(4,t)z = z at t = 0 one must have
7>0.

7.17 LEMMA. For all (z,6) € € one has
lim sup |®(6,t)z| = h'Itn inf |®(6, 1)z,
t—o0 —o0

ie., t]im |®(0,t)z| exists. Moreover, z ¢ 8§(0) if and only if t]im |®(6,t)z| = oo.
Proof. Let (z,6) € € be given and define

L = lim sup |®(0,t)z|, L= lirtn inf |®(6,1t)z].
t—o0 —o0

One then has 0 < /¢ < L < oo. Furthermore, L = 0 if and only if (z,0) € 8. Assume then
that L > 0, or equivalently, that = ¢ §(6). If L < oo, then (z,0) € Bt = § by Lemma, 7.2.
Therefore we can assume that L = oco. If £ < L = oo, then there exist sequences sg, ri,tx
such that 1 < s < rp <t and |®(6,t)z| < (€ + 1) for t = si or t; while [®(8,t)z| = v
for t = ry (where vy is defined by vy 4 max {|2(6,t)z| : sp, <t <tr}) and v — oo as
k — oo. However this contradicts Lemma 7.3(B). [
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7.18 LEMMA. Fix 6 € O and let w denote any point in the omega limit set §)(0). Let
X(6) be any finite dimensional linear subspace of £(6) satisfying §(8) N X(6) = {0}. Then
one has dim X(8) < dim U(w).

Proof. Let k = dim X(6). Next choose a sequence t, — oo so that t,4; > t, > 7,
where 7 is given by Lemma 7.16, and 6, def 0-t, — w. We claim that there exists a
subsequence such that X(6)-t, — X where K is a closed linear subspace of &(w) with
dim X = dim X(6). By the Riesz Theorem there is a basis {¢1, ..., z¥} for K(8)-t,, satisfying
|zt | = 1 for all i and n and

. . 1
dist (25!, Span {zl,...,21}) > 3
for i = 1,..,k — 1 and all n. Each (2%,6,) admits a negative continuation ¢; ,(t) =

(¢fi(t),0 -t) for —t, <t <0,1<¢< k. For each n define

def !
. n(t)]: —t, <t <0}
N lrgiaécksup{lsb ()] —tn <t <0}

From Lemma 7.16 one has |¢”;(—tn)| < 3. Because of Lemma 7.3(B) one must have
supp,Np = N < o0.

Now define H, &' {(z},8,),...,(zk,6,)}, J o Ujsn Hjs Cn e U;:ll Hj,and ', e

{ij(—tn) : 1 < ¢ < k,j > n}. Then n(Ty,,t,) = J,. Since tht1 > tn, it follows that
I'n cEn. f weset I def U,>1 Hn, we have

T'=J,UCy = (Tn,tn) UC,.
Since each C), is compact, one has ax(Cr) = 0 for all n, and therefore

Aoo(T') = max(aeo(m(Lnytn)), @oo(Cr)) < k(tn)aco(Tn) < Nk(t,).

Since k(t,) — 0, one has a(I') = 0, i.e., Closure (') is compact. Thus one can choose
subsequences so that 2, — y* for ¢ = 1,..., k. Since

)

. : 1
dist (y**!, Span {y',...,y'}) > 3 fori=1,...,k—1

the collection {y',...,y*} is linearly independent and forms a basis for I]AC, where K &'

Span {y',...,y*}. It remains to show that X C U(w). In order to prove this it suffices to
show that each basis element y* is in U(w). But this follows from Lemma 7.1(B). [

Since codim §(0) is the supremum of the set
{dim X(6) : K(6) is a finite dimensional subspace of £(8) satisfying §(6) N X(4) = {0}},

it follows from the last lemma that codim §(8) < dim U(w) for any point w € Q(8). Since
U(F) N §(8) = {0}, one can clearly choose U(F) C K(6). As a result of these facts and

Lemma 7.15 we obtain the following:
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7.19 LEMMA. For every 8 € © the stable set §(6) has finite codimension and codim
§(8) < dim W(w), where w is any point in the omega limit set 2(#). Furthermore, there
exists a closed linear subspace X(0) of finite dimension such that X(6) N §(6) = @ and
&(8) = 8(0) + X(8). Furthermore, X(8) can be chosen so that U(#) C X(6). Moreover, for
each § € O one has dim U(#) < codim §(#) < oo and

dim U(6) = codim 8(8) <> £(6) = U(8) + S(6).

We are now ready to prove the semi-continuity properties of the functions codim 8§ and

dim U.

