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The meaning of the constraint condition on B in (2) is the following: if the set {u = 0} is
negligible, then the only admissible choice for B is B = {u > 0}, which gives

F(u) =2 </+wﬁl/2(s) ds> P({u>0}Q).

On the contrary, if the set {u = 0} is not negligible, then we have to choose a subset H of its
in order to get, for B = {u > 0} U H, the least perimeter P( B, 2).

We also study (see Theorem 1.1 and Proposition 1.6) the asymptotic behaviour of the
minimizers of the problems

/Q [8|Vu|2 +£‘3ﬁ<g—>] da:+/£;g(z,u) dx

for suitable functions g : & x R — R..

1. Statement of the Results

Let € be a bounded open subset of R™ with a Lipschitz boundary. As usual we denote
by H'(Q) the Sobolev space of all functions v € L?(Q) with distributional derivatives in
L?(Q). Let 8 : R — R be a nonnegative lower semicontinuous function with compact
support and let g :  x R — R be a Borel function such that

(1) fora.e. x € Q the function g(z,-) is continuous on R ;
(ii) there existpy,p; € L'(Q) and C1,Cy > 0 such that for a.e. z € Q andevery s € R

p1(z) + C1]s]* < g(z,5) < pa(z) + Cals|®.

Then, for every € > 0, the well-known direct method of the Calculus of Variations (see for
instance [6]) ensures the existence of a solution u, of the problem

(Pe) min {/ [5|Vu|2+g—3ﬁ <E‘_>] d:r+/ 9(z,u) dx : uEHl(Q)}.
Q € Q

The present paper is devoted to the characterization of the asymptotic behaviour of the so-
lutions u, and of the minimum values min(P,) as € — 0. In order to describe the limit
problem, we introduce the functions

g_(xz) = min {g(m,t) : tg()}, g+(x) = min {g(a:,t) : tzO},

we set

+00
c=2 / B2 (s) ds,
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and we recall some basic notions about functions of bounded variation and sets of finite
perimeter.
We say that u € L!(Q) is a function with bounded variation if

(1.1 |Du|(€) = sup {/ vdivgdzs : g € CH(Q;R™), lg] < 1} < +00.
Q

The number defined in (1.1) is called total variation of v in €, and is equal to the integral
of |Vu| if u is a Lipschitz function. We denote by BV () the vector space of all functions
u such that | Du|() < +oco. By using Riesz’s representation theorem, it can be seen that
u € BV(Q) if and only if there is a vector measure (u1,..., 4,) With finite total variation
which allows integral representation of the distributional derivative of u, i.e.

/ua—gdmz——/gdu,' \/gEC(%(Q),z’:I,...,n.
o O Q
If u = xp is the characteristic function of a Borel set B, then the total variation of v is called
perimeter of B in Q, and denoted by P( B, ). Sets of finite perimeter have proved to be
very useful in the theory of minimal surfaces. A comprehensive treatment of this topic can
be found for istance in [8] and [10].

Let (P) be the following problem

(P) min {CP(B,Q) + / g+ dz + / g—dx : B Borel set} ‘
B Q\B

Well known compactness and lower semicontinuity properties of sets of finite perimeter (see
for instance Giusti [10]) ensure that the infimum of (P) is attained. The following theorem
is the main result of this paper.

Theorem 1.1. We have
(1.2) lim [min(P;)] = min(P).
-0t

Moreover, given any sequence (ey) converging to 0 and any sequence (uy) of solutions of
(Pe,), there exist a subsequence (up,) and a minimizer B of ('P) such that, for almost every
x € Q, eitheruy, (x) converges to0, orsign uy, (x) converges tox p(x) —xa\s(x). Finally,
if

(1.3) g_(z) < g(z,0) and g,(z) < g(z,0) a.e. inQ,

then
sign(us,) — XB — XQ\B a.e. in €2,



Remark 1.2. By using (ii) and the projection theorem (see for instance Castaing & Valadier
[7], Theorem II1.22), it can be shown that g_ and g, belong to L'(). Moreover, Aumann’s
measurable selection theorem (see [7], Theorem II1.23) allows us to find two functions a, b €
L?(Q) suchthata < 0,b >0 and

g_(z) =g(z,a(z)) and g+(z) =g(z,b(x)) forae. z € Q.
Notice that, if for every h € N we setap = (a Ah) V —h and (by, A h) V —h, we have
g-(z) = hlim 9(z,an(z)) and  g4(2) = hlirp g9(z,bx(z))
—+00 —+o0
in the strong convergence of L' (Q).

