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Equations (0.la.b,d) consist of a system of conservation laws of hyperbolic-elliptic
mixed type. Hyperbolic regions w < a and (w > f) correspond, for van der Waals
fluids, liquid and vapor phase region respectively. The Riemann problem (0.1) serves as a
prototype model for the dynamics of phase transitions in van der Waals like materials.

It is well known that (0.1) generally admits many solutions and not everyone of them
is physically relevant. Therefore, we need some admissibility criteria to single out the
“physically correct” solutions, or better yet, to lead to the well posedness for Cauchy
problems of the system (0.1a,b,d).

One admissibility criterion we can borrow from the thecory of scalar conservation laws
is that a solution of (0.1) is admissible if each shock of the solution can be connected by a
travelling wave solution of the system

Uy + plw), = EUgyz,
(0.2) t P()

Wy — Uy = 0.

More precisely, a shock solution of (0.1a,b,d) (u1,w1), (ug,ws) is admissible by viscosity
travelling wave criterion if

dw 9
(0.3) a¢ =~ (w0 = w1) = p(w(€)) + plwy).

w(—00) = wy, w(+00) = ws.
has a solution. System (0.2) arises from the theory of viscoelastic bar [cf. Dafermos [11],

Pago [56] ). Slemrod [66] observes that this viscosity admissibility criterion is equivalent
to the “chord condition” which states that

(0.4&) p(w) _ p(wl) Z +p(w2) — p(U71) if s Z 0 , or
w— W Wy — Wy
w — W Wwoe — Wy

for any w between w; and wy, where

§2 = _P(wz) — p(w1)
Wo — Wy )

Condition (0.4) is analogues to Oleinik’s Condition E for scalar conservation laws. Epito-
mizing the experiences accumulated from detailed studies of special systems, Liu [52, 53]
proposed Liu’s criterion which can be viewed as a generalization of the chord condition.
Liu’s criterion yields a satisfactory solution of the Riemann problem for strictly hyperbolic
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systems when the waves are of moderate strength. Attempts for solving the Riemann prob-
lem for mixed type system (0.1) by using viscosity travelling wave criterion or variations
of the chord conditions were carried out by James [46] and later by Shearer [61] as well as
Hsiao [44, 45].

A satisfactory admissibility criterion for mixed type system (0.la.b.d) should satisfy
physical principles governing phenomenons under study. For materials which are viscously
dominated, e.g., viscoelastic fluids and solids exhibiting phase transitions, a reasonable
model may be the viscosity admissibility criterion [56]. For van der Waals fluids, the inter-
facial energy and hence the capillarity which corresponds to it is not negligible. Therefore,
the viscosity criterion or chord conditions which only count viscosity are inadequate for van
der Waals fluids. For example, the chord condition and viscosity criterion fail to comply
with the well known Maxwell equal area rule, which states that stationary shock connect-
ing m and M is the only possible stationary phase boundary. In order to take capillarity
into consideration, we see that we need more high gradiant terms. Based on Korteweg’s
theory of capillarity [50], Slemrod [67] proposed the viscosity-capillarity criterion which
states that a solution of (0.1) is admissible if it is an ¢ — 0+ limit of solutions of

u +p(w)s = _52Awmx:c + €Uy
(0.5) e+ p(w)

wy —u, =0

where A > 0 is constant. A localized version of this criterion is the viscosity-capillarity
travelling wave criterion which says a shock solution (uj,w),(uz,ws) of (0.1a, b,d) is
admissible if the boundary value for the travelling wave equations of (0.5)

d*w dw

(0.6) AF('? =TSE% T s* (b — w1) + p(®) — p(wy)

W(—00) = wy, W(+00) =wq, w'(Eoo)=0

A solution of (0.1) is said admissible according to viscosity-capillarity travelling wave
criterion if each shock in the solution is admissible by this criterion.

The viscosity-capillarity travelling wave criterion not only admits the Maxwell line as
the only admissible stationary phase boundary but also presents shock splitting phenomena
[40] observed in experiments [49,72-76]. For shocks with two sides in hyperbolic region
w < a (or w > f), the viscosity-capillarity travelling wave criterion admits classical
compressive shocks.

There are also some investigation of the appropriateness of the entropy rate admissi-
bility criterion, which was proposed by Dafermos [12], for the mixed type system (0.1.a,b)
(cf. Hattori [41-43], Abeyaratne and Knowles [1] and Pence [57]). The entropy rate admis-
sibility criterion, which dubs admissible those solutions that maximize the rate of entropy
production, also admits the Maxwell line as an admissible shock solutions (cf [41]) and
leads to the unique solution to the Riemann problem (cf [1] and [56]).
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The program of this survey is follows: In §1, we shall derive the equations of motion of
a viscous, heat conducting fluid possessing a Korteweg-van der Waals contribution to the
streess [50]. We also derive the travelling wave equations corresponding to these equations.
In §2, we review some results on the boundary value problem of these travelling wave
equations. In §3, we shall first list some results on the existence of solutions of Riemann
problem (0.1) admissible by the travelling wave criterion via the wave and shock curve
construction approach. Then, we shall, in §3.0, §3.1 and §3.2, give details of the proof of
the existence of solutions for (0.1) by the similarity viscosity approach, As a consequence
of this, we get better results, in §3.3, on the existence of solutions satisfying the travelling
wave criterion. In §3.4, we state results on the uniqueness and stability of the solution of
(1.1) which is admissible according to the travelling wave criterion.

§1. The equations of motion. We consider the one dimensional motion of fluid
processing a free energy

€24 [0w\?
(L1) f(w,9)=fo(w,0)+7(5> .

Here w is the specific volume, 6 the absolute temperature, A > 0 a constant, and z the

Lagrangian coordinate. The term
e?A [Ow\?
2 \ Oz ’

where ¢ > 0 is a small parameter, is the specific interfacial energy. The graph of fy as a
function of w for fixed 8 will vary smoothly from a single well potential for § > 6.t to
double well potential for 8 < 0.,;. The 8. is called the critical temperature. Discussions
of such free energy formulations may be found in [2-10, 20, 28-32, 59-60, 78|

The stress corresponding to the free energy (1.1) is given by
1.2 T=—"=—"—(w,0)—e’A— .
(12) w ow )¢ 0z?
Note that there is no viscous forces in (1.2). Adding a viscous stress term gives us the
stress of the form

ou ,, 0%
(13) T = —p(w,9) + 651—: — & Aw
suggested by Korteweg’s theory of capillarity [50]. In (1.3), u(z,t) denotes the velocity of
the fluid, € > 0 is the viscosity and p = %tu‘} is the pressure.