7.20 LEMMA. The function codim 8§(8) is lower semi-continuous on O, i.e., one has

codim §(0) < lim 1'101f codim §(n) 0 € 0.
Tl—-}

Proof. Let k = codim §(#) and let z!,...,z* be a linearly independent set of vectors
with z* ¢ §(8),¢ = 1,..., k. In order to prove this lemma, it suffices to show that there is a
neighborhood U(6) such that

(7.4) zt ¢ 8(n), for all 7z and n € U(6).

Indeed if (7.4) were not true, then there exists a sequence 6, — 6 and ¢,,1 <1, < k such
that zi» € §(,). Since the set {z!,...,2¥} is finite, we can assume, without any loss of
generality, that z! € §(¢,,) for all n. One then has (z!,0,) € § and (2!,6,) — (2!,0) € 8
since § is closed. This is a contradiction. [J

7.21 LEMMA. Let V be a closed subset of €& where each fibre V() is a linear subspace
of £(8) and assume that the unit ball bundle V; e {(z,0) € V:|z| =1} is compact in €.
Let 6, be a sequence in © with 8,, — 6 and dim V(8,) > k for all n. Then dim V() > k.
In other words, dim V(0) is upper semicontinuous on ©, i.e., one has

dim V(0) > lim sup dim V(n), 6 € 0O.

n—6

Proof. Let z},...,z¥ be a linearly independent set in V(6,,) and choose £, ..., €% € X*,
the dual space to X, such that |2%| = |¢}| =1 for all i, n and £ (z) = 67, the Kronecker
delta. By the assumed compactness of V; and the weak compactness of the unit ball in
X*, there exist convergent subsequences z!, — z* € V(8) and £, converges weakly to m7,
i.e., ¥ — mJ, for all i,j. Let e > 0 be given. Now fix 4,j so that 1 <4,j < k. We claim
that for n sufficiently large one has

m? (2) — 67| = [m? (") — E(3)| < [m? (') — (%] + |6(a*) — € (<)
<e+lzt —z| < 2.
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Indeed the first term in the last inequality follows from the weak convergence of ¢, while
the strong convergence of zi implies the second. Consequently one has m?(z') = 7%, i.e.,
there exist k linearly independent vectors z!,...,2% € V(6). O

The next result concerning the behavior of dim U(6) follows immediately from Lemmas

7.14(C) and 7.21.
7.22 LEMMA. The function dim U(6) is upper semi-continuous on 0.

7.23 LEMMA. For each 6 € O the function codim §(6-t) is a nondecreasing function of
t. Furthermore, one has dim U(6-t) is constant for t € R.

Proof. Let X(6) be a full complement of §(6), i.e., one has X(6) N §(8) = {0} and
&(0) =X(0) + 8(8). We claim that

(7.5) %K(8)-r N8(67) = {0} >0

If (7.5) fails for some 7,0 < 7, then the two sets K(8)-7 and §(6-7) would have a common
element & # 0. This means that there is an = € X(6) with & = ®(6,7)z. But & € §(0-7)
implies that ¢ € §(6). Thus « = 0, which contradicts the fact that & # 0.

It follows from (7.5) that
codim §(6-7) > dim X(8)-r = dim X(0) = codim §(6)

for all 7 > 0. Finally by replacing 6 by 6-s and 7 by (s + t) where s € R and t > 0, one
obtains codim §(6-(s +t)) > §(8-s).

Note that if ®(6,t)z = 0 for some t > 0, then =z € §(6). Since §(6) N U() = {0},
it follows that ®(6,t) is a one-to-one mapping of U(#) into U(A - t) for ¢ > 0. We claim
that ®(6,t) maps U(#) onto U(O - t). Indeed, let ¢() = (¢*(7),0 - (r + 1)) be a negative
continuation of (z,6-t) with z € U(6-t). Since |¢*(7)| — 0 as 7 — —oo0, one has $*(—t) €
U(B). Thus z = ®(6,t)¢*(—t) € ®(6,t)U(6), or U(8 - t) C ®(8,t)U(A). Consequently one
has dim U(#) = dim U(6-t) for all ¢ > 0. By replacing 6 by 6-s for s < 0, we conclude that
dim U(6-t) is constant for t € R. [

7.5 Proof of Theorems A and B.

Proof of Theorem A. This now follows directly from Lemmas 7.2, 7.11, 7.14, 7.19, 7.20,
and 7.22. []