If we denote by M (€2) the space of all real valued Borel functions defined in  and
endow M (Q) with a distance inducing convergence in measure, then Theorem 1.1 can be
partially rephrased in terms of I" -convergence (see for instance [2] for the basic definitions)
as follows.

Theorem 1.3. The functionals

2 -3 Ue .
Pl /Q[e|vu| ‘e 5(?” dz  ifue H'(Q)
+00 ifu € M(Q)\ H'(Q)

I" -converge in M(Q), ase — 0, to the functional

(1.4) F(u) =min {cP(B,Q) : {u>0}CcBC{u>0}}.

Itis well-known that I" -convergence and equicoercivity ensure convergence of minimiz-
ers to minimizers and of minimum values to minimum values. However, it can be easily seen
that the functionals F; are not equicoercive in M (€2). Forinstance, if Q is the interval 10, 1|
and u.(z) = 2 + sin(z//e), for every ¢ > 0 we have F.(u) < C for a suitable constant
C, but it is impossible to extract subsequences (u,,) which converge almost everywhere. In
particular, Theorem 1.1 cannot be deduced from Theorem 1.3. In order to prove (1.2) we need
to consider a weaker form of convergence (see Proposition 2.1).

Remark 1.4. Since the perimeter P( B, Q2) is not affected by modifications of B in negligible
sets, an equivalent definition of F' can be given by requiring the inclusions to hold only almost
everywhere. We also remark that F(u) = ¢cP({u > 0},Q) ifu # 0 almost everywhere,
and F(u) = 0 ifeitheru > 0 oru < 0 in Q.

Remark 1.5. When we consider F, as functions also of the the domain of integration
(and then we write F.(u, ) instead of Fe(u)), it is interesting to notice that even if all
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the functionals F, are o-additive measures as functions of €2, the I' -limit /' does not share
this property. In the one dimensional case, it suffices to take a function u equal to 1 in
10,1/3[,equalto0 in[1/3,2/3],andequalto —1in]2 /3, 1[. Then, F(u,]0,2/3[) =0,
F(u,11/3,1[) = 0 but F(«,]0,1[) = 1, so that A — F'(u, A) is not an additive set func-
tion.

Remark 1.6. In general, there is no hope for uniqueness of the minimizing set B of the
problem (P). Indeed take 2 =]0, 1[, the same function u of Remark 1.5, and any function
g such that g, = —u and g_ = +u. Then, min(P) = 1/3 and any set B =]0,¢[ with 1/3 <
t < 2/3 is a minimizer. This phenomenon forced us to consider only the convergence of the
signs of suitable subsequences of minimizers. The pointwise convergence of the minimizers
is ensured under stronger assumptions on g, as the following proposition shows.

Proposition 1.7. Let us assume that for almost every x € Q the function g(x,-) has a unique
minimizer u.(x) > 0 when restricted fo the half line [0, +oo| and a unique minimizer
u_(x) < O when restricted to the half line | — co0,0]. Then, given any sequence (&)
converging to 0 and any sequence (uy) of minimizers of (Pg, ), there is a subsequence (up,)
converging in measure to a functionuw € M () such that u(z) € {u_( x), U+ () } for any
x and the set {u > 0} minimizes (P).

2. Proof of the Results

The proof of Theorems 1.1 and 1.3 essentially relies on the following two propositions.
We define

m=inf {s : B(s) #0}, M =sup{s: B(s) #0}.

Proposition 2.1. Let (g) C]0,+o00| be converging to 0, and let (uy) C HY(Q), u €
M(Q) such that

. Up
limsup — > M
h—+o00 Eh

almost everywhere in the set {z € Q : u(z) >0} and

. Up
lim inf — < m
h—+oo €p

almost everywhere in the set {z € Q : u(z) < 0}. Then,

lim inf / [sh|Vuh]2 +e,°B <@>] dz > F(u),
Q Eh

h—+oc0

with F'(u) defined in (1.4).