The one dimensional balance laws of mass and linear momentum are easily written

down:
(1.4a) 38_7.: = gg (mass balance) ,
(1.4b) % = g—f (linear momentum balance) .
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The equation for balance of energy is more subtle. While a thorough examination of the
energy equation appears in Dunn & Serrin [20] it is the conceptually simple approach of
Felderhof [26] we recall here. Let e(w, 8) denote the internal energy. Felderhof’s postulate
is that the internal energy is influenced only by the component of internal stress 7 =
—p(w, 8) + e%, i.e., the balance of energy is given by

Oe Ou Oh
1.4 =4 —
(14c) at oz + oz’
where h is the heat flux. Unlike equations (1.4a, b), equation (1.4c) is not in divergence
form. To alleviate this difficulty we consider the specific total energy

u? e2A [Ow)’
E'—-?-I—e(w 0)+T (E)

made up the specific kinetic, internal, and interfacial energy. Now compute the time rate
of change of E:

_aﬁ_ @-I- A@w 0%w 3T+T6u+ A82_w_8_u+%+ A&v@%@
% = T A vea = Yar T T aa 9z2 0z | Oz 9z 022

where we have used the relation T' = 7 — 62A?9112” . We easily see that the balance of energy

can be written as

OFE

(1.5) ==

0 [ 0Oudw Oh
Oz Oz

2 — —
a(uT)-l— Aa +ax.

QJ

The term eQA%—?,—- represents the “interstitial working” [20]. For simplicity we constitute
h by Fourier’s law: h = 565— where ke > 0 is the (assumed constant) thermal conductivity.
Then we may collect the balance laws and write them as

(1.6a)

Ow  Ou

5 = (mass) ,
(1.6b)

2

% aa { —p(w,8) + eg—u _ Ag 2} (linear momentum) ,
(1.6¢)

0E 0 Ou &w

Ou Ow o6
—_— — — 2 —
ot ~ 0z {“( TPteg, e Aga Te A(@xaw>+

The travelling wave equations corresponding to (1.6) with £ = (z — st)/e, w = w(§),

Keo } (energy) .
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u=u(f), 8 = 6() are

(1.7a) Z—IZ =v,
(1.7b) AZ—Z = —s*(w — w;) — p(w, 8) + p(wy,6,) — sv
(1.7¢) nj—g = —s{(e(w,8) — e(wy,6,))
s? 5 Asv?
— < (w—w)® = —— = p(wy, b )(w — wi)}

where s is the speed of the travelling wave.

The most up to date results on the full system (1.7) with boundary values

(18) (w7u’ 0)(—00) = (wlaulvol) )
(w,u, 0)(+00) = (w2, uz,62)

were given by Grinfeld [33- 35] and Mischiakow [55]. In this survey, however, we shall
confine ourself to the isothermal case, i.e., § = const, for (1.7):

(1.9a) —_—=v

(1.9b) A— = —s%(w — w;) + p(w;) — p(w) — sv .
The solvability and qualitative behavior of the boundary value problem of (1.9a,b) with

(1.9¢) (w,u)(—00) = (wy,u1) , (w,u)(+00) = (wq,uz)

were studied by Slemrod [66-68, 70] and Hagan & Slemrod [40], Hagan & Serrin [39] and
Shearer [62-64].

§2. The Viscosity-Capillarity Travelling Wave Criterion. We first review some
results about the boundary value problem of the travelling wave equation (1.9). We are
particularly interested in the case w; < a, wy > B. The study of the solvability and
qualitative behavior of (1.9) with w; < a and ws > f is not only important, but also
inevitable in the sense that each solution of (1.9) must have a shock which jumps over the
spinodal region (a, ), at least for the case A > 1/4, (cf Fan [23] ).

Let w; < a and s > 0. For simplicity, we assume the ray starting from (wy, p(w;)), with
slope —s?, to the right can intersect the graph of p at most at three points (cf Figure 2).
Figure 2
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We denote the w-coordinates of these points by
wa(wy,s) , wy(wy,s) and wy(wi,s)

respectively. w; and wi(ws, S), k = 2, 3,4, are equilibrium points of (1.9). w; and w3(ws, s)
are saddle points of (1.9) while wy(w;,s) is a node of (1.9). By Fan [23], there is no
travelling wave connecting w; and wy(wi, s), at least for the case A > 1/4.

Now we consider the existence of a travelling wave solution of (1.9) connecting w; and
wa(wy,s). ie. W(—00) = wy, W(+00) = wz(wy,s). For wy € [y,m], if there is a5 > 0
such that the signed area between the graph of p and the chord connecting (wy,p(w1))
and (w3(wy,3), p(wz(wy,3))) is 0 (cf Figure 2), then there is a speed s* > 0 such that

0<s*<3s

and the problem (1.9) with s = s*, w, = w3(wy, s*) has a solution, which satisfies @'({) > 0
and is a saddle-saddle connection, i.e.

(2.2) 0<s* </—p'(w1), s*<+/—p'(ws(wy,s*)).

In (2.1), equality hold if and only if 5 = 0. Furthermore, for any 0 < s < s* the trajectory
of (1.9) emanating from (wj,0) will overshoot w3(wy,s) and flow to (w4(ws,s),0) as ( —
0o. In other words, for all wy > wy(wy,s*), there is a travelling wave solution of (1.9).
Furthermore, this travelling wave solution is a sadddle-node connection, i.e.

(2.3) VP (w1) > s> /—p'(ws(wy,s)).

These statements were proved in Hagan & Slemrod’s paper [40].
If p(w) further satisfies

(2.5) p'(w)(w —we) >0 for w # wy,

for some wy € (a, B) then, for v < w; < m, there is a unique speed s* > 0 such that w;
can be connected to w3(wy, s*) by a travelling wave solution of (1.9) with w, = ws(wy, s*),
which is a saddle-saddle connection ( We notice that when (2.5) holds there is no wa(w1, s)
for w; € (y,m].) ). This fact was shown by Shearer [62, 63]. In fact, by arguments similar
to that of Lemma 4.4 of Hagan & Slemrod [40], we can show more:

THEOREM 2.1. Let (2.4) hold and A > 1/8. Then, for each fixed w; < a, (1.9) can
have at most one solution with s > 0 satisfying wy = ws(w;,s), which is a saddle-saddle
connection.

Proof. Let w(¢) be solution of (1.9) with s > 0 and w(+o00) = w3(w;,s) which is a
saddle-saddle connection. Then, w'(¢) > 0. We rewrite (1.9a,b) as

dv

(2.5) Av% = —sv — 8%(w — wy) — p(w) + p(wy),
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where v = w'({). We can parametrize by v(w,s) the trejectory of w({) in the v > 0
half-plane which connects to (w;,0). and (w3(w — 1,s). Assume, for contradiction, that
thereis a 0 < 5 # s such that (1.9) with s replaced by § has a solution @(¢{) which is also a

saddle-saddle connection, i.e. w(+00) = w;z(w;,3). Without loss of generality, we assume
that

(2.6) 5> s.

We parametrize the trejectory of w(() in the upper (w, v)-plane as v(w, ). Clearly, v(w, 3)
satisfies

dv(w 3)

(2.7) Av(w, 5)——= = —5v(w, §) — 5*(w — wy) — p(w) + p(w1),

Frg.3

A calculation shows that

dv(w, s) 1 >
B Iw = 34 ( s++/(1 —44)s 4Ap’(w1)) >0

which decreases as s increases when A > 1/8. Thus, for w — w; > 0 and small,
(2.8) v(w,s) > v(w, 3).

Since w3(wy,s) < wz(w;,3) and the trejectory v(w,s) connects wy; and ws(ws,s) on the
v > 0 half-plane, (2.8) implies that the trajectory v(w, 3) has to intersect the trajectory
v(w, s) at some w € (wy,w3(ws,s). In other words,
dv(w s) dv(w s)

I w"— dw Iw w*

(2.9) v(w*,s) = v(w*,s
for some w* € (wq,ws(ws,s)). Subtracting (2.6) from (2.7) yields

Av(w, s)dv(lfv »5)

Av(w,s)w
w

= sv(w, s) — sv(w, 8) + (82 — 8%)(w — wy).