Proof of Theorem B. Let © be a closed invariant subset of © and set EO)=Xx6
and 8(0) = {(z,60) € $: § € ©}. Assume that codim $(6) = k for all § € ©. Since $(0) is
closed, it follows from Lemma 3.2 that §(0) is a subbundle of &®). Consequently there
is a projector L on &(0) with R(L) = 8(0) and N(L) = X, where X is a complementary
subbundle for §(0) in (). The Special Hypothesis in Section 6 is satisfied with V = $(0).
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Let # denote the induced flow on X. Note that because of Lemma 7.11 the hypotheses
(6.8) of Lemma 6.3 is satisfied. Since B = & is trivial, it follows from Lemma 6.3 that B,
the bounded set for the induced flow on X, is also trivial. Since X is a finite dimensional
bundle, it follows from Sacker and Sell (1974, 1976a) and Selgrade (1975) that # admits an
exponential dichotomy over every minimal set M C ©. This implies that $(6)nU(8) = {0}
and X(8) = §(8) + U(6) for all 6 € M.

Next we claim that for every minimal set M C © one has 8(9) {0} for all 6 €
M. Indeed let (w,6) € § for 6§ € M where M is a minimal set in 6. Using the (v, w)
representation from Section 4, we let w; = D(6,t)w and let v, be given by Lemma 6.4.
Since (w,#) € § there are constants K; > 1 and @ > 0 such that |D(8,t)w| < K;|w|e™
for t > 0. Since V = § there are constants K2 > 1 and 8 > 0 such that |A(6,t — s)|
< Koe P(t=9) for 0 < s < t. Lemma 6.4 then implies that there is a constant K3 > 0

such that |vs| < K3 for all ¢ > 0. In other words "t ) is bounded for t > 0. Hence
W

(;))0 ) = (S)) € BT(0) = 8(0) by Lemma 7.2. Since (3)) € X(8) one has w = 0, which
0
completes the proof that §(6) = {0} for all § € M.

Since dim ﬂ(@) = k for 6 in any minimal set in O, it follows from the finite dimensional
Compatibility Theorem in Sacker and Sell (1976a, Theorem 2) that # has an exponential
dichotomy over ©, which in turn implies that

dim U(6) = dim X(6) =k,  forall § € ©.

Since U = B~ = X, the linear mapping T(0) : wg — (Z;O ) constructed in Lemma 6.3 is
0

defined for all (wg,d) € X and the range satisfies R(T(8)) C B~(6) = U(F). Since T(0)
is one-to-one one has k < dim U(#) for § € ©. From Lemma 7.19 one has dim U(0) <
codim 8§(6) = k. Consequently, T(6) : X(8) — U(6) is a one-to-one bounded mapping of
X(6) onto U(8) for all § € O. It then follows that £(6) = 8(6) + U(H) for all 6 € B.

For 6 € O define M(6) as the restriction of (I — L(6)) to U(A), i.e.,

M(6) = (I = L(8)) sy -

Since dim X(0) = dim U(#), M(6) is a one-to-one mapping of U(#) onto K(8) with inverse
M~1(6) : X(0) — U(8). Furthermore one has M~1(6) = T(#) and

(7.6) (I - LO)M~ (8)(I - L(8)) = I — L(6).
Now let Q(6) e M~1(6)(I — L(8)). Then by (7.6) one has

Q*(6) = M (6)( — L(9))M~H(6)(I — L(8)) = M~ (6)(I - L(6)) = Q(6),
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i.e., Q(0) is a projection. It is easily seen that R(Q(6)) = U(F) and N(Q(6)) = N(I-L(0)) =
R(L(8)) = 8(0). Let P(6) = I — Q(6). Since § and U are closed (Theorem A) and since
L(8) varies continuously in 6 in the operator norm, it follows that P(#) is also continuous
in @ € ©. This completes the proof of the first three items in Theorem B. Since § and U are
positively invariant, it is easily verified that the projector P is invariant, i.e., (3.3) holds.
The final item, the exponential dichotomy over O, is now an immediate consequence of
the above properties of P(6) and Theorem A. [J

7.6 Dichotomies Over w-limit Sets. In the next two lemmas we show that the
given linear evolutionary system admits an exponential dichotomy over every omega limit
set in O.

7.24 LEMMA. Fix 6 € ©. Then there exist integers 0 < ky < ko with the following
properties:

(1) t]_iﬂloocodim 8(6-t) = k.

(2) tIi{noocodim §(6-t) = ks.