Proof. We may assume, possibly passing to subsequences, that the liminf in the statement
is a finite limit, say L. Let I be the primitive of 8'/2 which vanishes for t < m, and let
vy = 2I(up/ep). By the chain rule and the inequality 2 ab < a? + b? we infer

2
/ V| dz = —/ g'/? <ﬂ> |Vug| dz g/ {ShIVuhI2 + g5 <1—L—h->} dx.
Q En JQ Eh Q Eh

Since 0 < vy < ¢, it follows that the sequence vy 1S bounded in BV (L), and we can
assume, by Rellich’s theorem, that it converges almost everywhere to a functionv € BV ().
Moreover passing to the limit as A — +oo in the foregoing inequality, and recalling the lower
semicontinuity of the total variation (see for instance [10], Theorem 1.9), we get | Dv|(Q) <
L. We need only to show that F'(u) < |Dv|(). Since 0 < v < ¢, by using the Fleming-
Rishel formula (see [10], Theorem 1.23)

|Dv|() :/ P{zeQ : v(z) >1},Q)dt
0

we can findt €]0,c[ suchthat B = {z € Q : v >t} is a set of finite perimeter in Q and
cP(B,Q) < |Dv|(Q). By our assumption on (uy), for almost every z in the set {m eQ :
u(x) > 0} the sequence v, () converges to c. In particular, {a: €Q : u(x) > O} CB
up to a negligible set. A similar argument shows that B C {m € : u(z) > O} up to a
negligible set. Hence,

F(u,Q) <cP(B,Q) <[Dv[(Q) <L,

and the proposition is proved. B

In the proposition below it will be very useful the so-called coarea formula (see for
instance [8], 3.2.12)

+00

(2.1) / |V<p|d:c=/ H™! ({z € B : p(2) =t})dt
B —00

which holds for every Borel set B C R™ and every Lipschitz function ¢.

Proposition 2.2. For any functionu € M () itis possible to find functions (u.) C H'(Q)
converging to u almost everywhere, such that

(2.2) lim /Q [a|w£|2 +e733 <“?)] dz = F(u).

e—0*

Moreover, the sequence u, is bounded in L*(Q) ifu € L*°(Q).

Proof. The proof is achieved in three steps. We define the functional

F*(u) = inf {lim sup/ [5|Vu5|2 +e738 <25>] dzr : u. — ua.e. in Q} .
Q >

0"
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A diagonal argument shows that the infimum in the definition of F'* is achieved, and F'* is
lower semicontinuous with respect to the almost everywhere convergence. Then, the state-
ment of the proposition is equivalent to the inequality F'*(u) < F'(u) (the "liminf" inequality
in (2.2) follows by Proposition 2.1).

Step 1. We assume that u is bounded, v # 0 almost everywhere, and there is a bounded open
set C C R™ with a smooth boundary such that

(2.3) CNQ={z€Q : u(z) >0}

We denote by 7 the distance function from 0C, by C,, the set {:r ceC: 1(z) < n}, and by K
a positive number such that [m, M| C | - K, K]. We want to define u, = a.0,, where a, and
o, are functions which fulfil suitable conditions. Let ¢, € C*(R™) such that 0 < ¢, < 1
and
. . on 2
Y:=0 inC Ye=1 inR"\C, |V1/)5|g$.
We define

0e() :m(z)/ '“'“”h(“‘”) dy+ e,
Q K.D? De

where h is any fixed convolution kernel. The functions a, are in C*°(R™), are greater than
g, converge to |u|/K almost everywhere, and are equal to € on C . In addition, the upper
bound on |V1,| yields

(2.4) lim g/ |Vae|* dz =0
Q

-0+

provided p, converges to 0 slowly enough. Now we turn to the construction of o,. Letn, > 0,
e be solutions of the problem

1/2 (1)) + 3/2
'7/ = IB ('7 €3> - ) ’7(0) = _K) ’Y('f)e) = K.