Applying (2.9) to above equation, we obtain

0 < Av(w, s) (dvs;fv’ S _ dv(dl:;, S)> = v(w,s)(s —3) + (s = ) (w —w;) <0

which is a contradiction. []

We note when p(w) is a cubic polynomial, we can have explicit solution for (1.9). Let

(2.10) p(w) = po — p1(w — m)(w — M) (“’_ m+M>

2
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where m and M are Maxwell constants. Then a solution of (1.9) is (cf Truskinovskii [77,

78])

(2.11) w(() = — ;w“L + = ; “= tanh (\/5—;—% ; (- Co)) -

For each w_ fixed, w4 in (2.11) is determined by equations:

31-64)2y—24+1)2+22=1,
(2.12) y=(M-wy)/(M—-m),
z=(wy —w_)/(M —m).

The number of solutions of (2.12) ranges from zero to two. When (2.12) has two solutions,
we get two solutions of (1.9) of the form (2.11); one of them has positive speed and the
other negative. This is, of cause, consistent with Theorem 2.1.

§3. The Riemann problem.

Now, we return to the Riemann problem (0.1). One method for solving (0.1) is to
construct wave and shock curves that are admissible according to some criteria and then
construct a wave fan of waves and shocks that matches the initial data. This approach
has been pursued by James [46], Shearer [61-64], Hsiao [45] and Fan [23]. Shearer [64]
proved that solutions of (0.1) satisfying viscosity-capillarity travelling wave criterion exist
for Riemann datum close to the Maxwell line, i.e.,

lw_ —m| <6, |lwy—-—M|<$é,
|lug —u—| <é forsome 6>0.

To establish the existence of solutions of (0.1). Slemrod [69] applied the vanishing
similarity viscosity approach to the system (0.1) which will be reviewed in next section.
Later, Fan [22] proved, under the assumption

(3.1) p(w) = —o0 as w — o0, p(w) — —oco0 as w — oo,

that there are solutions of (0.1) satisfying the viscosity-capillarity travelling wave criterion.
In this section, we shall give details of their proofs. We shall also discuss the uniqueness
and stability the solution of (0.1) admissible according to viscosity-capillarity travelling
wave criterion.

£3.0. Riemann problems — the similarity viscosity approach. Admissibility
criteria we reviewed above are shock admissibility criteria, which are local restrictions on
points of jump discontinuity. We hope these local restrictions can characterize completely
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admissible solutions of (0.1). At this time, it is known only that this is true for scalar
conservation laws (cf Volpert [82). There are, however, strong indications that shock
admissibility criteria may be inadequate for systems that are not strictly hyperbolic (cf
Glimm [27] ) or for systems that change type (cf Shearer [63]). For example, in the context
of (0.1) (cf Shearer [63]), it is not obvious, even if shock admissibility conditions are known
a — priort, in what manner full solution which is a composition of admissible shocks and
rarefaction waves is admissible. Thus it is important to experiment with various criteria
with global authority, especially those motivated by physics.

One example of such criteria is to dub admissible those solutions which are ¢ — 0+
limit of solutions of

+p(W)r = EUgy — 52Aw:m:z7
(3.0.1) tetp(w)s

wy—ug, =0
as proposed in Slemrod [67]. We can also employ the conventional form of viscosity

[ 4
U +plw)y, = €ugy
(3.0.2) e+ p(w)

Wy — Uy = EWqy

to which (3.1) reduces when A = 1/4 (cf Slemrod [68] ). Such an approach seems like an
extremely difficult task at present. For the system (3.0.2) written in Eulerian coordinates
with p(p) = Cp?, for which the system is hyperbolic, DiPerna [19] and Ding, Chen and Luo
[18] constructed solutions of the Cauchy problem, when the states at +-00 are the same, by
limits of viscous regularization and finite difference schemes. For hyperbolic-elliptic mixed
type system (3.0.1), we only have some numerical shemes (cf. Shu [65] and references cited
therein ) which are at least visually good for Riemann problems.

Reasonable admissibility criteria should comply with the irreversibility of solutions and
thus may impose restrictions on wave sources but not on wave sinks. Also admissibility
criteria should be compatible with translations and dilations of coordinates, under which
the system is invariant. Based on these requirements, Dafermos [16] argued that admissi-
bility should be tested in the frame work of Riemann problem ( Riemann [58], Lax [51],
Liu [52] ), i.e. in the context of solutions of the form U(z,t) = V(z/t) which represent
wave fans emanating from the origin at time ¢ = 0.

Thus we utilize the similarity viscosity to handle the Riemann problem (0.1). The idea
is to replace (0.1 a,b) by

uy + plw), = etuy, ,
(3.0.3) e+ pw)

Wy — Uy = EtWyy

which is invariant under dilatation of coordinates, and construct weak solutions of (0.1)
as € — 0+ limits of solutions of (3.0.3). For convenience, we shall call solutions of (0.1)
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constructed in this way as solutions of (0.1) admissible according to similarity viscosity
criterion. This approach has been pursued by Kalasinikov [49], Dafermos [13, 14], Tupciev
[79, 80], Dafermos and DiPerna [17], Slemrod [70], Slemrod & Tzavaras [71] and Fan [21,
22, 24, 25].

To take the advantage of the invariance of (0.1) under dilatation of coordinates, we

make variable change £ = z/t in (3.0.3). A simple computation shows that (3.0.3) reduces
to the following system

(3.0.4a) eu' = —¢&u' + p(w)',
(3.0.4b) ew'" = —¢w' —w'
(3.0.4¢) (1, w)(=00) = (u_,w_) ,  (w,0)(+00) = (g, 04) .

Slemrod proved that (3.0.4) has a solution (u(¢),w(€) satisfying
(3.0.5) w'(¢§) >0, when a<w(¢)<g,

by using Leray-Schauder type fixed point theory. Later, Fan [22] proved that the to-
tal variation of solutions of (3.0.4) is bounded uniformly in € and hence established the
existence of weak solutions of (0.1) satisfying the similarity viscosity criterion under the
assumption

(3.0.6) p(w) = 00 as w — —o00, p(w) — —oo0 as w — oo.

( In fact, we can prove the existence for (0.1) written in Eulerian coordinate under a
weaker assumption on p which includes the van der Waals state function ( cf. Fan [25] )
We will give details of the proof for the existence of these solutions in the following sections
§3.1, §3.2. In §3.3, we shall show that weak solutions of (0.1) constructed by the similarity
viscosity approach in §3.1 and §3.2 are also admissible according to the viscosity-capillarity
travelling wave criterion when A = 1/4. As a consequence, solutions of (0.1), admissible by
the viscosity-capillarity travelling wave criterion with A = 1/4 exist if (3.0.5) holds. It is
interesting to see that the travelling wave equation of the common form for most artificial
viscosity (3.0.2) is the same as the equation of the shock profile of solutions of (0.1) we
constructed by similarity viscosity approach. This is not surprising if we recall that (3.0.1)
reduces to (3.0.2) when A = 1/4. From the above and the uniqueness and stability results
of Fan [23] which we shall state in §3.4, we can see clearly that the ¢ — 0 limit of solutions
(3.0.4) with (3.0.5) is unique and stable in Lebesgue measure with respect to changes in
Riemann datum if p(w) satisfies

(3.0.7) p'<0ifw<a, p'>0ifw>p.