(3) For all t sufficiently large, one has codim §(8-t) = ky and

(7.7) codim §(a) < ky < codim §(6) < codim §(w) = ko,

for all a € A(6) and w € Q(0). In particular, codim §(-) is constant on Q(6), and
dim U(w) = codim §(w) for all w € Q(6).

Proof. The limit in (1) exists since codim §(f-t) is nondecreasing (Lemma 7.23),

integer-valued and bounded below. Let k3 L' min {dim U(w) : w € 2(#)}. Then by
Lemma 7.19, one has codim §(6-7) < ks for every 7 € R. Hence tlim codim §(6-t) = ky

exists and k3 < k3. By Lemma 7.23 one has k; < ko. Since codim §(6) is integer-valued
one must have codim §(6-t) = k, for all large ¢.

The first inequality in (7.7) is a result of the lower semicontinuity of codim §(6). The
second follows from the monotonicity of codim §(6-¢). The third inequality follows from
Lemma 7.19. The lower semicontinuity of codim 8 implies that for any w € Q() one has
codim §(w) < codim §(§-t) for t large. Hence

codim §(w) < kg < k3 < dim U(w) < codim §(w). [

In the light of Theorem B and Lemma 7.24, the following result is immediate.

7.25 LEMMA. Fix 6 € ©. Then 7 admits an exponential dichotomy over the omega
limit set §)(0), i.e., there exists an integer k > 0 such that the following properties hold:

(1) codim §(w) = dim UW(w) = k for all w € (0), i.e., Q(H) lies in the Morse set M.
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(2) &(w) = §(w) + W(w) for all w € (6).

(3) Let P(w) : X — X denote the linear projection on X with range §(w) and null
space U(w). Then P(w) varies continuously in the operator norm for all w € Q(6),
and P is invariant.

(4) Let K > 1 and > 0 be given by Lemmas 7.11 and 7.15. Then

|B(w,t)P(w)lop < Ke™# 120, weQb),
|®(w, t)[I — P(w)]|op < KeP? t<0, weQ@¥).

Since every minimal set in © is an omega limit set we have the following corollary to
Lemma 7.25.

7.26 LEMMA. For every minimal set M C © there is an integer k such that the
conclusions of Lemma 7.25 hold over M. In particular M lies in the Morse set Mj.

7.27 LEMMA. Let 6 € O and assume that there is an integer k > 0 such that A(f) U
Q(0) C My. Then 6 € H(0) C M.

Proof. From (7.7) one has
codim §(a) = codim §(f) = codim S(w) = k

for all @ € A(), and w € (F). In other words, codim 8§(n) = k for all n € H(H). Since
the hull H(6) is compact and invariant, one has § € H(8) C My, by Theorem B. ]

7.7 Dichotomies Over the Morse sets. We next show that the given linear evolu-
tionary system admits an exponential dichotomy over every nonempty Morse set M} in ©.
For each integer k > 0 let O, Ay, By be given by (3.5), where O = Ay N By, and let My
denote the Morse set, i.e., M} is the maximal compact invariant subset of . Since dim
U(H) is finite everywhere and upper semicontinuous on the compact set ©, the function
dim U is bounded above. As a result we have the following;:

7.28 LEMMA. There is a k < oo such that dim U(#) < k for all § € O.

7.29 LEMMA. The following statements are valid:

(1) Each set Oy is a closed set in O.

(2) Each set Oy is negatively invariant.

(3) The Morse set M}, is nonempty if and only if O}, is nonempty.

(4) At least one, and at most finitely many, ©y are nonempty.

(5) Let ¢ = max {k: Oy # 0}. Then q is finite and M, = O, is invariant.
(6) codim 8§(8) < q for all 6 € ©.
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Proof. (1) By Lemmas 7.20 and 7.22 the sets Ay and By are closed. Consequently O

1s closed.

(2) Let 8 € O and 7 < 0. Since dim U(n-t) is constant in ¢ and codim §(n-t) is
nondecreasing in ¢, Lemma 7.19 implies that

dim U(#) = dim U(f-7) < codim §(-7) < codim §(8) = dim U(H) = k.

Hence dim U(6-7) = codim §(8-7) = k, and -7 € Oy, i.e., O is negatively invariant.

(3) Since M} C Oy, it suffices to show that My is nonempty whenever O is nonempty.
Let § € ©. Since O is closed and negatively invariant, the alpha limit set A(6) C O.
Since A(6) is nonempty and invariant, one has A(8) C My, i.e., M} is nonempty.

(4) The fact that at most finitely many © are nonempty follows directly from Lemma
7.28. Since the flow on © contains a minimal set, it follows from Lemma 7.26 that at least
one O is nonempty.