By a change of variables we infer

K &3 32
2.5 e = dt <2K )
(2.5) n /_K B2 () + 22 S &

The functions o, are defined as follows:

K ifz e Cand7(z) >
o(2) = {ny(T(m)) ifr e Cand () < 7
~-K ifz ¢ C.
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By (2.5), for e small enough the functions a, are equal to € in C,,_ and, setting u, = a.0,, we
have B(ug/e) = 0 outside C,,. By (2.4) we infer

lim sup/ [E|V'U,£|2 +e73p (E)] dz = lim sup/ [€?|Vae|* + e B(0e)] da,
e—0* Q € e—0* Be

where we have set for simplicity B, = C,, . Since |V7| = 1 almost everywhere (see for
instance [8], 3.2.34), by using the coarea formula (2.1) and our special choice of v, we get

lim sup/ [53|V05|2 + 5_3;6(05))] dz =

+
e—0 e

= lim sup /m [E 12+ e B K {2 €CNQ @ 7(2) =t})dt =
0

e—0*

= lim sup /One [27;,81/2(%) + 1]7—("‘1 {zeCnQ : 7(2) =t})dt.

e—0*

Since OC is smooth, for ¢ small enough we have {z € C : 7(z) =t} = {y+tv(y) : y €
0CY}, where v is the inner normal to C. In particular,

H' ({zeCnQ @ 7(2) =t}) <H™' ({y+tw(y) : y€C, dist(y, Q) < t}) <
<(I+ L™ H™ ({z € 8C : dist(z,Q) < t}).

In the above formula, 1 + Lt is greater than the Lipschitz constant of the map y — y +
tv(y) defined in OC, and L is a suitable constant depending on the curvatures of C. Finally,
assembling the previous inequalities we get

(2.6) lim Sup/ [e[vu£|2+g—35<ﬁ)] dz <2 </ T s ds> K= (CNQ).
Q € —00

e—0*

Step 2. We now remove the regularity assumption on the set C = {a: €Q : u(x) > O},
assuming only that P(C, Q) < +oco. By using Proposition 2.16 and Remark 2.13 of [10], it
is possible to extend the characteristic function of C to a functionv € BV (R ™) with compact
support such that 0 < v < 1 and |Dv|(8Q) = 0. Let (ps) be a sequence of mollifiers, and
let vy, = v * py; by Sard’s theorem, almost every level set of vy, is smooth. Moreover, given
any n €]0,1/2[, by the coarea formula (2.1) for every h € N we can find t, €]n,1 — n[
such that the set

Ch={z€R™ : vp(z) >t)}

is smooth and

- — ! o
(2.7 H™ ' (ChnQ) < g a|Vv,,|ala:_ 1_2nleh|(Q)~
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Now we set
un(z) = lul(z)  ifxz € Ch
h —lul(z) ifzeQ\Ch

Since vy converges to x¢ almost everywhere in 2, it can be easily seen that u, converges to
u almost everywhere. Since uy fulfil condition (2.3), by (2.6) and (2.7) we infer

c
1-2n

F*(up) < |Dva|(Q).

Since |Dv|(0Q) = 0, the sequence |Dv,|(£2) converges to |Dv|(Q) = P(C,Q) (see for
instance [10], Proposition 1.15). By letting h — +oc0 we get

F'(u) <

1_277F(u),

and the inequality follows by letting n — 0.

Step 3. Let B be a minimizing set in the definition of F'(u). Let uy be the functions defined
by
(h/\u(m))V—h ifu(z) #0
up(z) = 1/h ifu(z) =0 andx € B
—1/h ifu(z) =0 andz ¢ B.

Since the functions u; are bounded and are nowhere equal to zero, the first two steps yield
F"(up) < F(up) = F(u).

By letting h — +o00 and using the lower semicontinuity of F'* we obtain the desired inequal-
ity. m

Proof of Theorem 1.1. Let B be a minimizer of (P), and let ay, by, be the functions in Remark
1.2. We define
_ Jbp(z) ifzeB
ua(z) = {ah(m) ifz ¢ B.