11



The structure of solutions of (0.1) constructed in Slemrod [70] and Fan [22] by similarity
viscosity approach is as follows: Each of these solutions can be imbeded on a continuous
curve in (u,w) phase plan. Solutions must have a phase boundary, i.e. w(¢) ¢ («, ) for
any ¢ € R. Solutions consist of two wave fans: { < 0 the first kind wave fan and £ > 0 the
second kind wave fan. A first (second) kind wave fan consists of 1-shocks and (2-shocks)
and 1-simple waves (2-simple waves) and possibly the phase boundary and constant states.
€ = 0 is either a constant state or the phase boundary (cf. Fan [22] ).

§3.1. The existence of solutions to (3.0.4). Here, we present the proof, given by
Slemrod (1989), of the existence of solutions for the system (3.0.4):

We consider, instead of (3.0.4), the following altered system

(3.1.1a) eu' = —&u' + pp(w)'
(3.1.1b) ew'" = —&w' — pu'
(3.1.1¢c) (u(£L), w(£Ll)) = (ux, wt)

where L>1,0<u<1.

For the system (3.1.1) we have the following lemmas:

LEMMA 3.1.1. Let (u(€), w(€)) be a solution of (3.1.1). Then on any interval (I1,13) C
(=L, L) for which p'((w(€)) < 0, one of the following holds.

(i) u(€) is strictly increasing (or decreasing) with no critical point in (ly,l2) while w(§)
has at most one critical point in (l1,l2) which must be a maximum (or minimum).

(ii) w(§) is strictly increasing (or decreasing) with no critical point in (11, l3) while u(€)
has at most one critical point which must be a maximum (or minimum).

LEMMA 3.1.2. Let (u(§),w(€)) be a solution of (3.1.1) with u > 0. Then on any
interval (l,l2) C (=L, L) for which p'(w(§)) > 0 the graph of u({) versus w(§) is convex
at points where w'(€) > 0 and concave at points where w'(£) < 0.

THEOREM 3.1.3. If (u(§).w(€)) is a solution of (3.1.1) with w'(§) > 0 when a <
w(€) < B, then

(3.1.2) sup  ([u(&)|+ [w(&)| + [« ()| + [w'(€)] < My
<€<-L

where My is a constant independent of u € [0,1] and L > 1.
With above preparations, we are ready to prove the existence theorem for (3.4):

THEOREM 3.1.4. There are solutions of (3.4) which satisfy the constraints w'(§) > 0
when o < w(€) < B. In other words, the one phase change data connecting orbit problem
(3.4) possesses a one phase change solution.
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Proof. First notice that when g = 0, (3.1.1) possesses a unique solution

£
(ut —u-) [ exp(—¢?/26)d¢
ug(§) = ————— tu,
T exp(=¢2/2e)d¢

¢
(wy —w-) [ exp(—(?/2¢)d¢
wo(f) = 2 —L +w_.
_fL exp(—¢?/2e)d¢

Also note that wy(€) >0, € € [-L, L].
Now set U(&) = u(€) — uo(€), W(€) = w(€) — wo(€) and impose boundary conditions

(3.1.3) U(-L)=U(L)=W(-L)=W(L)=0.
If u,w are to solve (3.1.1) we see that U, W must satisfy (1.4) and

(3.1.4) eU" = pup(we + W) — €U’
o eW" = —U' — pul, — EW'.

Define the vectors

0= () 1ev=(2g0)

Then the system (3.1.4) takes the form

(3.1.5) ey"(€) = uf(&,y)'(6),
(3.1.6) y(-L)=0, y(L)=0.

Let v € C'([-L,L];R?). Define T to be the solution map that carries v into y where y
solves

(317) Sy"(é) = f(&v), - gy'(g)v
(3.1.8) y(=L)=0, y(L)=0.

A straightforward computation shows that y(£) is given by the formula

13
y(©) =z / exp(~(*/2)dC + - / £¢,v(0))dC

-L

_ 215 j / £(r,v(r)) exp (TQ —¢

—-L 0

(3.1.9)

)dr d¢
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where

L
exp(—(?/2€)d¢ = — / £(¢,v(0))d¢

—-L

/L/Tf(rv(t) x (2 CZ)d d
)) exp 5 T dC.

—-L 0

Notice the fixed points of yT are solutions of (3.1.5), (3.1.6) which in turn yield solutions
of (3.1.1).

It is clear that T maps C°([—L, L];R?) continuously into C°([—L, L]; R?). Of course
this implies that T maps C([—L, !]; R?) continuously into C°([—L, L]; R?). We now show
T maps C'([—L, L]; R?) continuously into C*([—L, L]; R?).

For this purpose let vi,v, € CY([-L,L];R?), v; = (Uy,W1),vy = (U, W,), and
y1 = uTvy,ys = pTvy. Differentiation of (1.10) shows

\.h

™M | -

&~

(3.1.10)

f(6,v1(§)) _ (£, v2(8)

9

1(6) — y3(€) = (21 — z2) exp(—€2/2¢) +

(3.1.11) .

e2

(£(r,v1 (7)) = £(r, va(r)) exp <T22‘652> dr,

where 27, 29 are defined in the obvious manner.

Now let vy, v, be in a finite ball B in C'([-L, L;]R?). In particular for v = (U, W) in
B, wg + W is uniformly bounded in R and hence p is a uniformly continuous function of
the argument wy + w. But for § > 0 arbitrary we know from uniform continuity of p that
there is /(§) > 0 such that p(wo(£) + W1(§)) — p(wo(§) + Wa(£))] < 6 if [(W1(€) +wo(§)) —
(W2(6) +wo(€)) < 1(8), ie. if [W1(§) —W2(€)l < I(6). Hence Sup Ip(wo(€)+W1(£))—

Plus(E)+ V(€] <83t _sup [ Wi(€)~Wa(E)] < 1) andso_sup_ [p(un(€)+ Wi (6)-
p(wo(€) + Wa(€))| — 0 as LSLJ%:LL |[W1(€) — W5(€)| — 0. But this argument implies by the

special nature of f(£,v(£)) that sup |f(7,vi(7)) —f(7,va(7))| 2 0as sup |vi(7)—
—L<€<L —L<€<L

vo(7)] — 0. From (3.1.10), (3.1.11) we see then that sup |y1(§) y5(€)] — 0 as
—L<g<

sup |vi(€) —v2(€)| — 0, and so T is a continuous map of Cl([ L, L]; R?) into itself.
E<L

Now note that (1.8) implies that if v is in a bounded set of C?([—L, L]; R?), y will be
in a bounded set of C2([—L,[]; R%). This is because f(£,v(£))' is uniformly bounded.