(5 and 6) From statement (4) ¢ is finite. Let § € ©,. Since dim U(é-t) is constant
in t and codim §(6-t) is nondecreasing in ¢, we need only show that codim §(6-¢) cannot
increase for t > 0. However, if codim §(6-t) > ¢ for some ¢t > 0 then by Lemma 7.24 codim
S(w) > g for any w € (). But then Lemma 7.25 yields Q(6) C Oy for some k > ¢, which
is impossible. As a result, O, is invariant. Lastly, since O, is closed one has M, = ©,4. [0

7.30 LEMMA. Assume that there is precisely one nonempty O, in ©. Then © = Oy
and the conclusions of Theorem B are valid over ©.

Proof. If there is precisely one nonempty O then O = O, where ¢ is defined in Lemma
7.29(5). By Lemma 7.29, O, is compact and invariant. Furthermore because of Lemmas
7.25 and 7.26, every omega limit set Q(6) C ©, and every minimal set M C ©,. We claim
that codim §() = ¢ for all § € ©. If there is a 8y € O such that codim §(6y) = k < ¢ then
(Lemma 7.24) for all a € A(6y) one has codim §(a) < codim §(6y) = k < q. Hence there is
a minimal set M C A(a) with M C Bg, i.e.,, M N O, = 0, a contradiction. It then follows
from Theorem B that © = O, and the conclusions of Theorem B are valid over 0. [J

7.8 Proof of Theorems C, D, E and F.

Proof of Theorem C. Without loss of generality we can assume that © = ©. (Other-
wise, one can restrict the low to ©.) Since dim U() = & for all § € O, it follows from the
definition of O that at most one O is nonempty. Since there is at least one nonempty
O (Lemma 7.29), Theorem C is now a consequence of Lemma 7.30. ]

For the remaining theorems we will need some properties of chain recurrence which we

summarize here. The material from the next few paragraphs is taken from Conley (1978,
pp. 32-38).
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Let Z be a compact Hausdorff space with a two-sided flow o(z,t) = z-t. For any set
U C Z the a- and w- limit sets are

A(U) = NrgoCL{o(U,r +8): <0}, QU) =Nyl {o(U, 7 +1) : 2 0},

A set A C 7 is said to be a (local) attractor if there is a neighborhood U of A with
Q(U) = A, and A is said to be a (local) repeller if A(U) = A. Given any attractor A C Z
one defines A* to be the set of z € Z for which Q(2) N A = (. Then it is shown that A* is
a repeller and is referred to as the repeller complementary to A. Furthermore one has

(7.8) Z\(AUA*)={z€ Z: A(z) C A*and Q(z) C A}

Because of (7.10) the set C(A*, A) = Z \ (AU A*) is the collection of all orbits connecting
A* to A. In a similar way, given any repeller R one defines the atractor R* complementary
to R to be the set of all z € Z for which A(z)N R = 0. Equation (7.10) is also valid in that
case with (R*, R) replacing (A, A*). Notice that if A is an attractor (or R is a repeller),
then A** = A (or R** = R). The pair (4, A*) (or (R*, R)) is called an attractor-repeller
pair. One of the main properties of attractors and repellers which we need is the following
result, see Conley (1978, p. 33). (Also see Sacker (1974).)

7.31 LEMMA. Let U be a compact set in Z. Then the following are valid:

(A) If for every z € Bdy U there is a time t, > 0 such that z-t, € Z \ U, then the
maximal invariant set in U is a nonempty repeller.

(B) If, instead, one has z:(—t,) € Z \ U, then the maximal invariant set in U is a
nonempty attractor.

The next concept is that of chain recurrence. We begin with an open covering U of
Z. For example, if Z is a metric space, then & may be a covering of Z with open balls
of diameter e. Let L > 0 be given and let y,z € Z. A (U,L) chain connecting y to z
consist of finite sequences z1,...,z and t;,...,tx—1 satisfying 1y = y, zx = 2, t; > L, for
1<:<k—-1,and for each 7, 1 <1 < k — 1, there is a U; € U such that both z;-¢; and
z;4+1 lie in U;. The flow on Z is said to be chain recurrent if for every z € Z and for any
covering Y and any L > 0 there is an (U, L) chain connecting z to itself. The key property
we need is the following:

7.32 LEMMA. (A) If Z has an attractor-repeller pair (A, A*) with C(A*, A) # 0, then

the flow on Z is not chain recurrent.