By Proposition 2.2, for every integer h we can find a sequence (u.) converging to u;, almost
everywhere, bounded in L*°(Q), and such that

i, [ [e19sd + <28 (%)) an+ [ ota,u0 ] -

=F(Uh)+/g(m,uh)écP(B,Q)+/Q(I,Uh)dz.
Q Q
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In particular,

lim sup [min(PE)] < hlim {cP(B,Q) +/ g(x,up) dm} =
—+00 Q

e—0*

=cP(B,Q)+/

9+ d:r;+/ g_ dx = min(P).
B Q\B
In order to show the inequality

(2.8) lim (i)nf [min(P,)] > min(P),
e—-0*
we choose a sequence (&p,) converging to O such that
lisrrl)(i)gf [min(P,)] = hgr?w [min(P,,)] =L

and we assume L < +oo (the inequality being trivial if L = +o00). Let uy € H'(Q) be a
minimizer of (P, ), and let v, = 2 I(up/en) be as in the proof of Proposition 2.1. The same
argument of Proposition 2.1 shows that the sequence (vy) is bounded in BV (€2). Hence, it
it not restrictive to assume that v, converges almost everyhwere to a function v € BV (Q).
We define

B = {3: €Q : limsup 4% 5 M}
h—+o0 Eh

By = {:1: € Q : liminf un(2) < m}
h—+o00 Eh

1 ifz € By
u(z) =< -1 ifze B,
0 otherwise.

By Proposition 2.1 we get

(2.9) lim inf / [shIVuh|2 + e,ﬁﬁ <%>] dz > F(u).
Q h

h—+o00
If x € By and vy(z) converges, then necessarily the limit of v, is equal to ¢, and

. up(x)
lim inf
h—+o00 Eh

> M,

because 2 [(t) < cforallt < M. In particular,

lihm inf up(x) >0

—+00
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for almost every x € By, hence

lim inf / g(x,up) dx > / lim inf g(z, up) dz > / 9+ dx.
h—+00 B, B h—+00 B

A similar argument gives

lim inf/ g(x,up) d:r:z/ g_dx.
h—+o0 B B,

Moreover, forevery z € Q \ (Bl U Bz) the sequence (up) converges to 0, so that

lim inf / g(x,up) dx > / g(z,0) dz.
h—+oo JQ\(B,UB,) Q\(B1UBy)

The last three inequalities yield

(2.10) lim inf/ g(x,up) dz > / g+ dm+/ g_dx
h—too [ B Q\B

for any Borel set B containing By and contained in € \ B;. By taking as B the minimizing
set in the definition of F'(u), the inequality (2.8) follows by (2.9) and (2.10).

This proves (1.2). The last statements of the theorem can be shown by repeating the same
argument leading to (2.9) with an arbitrary sequence (). Finally, if (1.3) holds and if the
sequence (up,) were converging to 0 in a set of positive measure, then the strict inequality in
(2.10) would imply a strict inequality in (2.8), that is a contradiction. ®

Proof of Theorem 1.3. By Proposition 2.1 we infer

lim (i)r]f F.(ug) > F(u)

whenever u, — u in measure. In fact, sequences converging in measure admit subsequences
converging almost everywhere. By Proposition 2.2 we get a sequence (u,) converging to u
in measure such that

lim Fe(ue) = F(u).

e—0"

This proves (see for instance [2]) the I" -convergence of F; to . ®

Proof of Proposition 1.7. By Theorem 1.1, we may assume, with no loss of generality, that
sign(up) converges almost everywhere to x g — xq\p for a suitable minimizer B of P. We
shall prove that u, converges in measure to the function defined by

_ fus(x) ifzeB
WD) =1y (0) ifzeQ\ B

11



Let § > O be given; by the assumptions on g there exists y(z) > 0 such that

g9(z,t) > y(x) + g+(x) ift>0and |t —ui(z)| >6
g(z,t) > vy(x) +g9_(x) ift<O0and|t —u_(z)|>6.

Therefore, setting
Qn={z€Q : signux(z) = signu(z), |ur(z) —u(z)| > 8}

it is easy to obtain

(2.11) /g(z,uh)d:rz/ Pyd:c+/ g+dm+/ g—dz.
Q Qn {‘uhzo }ﬂB {u;,<0 }\B
By Theorem 1.1 and Proposition 2.1 we get
(2.12) lim Sup/ g(z,up) dz < / 9+ dx + / g_dx
h—otoo JQ B Q\B

so that, by (2.11) and (2.12),

lim / ydx =0.
h—+o00 Q

Since y > 0 and sign(uy) — sign(u) a.e. in Q, this implies

lim meas ({z € Q : |up(z) —u(z)| > 6}) =0

h—+o00

and, since 6 > 0 is arbitrary, we obtain the convergence in measure of up to u. W
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