Hence T is a continuous compact map of C'([—L, L]; R?) into itself.
Now define Q = {U,W € C'([-L, L];R?) such that W(—L) + wo(—L) < a, W(L) +
wo(L) > B; W'(€) + wo(§) > 0if a > W(£) + wo(§) < B; and LSI;PLHU(S) + uo(€)| +
<€<
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W () + wo(&)] + |U'(€) + ug(€)] + [W'(€) + wg(€)|} < Mo+ 1}. Q is a bounded set in
C'([-L,L};R?).

In addition €2 is open. To see this let U,W € 2. Note the definition of Q implies
the set A ‘2" {¢ € |[-L, L a < wo(€) + W(€) < B} is a closed interval [£1,&,]. For if
A # [£1, &3] for some &7, €2 € [—L, L] means by the monotonicity of wy + W on [£;, €] that
for some € ¢ [£1,&2] either wo(€) + W (€) = a or wo(€)+ W (€) = B, with w)(£)+W'(€) <0
in either case. Of course this would imply U,W ¢ 2, contradiction.

Thus we have A = [£;, €], and we set m = rexéi/rll(w(')(ﬁ) + W'(£)) which is positive. Since

wo + W € CY[—L, L] there is a larger interval As C [—L,L],As D A, As = [, — 6,&, + ]
for some small § > 0, so that wy(§) + W'(€) > 2m for € € As.

Let D = min &_rglgelSL(wo({)— W(¢)-0), _Lsnflisl}sl_é(a—wo(ﬁ)—W(f)). Since wo(§) —
W()—B>0o0n [€ +6,L] and a — wo(§) — W(€) > 0 on [-L, & — §] we see that D > 0.

Now let U, W be such that
sup—L < & < L([T(E)| + [T (&)l + [W(E)| + W'(¢) < v,

where v = min(3 D, ;). Consider £ € [—L, L] for which a < wo(&) + W (&) + W(¢) < B.
If we can show that w{(§) + Wl(f) + W'(£) > 0, we will have proven (2 is open. But we
see in this case that

wo(€) +W(€) = B < -W(E), a—wo(€)—W(E) <W(),

and hence wo(é) + W(€) — 8 < D/2, a —wo(§) — W(€) < D/2. But this implies by the
definition of D that £ € (£;—86,£,+6). Thus we have shown that a < wg(€)+W(€)+W(¢€) <
B implies £ € As. Now we compute at this value £:

1

1 _
—m+W’(§)zzm>0.

w(€) + W) + W () 2 5

Hence €2 is open.

Now we recall a well known theorem of Leray-Schauder type (see for example Mawhin
[54] , Corollary IV.7).

PROPOSITION 3.1.5. Let X be a real normed vector space, ) an open bounded subset
of X, and T a compact map of X into itself. If zero is an interior point of  and ¢ + uT¢
for all $ € 00, 0 < p < 1, then T has at least one fixed point in Q.

In our problem we take X = C'([—L, L];R?) and T, Q is as defined above. The origin is
an interior point of {2 since the constraint wg(¢) +W,(§ ) > 0 is satisfied for all £ € [-L, L]
if (U, W) is a small C'([—L, L];R?) perturbation. Note ¢ € 89, ¢ = uT¢, p € (0,1),
means that there is a solution (u(§), w(§)) of (1.1), (1.2), (1.3) which satisfies w'(¢) > 0 if
a < w(B) < B and either
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(1) w'(&) =0, a < w(éo) < B for some & € (—L, L)

(ii) sup {[u(&)] + [w(&)] + /()] + [w'(£)]} = Mo + 1 or both (i) and (ii).
—L<¢<L

Let us first consider possibility (i). In this case either a < w(&) < 8, w(&) = «, or
w(&) = B. We consider these cases separately.

Case 1. a < w(&) < B, w'(§o) = 0. In this case there are three possibilities,
either w'" (&) < 0, w'"(&) > 0, or w"(&) = 0. If w'"(&) < 0 then w(&) is a local
maximum which implies w'(§) < 0 for some ¢ < &, | — &o| small. But this implies
a < w(€) < B and violates the requirement that w'(¢§) > 0. An analogous statement
holds if w" (&) < 0 and now w(&p) is a local minimum. The case w"(§;) = 0 is excluded
since w'' (&) = 0, w'(&) = 0 implies because of (3.1.1b) that u'(§) = 0. But in this
case uniqueness of solutions for (3.1.1a.b) as an initial value problem (see [7], Lemma 4.1)
u'(€o) =0, w'(&) =0 implies u(§) = u(&), w(€) = w(&) for all £ € [-L, L] and hence
we cannot satisfy (3.1.1¢c) w— < a, wy > .

Case 2. w({) = a, w'(&) = 0. In this case there are again the three canonical
possibilities, w"(&) < 0, w"(&) > 0, or w"(é) = 0. We can immediately dismiss
w" (&) > 0 and w' (&) = 0 for the same reasons as in Case 1. So we need only consider
w'" (&) < 0. In this case w(&) = a is a local maximum. Hence if we are to satisfy w(L) =
w4 > B we must proceed through a local minimum at & > &, i.e. w(§) < a, w'(&) =
0, w"(&) > 0; w(é) < a, w'(€) < 0,& < & < &. Again w'(£;) = 0 is impossible since
that forces u'(§;) = 0 and the uniqueness theorem [13], Lemma 4.1) is contradicted. Thus
we need only consider w”(£;) > 0. From (1.2) (3.1.1b) we see u'(§;) > 0, u'(€) < 0 which
implies u has a local maximum at a point §y < ¢ < &, u'(¢) =0, u"({) <0, and again
Lemma 4.1 of [13] tells us u''(§) < 0. Since p'(w) < 0 for w < « this implies by use of
(3.1.1a) that w'(¢) > 0 which contradicts the fact that w is decreasing on &, ;. Hence
w' (&) < 0 is excluded as well.

Case 3. w(&) = 8, w'(§) = 0. Here again we see we can exclude w''(§y) < 0 and
w"(&) = 0 immediately. If w”(&) > 0 it follows that w(§) = B is a local minimum
to satisfy w(—L) = w_ < « there must be § < & where w(§;) > f and w has a local
maximum, w(€) > Bon (£1,&). But the same reasoning as in Case 2 yields a contradiction.

From Cases 1, 2, 3 of (i) we see there is no solution of (3.1.1), x € (0,1), (u(§) —
ug (&), w(€) — wo(€)) in N for which (i) can hold. Thus all solutions of (3.1.1), x4 € (0,1)
in Q must satisfy w'(¢§) > 0 in a@ < w(¢) < B. But now Theorem 3.1.3 says (ii) cannot
hold either. Thus we conclude from Prop. 3.1.5 that (3.1.1) possesses a solution for which

u(€) — uo(€), w(€) — wo(€) is in Q.
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To complete the proof we follow Dafermos [13] and extend the domains of u,w: Set

u(L)=uy, w(L)=wy, €>L,
uL)y=u-, wll)=w-, E<-L.