(B) For any z € Z, the flows on the alpha limit set A(z) and on the omega limit set
Q(z) are chain recurrent.

The following result is an application of the last two lemmas.
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7.33 LEMMA. Let Z be a compact Hausdorff space with a (two-sided) flow . Assume
that there are pairwise disjoint sets D, E and F' in Z such that E is nonempty, D and F
are compact sets, and Z = DU E U F. Then the following hold:

(A) If for all z € E one has Q(z) C F, then D and F are nonempty and the flow on Z
is not chain recurrent. If in addition D is invariant, then D is a repeller.

(B) If for all z € E one has A(z) C D, then D and F' are nonempty and the flow on Z
is not chain recurrent. If in addition F' is invariant, then F' is an attractor.

Proof. We will prove (A) and note that the proof of (B) is similar. Clearly F' must
be nonempty since E is nonempty and Z is compact. Let U be a compact set in DU E
with D C Int U. Then Bdy U C E. Since for every z € Bdy U one has §(z) C F, there
is a time t, > 0 such that 2-t, € Z \ U. By Lemma 7.31, the maximal invariant set A*
in U is a repeller. Let A denote the attractor complementary to A*. Then A C F'. Since
E C C(A*,A), it follows from Lemma 7.32 that the flow on Z is not chain recurrent.
Since A* C D, D is nonempty. If D is invariant, then for all z € D one has Q(z)N A C
Q(z) N F = ). Consequently, D C A*, i.e., D = A* is a repeller. ]

Proof of Theorem D. Assume that the flow on © is chain recurrent and define ¢ by
¢ = max {codim §(6) : 6 € ©}. By Theorem C, we need to show that ©® = U?_ M;.
Assume that this is not the case and let k be the smallest integer such that

(7.9) Miy 1 U---UM, = {6 € O:codim §) > k+ 1}.

Note that for k¥ = ¢ — 1 one has equality in (7.9) by Lemma 7.29(5 and 6). Thus k+1 < ¢,

and by assumption one has 1 < k + 1. Set G o {60 € ©: codim §(8) > k}. Because of the

lower semicontinuity of codim §, the set G is open, and by the definition of k one has

FEMuU..UM, GG.

Note that F' is a closed set since the Morse sets M; are closed. Hence E e \ F'is

nonempty. Furthermore, since E C G and since E does not meet any of the Morse sets
My, ..., My, one has

E = {6 € 0:codim §) =k, dim U(F) < k — 1}.

By Lemmas 7.24 and 7.25 one has () C F for all 8 € E. Finally

def

D = By_1={6€0:codim §() <k -1}

is compact, because codim § is lower semicontinuous. Hence by Lemma 7.33(A) the flow
on O is not chain recurrent, a contradiction. [J
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7.34 LEMMA. For every 6 € O, the linear evolutionary system m = (®,0) admits an
exponential dichotomy over the alpha limit set A(6), i.e., the conclusions of Theorem B
hold over A(8) for some k. In particular, A(6) C M for this k.

Proof. We use the fact that every alpha limit set is chain recurrent, Lemma 7.32. One
then restricts 7 to X x A(#) and applies Theorem D. [

Proof of Theorem E. Lemma 7.29 assures us that only finitely many O are nonempty.
The conclusion for a single nonempty O is given in Lemma 7.30. Now assume that there
exist at least two nonempty O, and let p and ¢ be respectively the min and max of the
set {k : O # 0}. As a result of Lemmas 7.24, 7.25, 7.27, 7.29, and 7.34, we need only
show that M, is an attractor and M), is a repeller in the flow o on ©. As we now show,
this follows in turn from Lemma 7.33. Indeed, in the case of M,, we set D = B,_; (where
Bg_1 is defined in Section 3.5), F' = M, and

E = {6 € O :codim §(8) = ¢q, dim W(F) < ¢ — 1}.

Since codim § is lower semicontinuous, the set U ' EUFisan open neighborhood of F.
If E is empty, then Q(U) = F and therefore F' is an attractor. On the other hand, if E is
nonempty, then for all 6 € E one has §2(0) C F and A(f) C D by Lemmas 7.22, 7.24, and
7.34. Consequently, Lemma 7.33 implies that F' = M, is an attractor. Similarly for M),
oneuses D =M,, F = Apy; and E = {6 € O : codim §() > p + 1, dim U(A) = p}. O

Proof of Theorem F. Since each nonempty Morse set M} contains a minimal set,
Theorem F is a direct consequence of Lemmas 7.29 and 7.30 and Theorem E. [J
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