The extended pair {u(-, L), w(-, L)} form a sequence in C°((—o0, 00); R%) and by virtue of
the hypothesis of theorem we know sup {|u'(§;L)|+|w'(§;L)|} < M. Thus the sequence
<é<L

{(u(-; L), w(-; L)} is precompact in C°((—o0,0); R?)) and so there is a subsequence L,, —
oo as n — oo since that (u(é;L), w(é&; L)) — (u(§), w(€)) uniformly as n — oo on
(—00,00). As in Dafermos (1973) u(¢) w(£) is a solution of (3.0.4) and by its construction
w'(€) 2 0if o < w(€) < B. But by the same reasoning used in Cases 2, 3, this connecting
orbit must satisfy the more restrictive requirement w'(¢) > 0 if @ < w({ < B. This
completes the proof of Theorem 3.1.4 []

§3.2. Solutions for the Riemann problem (0.1) exist. In this section we continue
the program carried out in §3.1 to prove the existence for the Riemann problem (0.1). Our
strategy is to prove (us(§), we(£)), the solutions of (3.0.4), have total variation bounded
uniformly in € and then to employ Helly’s theorem to prove the convergence of these
solutions, as € — 0+, to a weak solution of (0.1). To this end, it suffices, by Lemmas 3.1.1
and 3.1.2, that (u.(€), we(€)) is bounded uniformly in e. This is done by the following
theorems supplied by Fan [22].

In this section, we assume p(w) satisfies (3.0.6).

We shall prove, under (3.0.6), that
(3.2.1) sup(|ue(£)|, [we(§)]) < C
£ER

where C' is independent of e.

THEOREM 3.2.1. u((§) are bounded from above, uniformly in e:

(3.2.1) ue(§) < max(u_,uy) + max(wy — B, —w_) max (v/—p'(w)).

w€[w_ ,a]U[B,w4]

Proof. Without loss of generality, we assume that each u.(¢) has a local maximum
point £ = . with w(6,) > . The proof in the other case is similar. From (1.7) and the
chain rule, we have

d du€(£)> (due(ﬁ) ) (due(é) )
3.2.2 —|—=—= - VP (w — + v/ —p'(w, .
220 e (1) - (Y @) (5 4 V)
This implies that, as £ increases, % is decreasing if |g%‘}(%| < /=DP'(we(€)) and is
increasing if |%—%| > /—p'(we(€)). Thus the "initial” condition

(3.2.2b) ;lZJ((?) le=0.=
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leads to

(3.2.3)

____due(f) max —p'(w
o8] S s (V)

wy2w>fp

as long as wy > we(€) > B. By Lemma 2.1, w.({) is increasing when w¢(£) > B. Thus
(3.2.1) follows easily. []

THEOREM 3.2.2. u(§) are bounded from below, uniformly in e.

Proof. Assume the contrary. Then there exists a sequence of {¢,} such that each
ue, (€) has a local minimum point 7,, with

(3.24) Ue, (Tn) = —00 asn — 00,

(3.2.5) We, (Tn) € (@, B).
Without loss of generality, we assume that
(3.2.6) T >0, forn=1,2,..

The proof for the case 7, < 0 is similar. We denote the maximum point of u,, (£) in the
region where w,, (£) > B by (. By Lemma 3.1.1 and 3.1.2, we know that

(3.2.7) u, (€) >0  for £ € (T, (n)-

By integrating (3.4a) on (7, 8) where 6 € (7, (,), we obtain

']
(3.2.8) 0 eut, (6) = [ —¢ul, (€t

+ p(we,. (9)) - p(wen (Tn))°

It follows from (3.2.6) and (3.2.7) that —£u, (€) < 0 for £ € (7n,(n). Thus, in view of
(3.2.5), we have

(3.2.9) 0 < e, (6) < p(we,(6)) — p(we, (n))
< p(we,,(0)) — p(a).

Therefore,

(3.2.10) a<w,(0)<é for b€ (7n,(n)

Equation (3.2.9) also yields the useful inequality

(3.2.11) 0 < eu,, (8) < p(B) — p(a)

for 0 € [T, (x).
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CLAIM. There exist 1, € (Tn,(n] (cf. Fig.4 ) such that

(3.2.12) Uen (M) 2 ug —2(6 — ) m[aﬁl(\/ |p'(w)])
__2(p(B) — p(a))
maXye[y,5)(v/|p'(w)]
and
dwe, (£) 1
3.2.13 .
( ) duc, (€) le=n. 2 2 maXyefy,5(1/1p'(w)])

Figured
By (3.2.4), we take &, such that

(3.2.14) Uen (§n) =tte, (Cn) — 2(6 — ) max (/|p'(w)])

we€[7,6]

>uy —2(8—7) wlgﬁ%](\/ |p'(w)])-
For each n, there is a 6 € [€,, (,] such that u., (0) > u,, (£,) and

dwe, (§) I _ We, (Cn) — we,, (€n)
due,(€) =0 ue,(Cn) — e, (én)

Substituting the denominator of the above by equation (3.2.14) and noticing that

[we,, (Cn) — we, (€n)] < 6 — 7,

we obtain
dwfn (6) |
dug, (€) '¢=0 2maxwe[~/ 61(\/
Thus, the following set is nonempty:
(3.2.15) A= { n € [rn, 6] |
dwen (f) < 1 for 6 e [7’],9] } .
du. (€) 2 maxyepy,5(V/[P'(w)]) '

A straightforward computation based on (3.4) shows that

14 p'(we, (6)) (dw:((g) }

(3.2.16) wf" (5)

—1
eue, ()
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Hence, if £ € A, then
1 1
> >
70| 55 > T
where we have used (3.2.11).
Now, we show that (3.2.12) and (3.2.13) hold at n, = inf A and hence complete the
proof of our claim. Indeed, by the definition of the set A,

dwen(é) I
due,.(E) §=inf A

(3.2.17)

" 2maxyepy, 6](\/ P (w)])
In fact, we can show more i.e.
dw, 1
(3.2.18) Wer (6) =

due, (£) lesint 4= 2 max,ef,5 (V1P (W)])
To see this, we note, from (3.2.16), that as long as { € A or { = inf A,

dwe(‘f)
(3.2.19) (due(£)> <0.
So, if
dw,, (£) <0

duen(f) |§=in{A
then (3.2.19) implies that, for £ € (inf A — p,inf A] for some p > 0,

dw (&) _ dwe(é)

0> due(ﬁ) duf(f) IE:ian
1
2 max,e(y,5/(v/1P' (w)])’
or in other words,

Idwe(é) < 1
due(é)| — 2maXye(y,s)(V/ |P'(w)|),

for ¢ € (inf A — p,inf A]. This simply says that (inf A — p.inf A] C A which is impossible.
Thus (3.28) holds.
By using (3.2.18) and (3.2.17), we obtain

1 _ dw, (£) I
2max,epy(v/IP(@)])  due,(€) 1€=1A
d . inf A d2 ] d ]

 du(§) du?, " dw(§)
dwe ue(inf A) 42 wen
Tt (f) If , /u((o) da. —=(€)| du,
1
— ue(6) — u(inf A .
2maxw€[%5](\/|p'(w)|) F hue(8) — ud )|2(p(ﬂ)—p(a))
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By virtue of (3.2.7), the above inequalities imply

(3.2.20) ue, (inf A) > ue, (6) — 2(p(8) — p(a))

mueir (VP (@)
2(p(B) — p(a))
>ufn n)—
> e ) = o e (VP @)
>y~ 206~ 7) mo, (V@)
2B -pa)
mauen (V1P ()

(3.2.18) and (3.2.20) prove our claim.
Similar analysis on (3.2.16) yields that

dwen(‘f) > 1

dufn (6) - 2maxw€[7,6] V |pl(w)|
or
(3.2.21) Bues€) < 9 max |p'(w)]

d’wf" ({) T wely,8)

for £ € [Tn,nn]. Thus an estimation on the equation

Wey, (nn) due
e, (1) = e, (7a) = / Buer(©) o, (e)

wen(ra) e, (§)

based on (3.2.21), (3.2.5) and (3.2.10) leads to

Ue, (Tn) > te, (Nn) — 2(8 —7) w!gf}”&]( p'(w)])

— — max "(w)]) — Apth) - pla))
2 uy — 46 7)we[~/,6]( P(w)) maXuefy,s)(v/1P'(w)])’

which is a contradiction to (3.2.4). [

Remark. Above proof for Theorem 3.2.2 only needs the existence of numbers 6 and v

(cf. Fig. 1).

With the help of Theorem 3.1.1, 3.1.2, we can prove the following theorem by slightly
modifying the idea of Dafermos [13].
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THEOREM 3.2.3. If p(w) satisfies (3.0.6), then w¢(€) are bounded uniformly in e.

Proof. We only prove that w,(€) are bounded from below uniformly in e. The uniform
boundedness of w,(£) from above can be proved similarly.

Assume the contrary. Then there is a sequence of {¢,} such that each w, (£) has a
local minimum point at £ = 7, with

(3.2.22) We, (Th) @ —00 as n — oo.

Without loss of generality, we assume that
(3.2.23) T < 0.

We know from Lemma 2.1 that we,(£) and u,,(§) are decreasing on (—oo,7,). By inte-
grating (3.4b), we obtain

(3.2.25) 0 < —ew, (—o0) = — /_ " fwe, (6)dE +u_ —u(ry)

It is easy to see from (3.2.23) that {w; _(§) > 0 on (—oco,7,) and hence

(3.2.25) 0< /_ Ew! (£)dE <u_ —u(ry) < u_ — uy.

For any § < min(-1,7,), we have

9 ;
| el ©dex- [ ul, @t = w- - e,
Thus (3.2.25) leads to

(3.2.26) we, (0) > w_ +u, —u_.

It now remains to consider the case 7, € (—1,0). Using the mean value theorem, we can
choose, for each n, a 8 € (—2,—1) such that

(3.2.27) luy (8)] < u* — u,.

By integrating (3.4a) on [, 7,,], we obtain
(3.2.28)

Pl () = et (7) = e, (6) + plue, (6)) — [ el (6)de
< —eu! (6) + plwe, (6)) — /0 el (6)de

< e (8)] + plte, (8)) — Tute, (7a) + Bute, (6) + /0 " e, ().

In view of (3.2.26), (3.2.27) and the uniform boundedness of u(€) and 7,, 6, it follows that
the right hand side of (3.2.28) is bounded uniformly in e. Thus, by virtue of Assumption
1, we, (7o) are bounded from below uniformly in € which contradictes (3.2.22). [
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THEOREM 3.2.4. If (3.0.6) holds, then there exist solutions of (0.1) which are admis-
sible according to the similarity viscosity admissibility criterion.

Proof. In view of Lemmas 3.1.1, 3.1.2, Theorem 3.2.1, 3.2.2, 3.2.3. (u¢(£),w(¢{)) have
total variation bounded independently of e. Helly’s theorem implies that (u¢(),we(€))
possesses a subsequence which converges a.e. on (—o00,00) to a function (u(¢),w(€)) of
bounded variation, By Theorem 3.2 of Dafermos [13] or Proposition 3.2 of Slemrod [70],
(u(z/t),w(z/t)) is a weak solution of (1.1). 01

§3.3. Solutions Constructed in §3.0, §3.1, §3.2 are also Admissible by Viscosity-
Capillarity Travelling Wave Criterion.

In this section, we study the relation between the similarity viscosity admissibility

criterion and the viscosity-capillarity travelling wave criterion. Results in this section are
contained in Fan [22, 24].

Consider u.,(£) ( or w,,(§) ) as a multivalued function of w (or u). Denote these
functions by U, (w) ( or W, (u) ). An analysis based on Lemma 3.1.1, 3.1.2 shows that

U, (w) may be a two-valued function. For details about this, see Lemma 2.4 of Slemrod
[70].

LEMMA 3.3.1 [22]. {Ue,(w)} has a subsequence which converges to a continuous curve
U(w). Furthermore, (u(€),w(€)) lies on the curve U(w) for every £ € R.

Remark. U(w), like U, (w), may be a two valued function.

For convenience, we parametrize the curve u = U(w) by (U(s),W(s)) where s is the
length of the arc of u = U(w) joining (u—,w_) and the point (U(s), W(s)). Since the
curve v = U(w) does not intersect itself, the parametrization is bijective. In this kind
of parametrization, s increases when ¢ increases. We call the curve (U(s),W(s)) the base
curve of the solution (u(§),w(§)).

Now, we study the discontinuities of (u(£),w(£)). Let & be a point of discontinuity of
(u(€),w(€)). We use C¢, to denote the portion of the base curve in the (u,w)-plane that

connects points (u(§o—),w(é—)) and (u(&e+),w(&o+)). We fix (u,w) € C¢,. We define,
for n large, &, (w;u, w) to be the branch of the inverse function of w = w,, (¢) for which

(3.3.1) U, (€e, (05 u,w)) —> @

as n — oo. We further define, for n large, &, , G, , W, by the relations
(3.3:2) §en 1= e (0) + €C,

(3.3.3) e, (C) 1= te, (€en ),

(3.3.4) We, (€) 1= e, (€ )-

After a modification of the proof of Proposition 3.4 of Dafermos [14], we obtain the
following lemma.
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LEMMA 3.3.2. FAN [22]. Let & be a point of discontinuity of (u(¢),w(¢)). For
(te, (€),we, (€)) defined above, there is a subsequence of {e,}, also denoted by {e,}, such
that

(3.3.5) (e, (€), Be, (€)) = ((C), B(¢)) € C*(R;R?) asn — oo

uniformly for ( in a compact subset of R. (4((),w(¢)) satisfies the following initial value
problem:

(3.3.62) T = ~6(8(0) — u(Ea-) + H(0)) ~ plo(Eo))
(33.60) SR = ~68(0) — w(éo) ~ [8(0) — u(&e-),
(3.3.6¢) 4(0) =2 w(0)=w.

Furthermore, (4(¢),w(¢)) lies on Cg,.

Remark. By the definitions (3.3.1-3.3.4), we can see easily that as { increases, (4(¢), w(¢))
moves along C¢, in the direction from (u(é—),w(€—)) to (u(&o+), w(éo+)).

Remark. The travelling wave equations of the most common form of artificial viscosity

(3.2) for shocks with speed & is the same as (3.3.6a,b).

LEMMA 3.3.3 [24]. The boundary value problem of (3.3.6a,b) and

(3.3.7a) (i ~00), (~00)) = (u1, wr),

(3.3.7b) (t(400), w(400)) = (uz,ws)
has a solution if and only if
(338) U2 = U — 60(11)2 - wl)

and the following boundary value problem has a solution:

(3.3.92) ‘;Tw _ —250‘{%“ — E((0) — w(éo—)) — (PB(C)) — plw(€o—))).

(3.3.9b) (W(—00) = wy, W(+00) = wa.
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Proof. Suppose w; and wy can be connected by a shock of speed &. Then (3.3.8),
which is one of the the Rankine-Hugoniot conditions, is satisfied. Eliminating 4(() in
(3.3.6a, b), we obtain (3.3.9a).

Suppose (3.3.9) has a solution w(¢{). We define

(3.3.10) a(¢) = A(f) E0((C) — wi) 4+ us.

(3.3.9) and (3.3.10) imply (3.3.6a,b) and (3.3.7). O
Comparing (3.3.6) with the traveling wave equation (0.6):

a1y 4%8 =& - () i) - (0(0) - plwr)

we can see that (3.3.6a) is a special case of (3.3.11) when A = 1/4, In[Slemrod (1983),
Slemrod proposed the viscosity-capillarity travelling wave criterion. We state his criterion
in a more general setting as follows:

Definition 3.3.4. (i) We say w; and wy can be connected by a shock with speed § if
(3.3.11) and (3.3.7) has a solution.

(i) A shock of speed &y with (uy,w;) and (uq,ws) on its sides, where (u1,wy), (ug, ws)
satisfy the Rankine-Hugoniot conditions at £, is admissible by traveling wave criterion if
there are v,k =1,2,...,n € N, and w; = vy, v, = w, such that v; can be connected by a
shock with speed &g to viy1, k=1,2,...,n-1

(iii) We say a solution (u(€),w(§)) of (1.1) is admissible by the traveling wave criterion
if every discontinuity of (u(€),w(¢)) is admissible in the sense of (ii).

COROLLARY 3.3.5 [24]. If p(w) has the property that any straight line in (w, p)-plane
intersects the graph of p(w) at finite many points, then the solutions of (0.1) given by
Theorem 3.2.4, which are admissible by the similarity viscosity criterion, are also admissible
by the traveling wave criterion with A = 1/4. Hence, solutions of (0.1) admissible by the
traveling wave criterion with A = 1/4 always exist.

Proof. Let £y be a point of discontinuity of (u({),w(€)) given in Theorem 3.2.4. With-
out loss of generality, we assume w(éy—) < w(ép+). By Lemma 3.3.2, C¢, satisfies (3.3.6).
By the property of p(w) assumed in this theorem, we know that there are only finitely
many points (u,w) satisfy the Rankine-Hugoniot conditions at &,

(3.3.11a) —&o(u(§o—) — u) + p(w(éo—)) — p(w) = 0,
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Since C¢, can be oriented in the direction from (u(€—), w(&o—)) to (u(éo+), w(&o+)), we
can assume that the points on Cp, satisfying (3.3.11) are (uy,w;), (uz,w2), ..., (Un, Wy ).
which are ordered in the direction of C¢,. Let (@1,w;) € Cg, in (3.3.6¢) be on the portion
of C¢, between (uq,w) and (uz,wy) and (4;(¢),w;(¢)) to be the corresponding solution of
(3.3.6). By Lemma 3.3.2, 3.3.3, we can see that w, is connected to some wj,, 1 < j; < n.
If j; = n then our theorem is proved. If otherwise, we repeat above procedure to see
that wj, is connected to wj,, j1 < j2 < n. Repeating this process finite times, we can
prove that wj, can be connected to wj,,,, k = 0,1,...,m < n, where w;;, = w(§—) and
wj,, = w(€o+). Thus, the first statement is proved. The last statement is a consequence
of Theorem 3.2.4 and the first statement of this theorem. [J

§3.4. The uniqueness and stability of the solution of (0.1). In §3.0-§3.3, we
established the existence of solutions of the Riemann problem (0.1) which are admissible
according to the viscosity-capillarity travelling wave criterion. Now, it is natural to ask
questions about the uniqueness and stability of these solutions i.e. solutions of (0.1) which
are admissible by viscosity-capillarity travelling wave criterion. Shearer [63] proved that
for each (u—,w_) with w_ < m (w—- > M), there are (u4,wy) with wy < a (wy > f)
such that (0.1) has two admissible centered solutions. The assumptions he used in [63] is

(3.4.1) p'<0ifw<a,p'>0ifw>4.

Note that the initial data in Shearer’s results is in the same phase. If the initial datum
are in different phase i.e. w_ < a, w4 > B, this kind of nonuniqueness does not hold, as
claimed by the following theorem supplied by Fan [23]:

THEOREM 3.4.1. Suppose p(w) satisfies (3.4.1) and w— < a < 8 < wy. Then (i) (0.1)
has a unique solution within the class of centered wave solutions satisfying the viscosity-
capillarity travelling wave criterion.

(ii) Let (u(£),w(€)) be the solution of (0.1) satisfying the viscosity-capillarity travelling
wave criterion. For any € > 0 and v > 0, there is a § > 0 such that if

lum — |+ |ug — g+ |w- — D[ + oy — 4| <6

then
meas{€ € R | [u(§) — a(&)| + |w(§) —w(é)] = €} <7

where (u(€),w(£)) is the solution of (0.1a, b), admissible by the viscosity-capillarity travel-
ling wave criterion, with Riemann initial values (u_,w_) and (u4, w4 ), and ‘meas’ denotes
the Lebesgue measure.

In §3.0-3.2, we constructed solutions of (0.1) as the €, — 0+ limits of solutions of
(3.0.4). Is it possible that different sequences €, give us different limits and hence different
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solutions of (0.1)? Since solutions we constructed in §3.0-3.3 satisfy the viscosity-capillarity
travelling wave criterion also, we can see from Theorem 3.4.1 that the answer to above
question is almost negative: The ¢ — 0+ limit of solutions of (3.0.4) with (3.0.5) is unique,
if p(w) satisfies (3.4.1). In this case, of course, the (ii) of Theorem 3.4.1 also holds for this
solution.

§4. Mixture State Solutions of (0.1). For Van der Waals fluids, the region w < «
and w > f corresponds to the liquid and vapor phase respectively. We know that the
only stationary phase boundary admissible according to the viscosity-capillarity travelling
wave criterior is (u—,m), (u—, M), where m and M are the Maxwell constants and u_ is
arbitrary. Based on this fact, we shall construct a weak solution of (0.1) with a region of
mixture of liquid and vapor as foolows: Choose an arbitrary subset A of R_ := {z € R :

z < 0}. We define

(u—,m) ifz €A,
(u—,M) ifz € R\A,
(u—,M) fO0<z/t<s,
(u4,wy) ifs<azlft,

(4.1) (u(z,t),w(z,t)) :=

where (u_, M) and (uy,wy4) satisfy the Rankine-Hugoniot conditions with speed s > 0.
We claim that (u(z,t),w(z,t)) defined by (4.1) is a weak solution of (0.1). We assume
that p(w) is convex for w > M. Then, by Theorem 3.3 of [40], the jump discontinuity at
€ = s > 0 is admissible by the viscosity-capillarity travelling wave criterion For z < 0,
u(z,t) and p(w(z,t)) are constants, and w(z,t) = 0. Thus, (u(z,t),w(z,t)) defined by
(4.1) is indeed a weak solution of (0.1). We notice that the region z < 0 consists of mixture
of liquid and vapor. Similarly, we can construct a weak solution of (0.1) with z > 0 being
the region of mixture.
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